
This course is usually lectured by Prof Ross Anderson and therefore much of the
material is derived from an earlier version of the lecture course prepared by him.

1

So far in Part 1A you have written small sample programs by yourself. Most software
development in industry is at a significantly larger scale, involving teams of people
and often involves safety or security requirements.

All significant pieces of software contain latent defects – bugs yet to be discovered.
This affects both safety and security.

In this course we look at what has gone wrong in the past through case histories, and
look at the development and management practices which have arisen in order to
avoid failures in the future.

2

In order to write programs which meet tough assurance targets and work effectively
as a team member, you need to be able to apply appropriate programming best
practice as described in this course. For example, how to use version control for
source code, automated build systems, and suitable testing strategies.

An understanding of historical and current software development models such as
waterfall, spiral and agile methods will allow you to select the right approach for a
given project.

It is important to understand the terminology used (e.g. what is a bug, a hazard, or a
vulnerability?) so you can correctly understand case histories and can communicate
effectively with others.

An important aim is to prepare you for the Part IB group project. The techniques
described here will also help with your Part II and Part III projects as well as other
later courses such as Security and Concurrent and Distributed Systems.

3

This is a course which requires you to read around the subject. Text books are very
helpful for this course, and here are three which offer useful, complementary
perspectives.

R. Anderson, Security Engineering (2nd Edition, 2008). You may like to start by reading
Part I and also Chapters 25 and Chapter 26. Available online:
https://www.cl.cam.ac.uk/~rja14/book.html

M. Howard and D. LeBlanc, Writing Secure Code (2nd Edition, 2003).

N. Leveson, Safeware: System Safety and Computers (1994). See also her more recent
book, System Safety Engineering: Back To The Future (2002), which is also available
online: http://sunnyday.mit.edu/book2.pdf

4

https://www.cl.cam.ac.uk/~rja14/book.html
http://sunnyday.mit.edu/book2.pdf

In addition to the core text books, these are some of the additional text books,
academic articles and white papers which you may find interesting.

The course materials page contains further links to related reading and an annotated
slide deck:
https://www.cl.cam.ac.uk/teaching/current/SWSecEng/materials.html

You should not feel constrained to these materials. Read about any application areas
which are interesting to you. This will help both with your general understanding and
also provide you with useful perspectives and examples which you can use to inform
your future career as well as supporting material to refer to in the forthcoming Tripos
examinations.

Remember: wide-reading driven by curiosity will help a lot with this course.

5

https://www.cl.cam.ac.uk/teaching/current/SWSecEng/materials.html

”interactive activities are most likely to be better than constructive activities, which in
turn might be better than active activities, which are better than being passive.”

Michelene Chi, Active-Constructive-Interactive: A Conceptual Framework for
Differentiating Learning Activities, Topics in Cognitive Science, 1(1):73-105 2009.
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1756-8765.2008.01005.x

Examples of different types of learning:
• Interaction: discussing with peers, a supervision
• Construction: completing an example sheet, writing a summary in your own words
• Active: Taking notes of what the lecturer says, highlighting a passage
• Passive: Reading a book, listening to a lecture or video

Takeaway message: You need to read books and papers, but to really understand the
material, you need to build artefacts, talk to others and critique the ideas.

6

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1756-8765.2008.01005.x

Many studies in recent years have found that using laptops in lectures adversely
affects learning outcomes, not just for the user, but also for those sitting nearby.
Studies have also shown that writing with a pen aids recall over the use of laptops, as
seen here. If you normally use a laptop, try using a pen and paper (or tablet and pen)
for this course.

If you really want to use a laptop, then try and summarise what I say (a constructive
activity), don’t transcribe the lecturers presentation verbatim (merely an active
learning activity). If you want to browse the Internet, then please do that elsewhere,
not in the lecture. (Lecture attendance in Cambridge is not compulsory.)

Paper reference: Pam Mueller and Daniel Oppenheimer. The Pen Is Mightier Than the
Keyboard: Advantages of Longhand Over Laptop Note Taking, Psychological Science,
1(10), 2014. https://cpb-us-
w2.wpmucdn.com/sites.udel.edu/dist/6/132/files/2010/11/Psychological-Science-
2014-Mueller-0956797614524581-1u0h0yu.pdf

Further reading: https://cs.brown.edu/courses/cs019/2018/laptop-policy.html

7

https://cs.brown.edu/courses/cs019/2018/laptop-policy.html

The last two topics are given by Dr Andrew Rice and Dr Richard Sharp on the 8th and
10th May respectively.

8

Security Engineering as a discipline focuses on the tools, processes and methods
needed to design, implement and test complete systems, and to adapt existing
systems as their environment evolves. Note that safety engineering has a similar high-
level goals.

When considering the security or safety of the system, it is not sufficient to look at
each component in isolation (although that is important). It is essential to look at
how the whole system fits together. Security and safety is not composable.

9

The traditional design hierarchy requires us to start by defining, at a high level, what
we are trying to achieve. Then we explore the question of how to do so in terms of
overall strategy and architecture. Finally we need to explore the detail: which
hardware platform should we use, what cryptographic primitives are the right ones,
and so on.

For example, we might decide we are going to build autonomous cars which reduce
the number of accidents by 50% when compared to human drivers. Given that high-
level goal, we then explore the architecture which might allows us to get there. Only
then are we ready to make detailed decisions on specific technologies.

10

The definition of the system is often too narrowly defined.

For example, if a company produces a mobile app for a smartphone, it might assume
that the app is the system. This is too narrow a definition. For example, what about
the operating system running on the phone, or its hardware? Does the operating
system get regular updates? What other apps are installed on the phone, and are
they malicious? What about all the servers that the app communicates with?

We study cybercrime in the department. Most of the failures are not hi-tech, but
rather use a system in bad and unintended ways. Cyberbullying via a messaging
platform is one example: the platform is delivering the messages as requested, but
overall the system is failing to protect users from harm.

11

Here is an example where you need to think broadly about the definition of the
“system”.

In the UK, in common with many countries, electric bikes can only be ridden without
a license, tax or registration provided it has pedals and electric assistance does not
occur when travelling over 15.5 mph (25 km/h). So how do cyclists get around this
restriction?

The bicycle in this picture has electric assist. The electronics in the bike estimates the
speed of the bike by counting revolutions of the rear wheel passing in front of a
sensor. The “badassbox” works by supressing the sensor reading in every other
revolution, allowing you to travel twice as fast with electric assist. A by-product of
this is that the speedometer on the bike no longer provides an accurate reading.

Further reading:
• Details on the badass box, https://www.ebiketuning.com/badass-box-4-for-

shimano.html
• Rules around electric bikes in the UK, https://www.gov.uk/electric-bike-rules

12

https://www.ebiketuning.com/badass-box-4-for-shimano.html
https://www.gov.uk/electric-bike-rules

Reliability and dependability sounds like they might mean the same thing. However,
we demand greater precision in our use of terms.

Since malice is different from error, we wish to capture this. For example, a system
might state a reliability guarantee, such as “Bob will be able to read this file”, while a
security guarantee might state that ”Foreign governments won’t be able to read this
file”. Typically we want a dependable system with both reliability and security.

This example motivates the need to define terms carefully. Note that while we will be
consistent in this course, terms may have different meanings (or different terms have
the same meaning) in different communities. For example, the safety and security
communities currently use different language.

13

We adopt the same language as used by the legal profession and define a person as
either a subject (physical person) or a legal person which can also include a limited
company (e.g. Google) or a charity (University of Cambridge).

We use the term principal as a more general term to cover people, equipment and
more general labels. The term role is often used to as a means of indirection between
a principal and a person. For example, “the officer on watch”, or “Alice and Bob” or
“Alice or any of her current direct reports”.

The definition of a principal can get quite complex. Sometimes we need to distinguish
between “Bob’s smartcard representing Bob who’s standing in for Alice” from “Bob
using Alice’s card in her absence”. For example, consider the case of a bank, whose
policy states that all withdrawals over 10,000 GBP must be approved by any two bank
managers out of the set of Alice, Bob or Charlie.

14

Secrecy often, but not always, implies a technical mechanism. This does not
necessarily involve cryptography.

Privacy has many definitions which are wider than the one used in this course. For
those who are interested in such things, you might wish to look up the right to be
forgotten.

These three concepts are interrelated. For example, your medical privacy is protected
by your doctors’ obligation of confidentiality.

15

Anonymity has various flavours, from not being able to identify subjects to not being
able to link their actions. A simple example is k-anonymity where subjects are
indistinguishable from k-1 others (subjects are said to be “k-anonymous”).

A cheque has integrity (a signature) and freshness (a recent date) together giving it
authenticity.

16

Trust is really hard. It can exist at different levels: human norms (you trust your
doctor, and he has a warm manner, a nice office, etc). Trust can also be a trusted
system. Are these the same thing? Yes and no. Yes, because the doctor can break a
trusted system by malice or by accident (writes down his password which is visible to
others); no in other cases.

We are going to use the second definition (the NSA definition) for this course. Under
this definition, an employee of GCHQ selling cryptographic key material to a foreign
power is trusted but not trustworthy (assuming of course that such a sale has not
been authorized).

17

These are terminology from the safety community.

Failure is often expressed as Mean-Time-Before Failure (MTBF), or Mean-Time-To-
Failure (MTTF). For example, a single-engine plane might have an MTBF of 240,000
hours overall. This isn’t necessarily a meaningful summary on its own – other steps
might be required to ensure this is the case. For example, it might have an MTBF of
5,000 hours if its not serviced correctly (e.g. oil change is forgotten).

18

In a single-engined aircraft, a hazard might be the mountain you fly over at night since
you will crash if the engine fails. There is less hazard due to engine failure when flying
over the East Anglia during the day since its flat and you can probably land safely in a
field somewhere.

David Speigehalter uses the "micromort" as a unit of risk, defined as a one-in-a-
million chance of death. For example, taking the data from the Office of National
Statistics for 2012, 499,331 people died in England and Wales out of a population of
56,567,000. Therefore the chance of death overall for each citizen is, on average, 24
micromorts per day. We can use this concept of micromorts per unit of exposure to
assess the comparative risk of activities. For example, data can be used to estimate
that scuba diving is 5 micromorts per dive; skydiving, 8 micromorts per jump; and
skiing, 0.7 micromorts per day.

So what about terrorism? It has a tiny micromort! Yet we still care – because humans
are not always rational.

It is worth highlighting that risk, or the probability of an accident, is different from the
probability of failure or MTBF. A component can fail without it causing an event
resulting in loss. In a twin-engine plane, one engine can fail and yet there is no
accident.

19

A security policy is typically less than a page of text written in plain language.

A protection profile is typically dozens of pages written in a semi-formal language.

A security target may run to hundreds of pages for both functionality and testing.

20

[Ask the audience to talk to a neighbour and producing a list of problems with this
policy]

Many things wrong with this policy. Examples include:

* The policy reduces to "need-to-know", but what does this mean?
* What's a "breach"?
* Reporting a breach is passive voice: who does the reporting of a breach? Over what
time period?
* You need to trust the employees to adhere to policy. Do they feel trusted and
empowered?
* There's nothing in this policy which you can implement (e.g. support employees, or
turn into software): this policy is security theatre.

In the UK there's no general requirement to report a crime (with the exception of
terrorism).

Edward Snowden is an example worth considering: he released lots of data because
he felt that his duty as a solider was to leak data since, in his opinion, what the NSA
was doing was contrary to the constitution, and he had signed up to protect the
constitution.

21

Examples of disloyal insiders include Burgess/MacLean, Aldrich Ames, Edward
Snowden. Carelessness can include “loose talk”, reading papers on train, being
photographed outside Number 10 with papers in hand, malware on PC, and so on.

Another important concept is vetting, in which the background of employees working
with sensitive information is investigated. Does the employee have any weaknesses
which might be exploited by a third-party? For example, does the employee have
unsustainable debts, a drinking or drug problem, can they be “bought off”, etc.

22

MLS are widely used by governments.

There are a variety of classification levels in use around the world. The UK
Government uses Official, Secret, Top Secret
(https://en.wikipedia.org/wiki/Government_Security_Classifications_Policy). In this
course, in common with much of the computer science literature, we will often use
High and Low to describe a simple abstract representation of an MLS system.

Recall ‘mandatory access control’ from OS course.

Information flows are integrated with the operating systems as used by government
employees. Clearly the OS needs to prevent employees with clearance to work with
material up to secret level from accessing any files classified at top secret. No write
down is also important to stop information leakage. For example, the OS will allow
the user to cut-n-paste data from a confidential file to a secret one, but not vice-versa
(or if you can, then the confidential file then becomes classified at secret).

23

https://en.wikipedia.org/wiki/Government_Security_Classifications_Policy

At first people thought that you only needed no read up, but then if you get malware
running at high, it can leak data to low; so we also need the *-property.

The Trusted Computing Base includes all the hardware and software required to
enforce security policy.

24

A covert channel occurs when the performance of a resource shared between Low
and High allows information to flow which contravenes policy. An example shared
resource might be a CPU shared between processes, some of which are running at
High and some at Low. Then a High process can transfer data to a Low process by
either using lots of CPU (to send a “one”) or not using the CPU (signaling a “zero”).

More information: https://en.wikipedia.org/wiki/Covert_channel

25

https://en.wikipedia.org/wiki/Covert_channel

26

MLS is good at stopping data from flowing from High to Low. In other settings, you
want to stop lateral flows of information. Accounting firms use this to allow them to
work for two or more firms who compete in the same sector. Accountants at one of
the Big Four working on accounts for BP need to make sure that they don't talk to
colleagues who are working on Shell's accounts.

27

The Biba model is the inverse of the Bell-LaPadula model: instead of protecting
confidentiality, it protects integrity. In this model, we do not want a process at High
from being influenced by data from Low.

For example, a nuclear power station will have safety as at the top level: and any
control of the power station for the safety of the power grid itself will be ignored (a
blackout is better than a nuclear meltdown).

In practice, safety systems need more than simply High and Low.
Compartmentalization is often a good way forward, and to do this we can apply the
multi-lateral security model.

28

29

[Watch first 3 minutes of the video. Ask the audience to write down all the aspects of
the car which the remote attackers could control.]

Further reading and video: https://www.wired.com/2015/07/hackers-remotely-kill-
jeep-highway/

30

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

There are a wide variety of legacy protocols in existence: DNP3 in control systems,
CAN bus in cars, and so on. Many had either no stated security policy at all, or a
security policy which does not take remote networking into account (e.g. the
Internet).

As we just saw in the video, the Jeep Cherokee could be controlled remotely over the
mobile network. This is a poor architecture: you don't want to allow unfettered
remote control of the CAN bus, but equally well you need to for other things to
function. How do you fix? Can we apply some of the ideas from models we saw in the
last lecture (e.g. multilevel and multilateral security)? Defence in depth is also
important in order to ensure the failure of one component does not lead to an
accident.

31

The Swiss Cheese model of accident causation is a model used in risk analysis and risk
management. The aim is to ensure defense in depth: what might be open at one layer
is closed at another. Defense in depth works provided that there is at least one layer
which does not have a flaw which allows a hazard to turn into an accident. An
accident occurs when the weakness in every layer lines up – something we wish to
avoid.

https://en.wikipedia.org/wiki/Swiss_cheese_model

32

https://en.wikipedia.org/wiki/Swiss_cheese_model

Safety is sectoral: those working on car safety don't talk to the aircraft industry.

Many industries are much more tightly regulated than the computer industry. For
example, there are over 180 regulations for cars. Example: “ABS failure mustn’t cause
asymmetric braking”.

Understanding and improving our understanding of the relationships between failures
and outcomes can be bottom-up (failure modes and effects analysis) or top-down
(fault tree analysis). Both approaches are useful.

33

Example: You've got a person sitting on a rocket. What could go wrong? What would
cause the rocket to explode on the ground? What would cause the second stage not
to separate from the first? And so on. You can write down all the failures bottom-up.
An extreme example: what would happen if bolt number 40674 fails when attached
to a rocket fin? Could we reduce the risk of failure by increasing it’s diameter, length
or material used in manufacture? Could we introduce two bolts (redundancy) in order
to reduce the risk of failure?

Example 2: For planes, the basic failure you worry about is the engine failing;
examples include running out of fuel, engine on fire, etc. This is only a real problem
when flying over mountains, forests or the ocean since otherwise an emergency
landing is possible. The question you might ask is how long does the aircraft need to
survive on the flight?

34

This is the opposite to failure modes idea: Start at the top with a list of bad things you
wish to avoid, and for each one work down.

[Talk through the examples on each of the nodes in the tree.]

This works particularly well if there's a small, finite, number of bad things which could
happen: you start with each bad outcome and work your way down from it.

35

NATO countries require three things: authorisation, intent, environment.

Authorisation: there's a code which needs typing into the weapon. This code is kept
by a responsible person with authority to use the bomb.

Intent: the pilot needs to decide when and where the bomb will be released.

Environment: This is really important since it's quite hard for the malicious person to
get, say, 20 seconds of zero-gravity without access to a jet engine.

We hope that these things are orthogonal and therefore you can only set off a bomb
unless you have the bomb, a mad or otherwise compromised president, a well-
trained evil pilot, and access to a jet plane.

36

These are bullae from the British Museum. Each bulla was used to record the stock
stored in the granary so that when you deposit the wheat or olive oil you receive a
bulla back; you can then present your bulla later in the year to get the goods back.
Note that the bulla were pushed into clay, and the clay is then fired so that you had a
seal (each party kept one half and therefore this lets each other validate the
outcome.)

This is where writing comes from: “As the clay tokens and bulla became difficult to
store and handle, impressing the tokens on clay tablets became increasingly popular.
Clay tablets were easier to store, neater to write on, and less likely to be lost.
Impressing the tokens on clay tablets was more efficient but using a stylus to inscribe
the impression on the clay tablet was shown to be even more efficient and much
faster for the scribes. Around 3100 BCE signs expressing numerical value began. At
this point, clay tokens became obsolete, a thing of the past.”

https://en.wikipedia.org/wiki/Bulla_(seal)

37

https://en.wikipedia.org/wiki/Bulla_(seal)

How do you manage a business that’s grown too big to staff with your own family
members?

Double-entry bookkeeping allows you to check the behaviour of bookkeepers are
consistent. This leads to the phrase ”the books balance”. It requires separation of
duties: in other words, that subjects cannot take on two roles in the bookkeeping
system such that a single subject can commit fraud and ensure that the books still
balance.

Further information, including the ability to build your own simple accounting system,
can be found here: https://anvil.works/blog/double-entry-accounting-for-engineers

38

https://anvil.works/blog/double-entry-accounting-for-engineers

“Jewish bankers in Old Cairo used a double-entry bookkeeping system which
predated any known usage of such a form in Italy, and whose records remain from
the 11th century AD, found amongst the Cairo Geniza”

https://en.wikipedia.org/wiki/Cairo_Geniza

39

https://en.wikipedia.org/wiki/Cairo_Geniza

Serial or sequential separation assigns a different subject to each role in the double-
entry bookkeeping model. In the example, the lecturer interacts with many distinct
employees of the University in order to carry out financial transactions. These provide
checks against malice or mischance.

An alternative to the sequential approach is the parallel model which requires two
subjects to sign an agreement. This might be used for large, irreversible, operations
such as signing a guaranteed cheque, or signing a significant contract.

40

RBAC adds an extra level of indirection between the subjects and the actions a
subject can carry out. We call these intermediate states roles. Roles provide flexibility.
For example, in a university with 20,000 people, you can't set up individual accounts
with separate Unix file permissions for each person. Instead, you define roles and
then assign roles to people. This way the complexity is manageable. Example roles in
other domains might be Officer of the Watch in the Army, Branch Manager in a
banking context, Charge Nurse at a hospital, and so on.

RBAC helps with complexity, but doesn’t remove it entirely. You still need to write the
policy, and this policy might be wrong.

It is also possible to combine RBAC with other models. For example, SELinux offers
MLS with RBAC.

41

First, define what you are trying to do at a high level. Some examples:

1. Stop a story reaching the front page of The Guardian
2. Prevent a Branch Manager from running off with the cash
3. Etc.

Given an overarching aim, then construct a protection profile or high-level safety
case. What are the threats? Look at the failure modes (bottom-up) or conduct a fault-
tree analysis (top-down). This will allow you to construct a detailed security target or
safety case, which will inevitably involve consideration of specific mechanisms.

We will now look at different mechanisms, starting with user behaviour.

42

This is the most overlooked mechanism. Serious accidents can occur by ignoring the
limitations of humans…

Example: Tell the user to choose a password that can't be guessed and don't write it
down. Then ask them to create a different password for each of the hundreds of
websites that they use (some infrequently). Then say you must change each of these
passwords every three months. This is simply not an acceptable cognitive load on an
individual, so coping mechanisms arise. Can you think of specific examples of poor
understanding of user behaviour in computer systems? What are your coping
mechanisms?

43

For many years the car industry prospered while blaming the user: “it's not our car
which is defective, but the driver…”. The mantra from the manufacturers was “sue the
driver not the manufacturer”. It wasn't until the 1960s that the users managed to
challenge this state-of-affairs. It took many decades for the motor industry to get to
this point. This sort of dumping of failures onto the user happens time and again as
new industries start, and the computer industry is no exception.

44

Cybercrime today makes up around half of all crime by both cost and volume.

The hierarchy of harms: targeted attacks, generic malware, bulk password
compromise, abuse of mechanism. With each step down in this hierarchy, the
number of victims goes up by an order of magnitude or more. Most harm occurs at
the bottom, and perhaps not too surprisingly these attacks are also the least
technically sophisticated.

At the top are the targeted attacks (e.g. Russian intelligence get access to Hilary
Clinton's email), but these are really rare. Bulk malware, such as Zeus or Dridex,
infects millions of users. Bulk password compromise for 50-100 million people.
Perhaps cracking the password file and guessing that the users use the same
passwords for Gmail and provides access to 100,000 email accounts.

At the bottom is abuse. Abuse of mechanism can exist in all systems; examples
include cyberbullying. What's this got to do with car crashes? Car crashes are an
abuse of the mechanisms provided; just the same as cyberbullying where messaging
platforms are used to bully others. What responsibility do the messaging platforms
have here?

45

Cyberbullying. Example: using existing messaging platforms to bully others

Doxing. Researching then broadcasting private information of the victim.

Fake rental apartments. We have seen websites advertise apartments in Cambridge
which either don't exist or rather they aren't for rent and then you cheat out of the
deposit. What can the website do to push back on this? What can the University do?
Well, the University could write to all accepted applicants and tell them to use the
official accommodation service and warn them of the scams... but this still doesn't
work. Indeed we need the ideas -- this is very much an unsolved problem.

46

Hierarchy of harms is often focused on security or safety. Privacy also needs to be
usable.

The traditional solutions: informed consent and anonymisation.

Consent is hard to do right – how do you know users made informed decisions? Is
there really genuine choice on current platforms with their often impenetrable
privacy notices?

Anonymisation aims to remove personally-identifying information from a dataset
while still preserving utility. Unfortunately this is extremely difficult. Consider, for
example, location data. It turns out that where you live and where you work is often
unique, so ”anonymous” traces of the movements of people can be reidentified
simply by combining the location trace data with the electoral roll (home location)
and employee database (where you work).

Further reading: Golle, Philippe, and Kurt Partridge. "On the anonymity of home/work
location pairs." International Conference on Pervasive Computing. Springer, Berlin,
Heidelberg, 2009. https://link.springer.com/chapter/10.1007/978-3-642-01516-8_26

47

How many CPUs in the pictures and how does this system differ from the car? [Ask
audience] This is the intensive care ward in Swansea. [Click next to run animation]

Note the difference from the car: In a car they are all on the CAN bus and integrated;
in the hospital they are all separate with their own interface.

48

Here are seven infusion pumps. Note that all the controls are different!

“Approximately 11% of patients in UK hospitals suffer adverse events, of these half
are preventable, and about a third lead to moderate or greater disability or death [1].
Medication errors seem to be one of the most preventable forms of error: more than
17% of medication errors involve miscalculation of doses, incorrect expression of
units or incorrect administration rates [2]. The Institute of Healthcare Improvement’s
“global trigger tool” suggests adverse events may be ten times higher [3]. These
figures come from research in different countries with different methodologies and
assumptions, and suffer from a lack of reliable information [4], but there is general
agree- ment that preventable mortality is numerically comparable to road accident
fatality rates [5]."

Quote from: Thimbleby, Harold. "Improving safety in medical devices and
systems." 2013 IEEE International Conference on Healthcare Informatics. IEEE, 2013.
https://ieeexplore.ieee.org/abstract/document/6680455

How do we standardise? Even where there are standards, they aren't followed:
International standards say that litres should be written with a capital-L, but note that
some don't do this (and therefore a lowercase-l could be confused with a one).

49

https://ieeexplore.ieee.org/abstract/document/6680455

Even the same device make and model (here BodyGuard 545) have different versions
with different user interfaces.

50

Here are a range of keyboard layouts from infusion pumps. They are all different. If
the layout problems weren’t enough, there are also challenges in how key presses are
interpreted.

Example problem in this area, although from the banking domain: “In 2008, Grete
Fossbakk transferred 500,000 kroner to her daughter using the web interface to her
Union Bank of Northern Norway account. Unfortunately, she admits, she miss-keyed
her daughter’s bank account number and a repeated 5 in the middle of the account
number made it too long. The Union Bank of Northern Norway’s web site then
silently truncated the erroneous number, and this new number (which was not the
number Fossbakk had keyed) happened to match an existing account number. The
person who received the unexpected 500,000 kr spent it. Only on the steps to the
court room did the bank relent and refund Fossbakk.” (quote from Thimbleby’s
paper). See also K. A. Olsen, “The $100,000 keying error,” IEEE Computer, vol. 41, no.
4, pp. 108–106, 2008.

Similar problems occur with pocket calculators, which are also used by nurses to
calculate medical doses.

51

52

[Ask the audience to chat to their neighbour and write their own top-5 list of things
they would do to prevent password reuse. Discuss.]

53

Phishing or social engineering aids an attacker at all levels in the hierarchy of harms.
An example story. A malicious person finds a card in the street and phones up the
owner and says "Hi it's Barclay's here... We have noticed your card was used
incorrectly in a number of transactions, have you still got your card?". "I'm sorry, I lost
it in Tesco 30 minutes ago, I was going to ring you!". "No problem, we can you sort it
out for you, could you just tell us your PIN so we can cancel your card for you?".
Sending a generic email to all employees, perhaps purporting to be from the boss,
with a URL in it can be very effective. The email simply needs a cover story. This could
be anything from “please complete the staff survey” to “your inbox is full; please click
here to increase your quota”.

Another example story, this time spearphishing. An attacker compromises an email
server and finds the inbox from the CEO. The attacker then examines the recent email
traffic, and works out who the financial controller (chief clark) is and also what recent
business is going on which might lead to transfers of cash out of the company. The
attacker then crafts an email purportedly from the CEO to the financial controller
asking him or her to send a large sum of money to a plausible sounding company
whose bank details are actually under the control of the company.

The Chinese Government wanted to infiltrate the Dali Lama’s office and ended up
compromising 30 out of the 50 or so computers. The way in appears to have been a
compromise of one Monk's computer. This machine was used to compromise the
mail server used by the Monks, so that when an attachment is sent from one Monk

54

to another it could be rewritten to include malware in the attachment and therefore
spread the attack to more machines . This is great for covert ops – all mail sent and
received is legitimate, so the Monks can check with each other to see if they did send
the email (which they did) but it's still malicious!

54

55

56

“In March 2016, the personal Gmail account of John Podesta, a former White House
chief of staff and chair of Hillary Clinton's 2016 U.S. presidential campaign, was
compromised in a data breach, and some of his emails, many of which were work-
related, were stolen. Cybersecurity researchers as well as the United States
government attributed responsibility for the breach, which was accomplished via a
spear-phishing attack, to the hacking group Fancy Bear, allegedly affiliated with
Russian intelligence services.

“Some or all of the Podesta emails were subsequently obtained by WikiLeaks, which
published over 20,000 pages of emails, allegedly from Podesta, in October and
November 2016. Podesta and the Clinton campaign have declined to authenticate the
emails. Cybersecurity experts interviewed by PolitiFact believe the majority of emails
are probably unaltered, while stating it is possible that the hackers inserted at least
some doctored or fabricated emails. The article then attests that the Clinton
campaign, however, has yet to produce any evidence that any specific emails in the
latest leak were fraudulent. A subsequent investigation by U.S. intelligence agencies
also reported that the files obtained by WikiLeaks during the U.S. election contained
no "evident forgeries".”

https://en.wikipedia.org/wiki/Podesta_emails

57

https://en.wikipedia.org/wiki/Podesta_emails

It turns out the psychology is really important in this space. Once you become skilled
at something, such as playing the Piano, you start to do things automatically (e.g. play
the D major scale). The ability to automate familiar actions can be used against us.
For example, if you’re the Chief Clark and you get a request to pay an invoice from the
CEO, and it has similar phrasing and so as the last N emails, then you arrange for
payment of the invoice as requested; you don’t stop and consciously consider
whether this is in fact part of a spear-phishing attack.

58

“Asymmetry between gains and losses: People are risk averse with respect to gains,
preferring a sure thing over a gamble with a higher expected utility but which
presents the possibility of getting nothing. On the other hand, people will be risk-
seeking about losses, preferring to hope for the chance of losing nothing rather than
taking a sure, but smaller, loss (e.g. insurance).

“Threshold effects: People prefer to move from uncertainty to certainty over making
a similar gain in certainty that does not lead to full certainty. For example, most
people would choose a vaccine that reduces the incidence of disease A from 10% to
0% over one that reduces the incidence of disease B from 20% to 10%.”

https://en.wikipedia.org/wiki/Risk_perception

59

https://en.wikipedia.org/wiki/Risk_perception

Risk misperception: empirical studies have shown that "a bird in the hand is worth
two in the bush". Modern prospect theory explains the irrationalities that humans
have when it comes to risk. This can be used to manipulate. Decisions are heavily
influenced by framing. The Asian disease problem is one of the most famous. Here
600 people are infected with a deadly, fictional disease. The numbers and
percentages come from Tversky and Kahneman (1981) with a summary here:
https://en.wikipedia.org/wiki/Framing_(social_sciences)

[Present the details on the slide]

The ability to framing decisions to change perception is why marketeers talk about a
‘discount’ or ‘saving’ while fraudsters exploit the fact that people facing losses take
more risks. There is more on this in the Economics, Law and Ethics course next year.

60

https://en.wikipedia.org/wiki/Framing_(social_sciences)

Milgram showed that the lab setting with a white coat gave authority and many
participants would do as directed, even when they ask participants to electrocute
students who get answers wrong. The student was actually an actor; no electricity
involved. https://en.wikipedia.org/wiki/Milgram_experiment

Most people will follow the herd: here seven actors and one subject look at two lines,
A obviously longer than line B. Yet when the seven actors say that line B is longer, the
subject will follow them and confirm B is longer.
https://en.wikipedia.org/wiki/Asch_conformity_experiments

Reciprocation: even monkeys do tit-for-tat. Further information:
https://en.wikipedia.org/wiki/Reciprocity_(social_psychology)

For further information on these and other areas, see Robert B. Cialdini, Influence:
Science and Practice (ISBN 0-321-18895-0).
https://en.wikipedia.org/wiki/Influence:_Science_and_Practice

61

https://en.wikipedia.org/wiki/Milgram_experiment
https://en.wikipedia.org/wiki/Asch_conformity_experiments
https://en.wikipedia.org/wiki/Reciprocity_(social_psychology)
https://en.wikipedia.org/wiki/Influence:_Science_and_Practice

Note: the mark is someone who is destined to be defrauded.

• Down a pub: “I’m a bit short of cash, so I wonder whether you could do me a
favour and buy this a TV for £40?” (Clearly TVs cost more than this.)

• Via email: “I need help safeguarding $400 million from …”
• Sales training school: “if you need someone to sign on the line for something, you

put the pen on the clipboard, push the clipboard towards the person who is
doubtful and "accidentally" drop the pen off the clipboard towards the mark, who
then catches it. Now the mark has the pen in their hand and they are more likely
to sign.

For further reading see: Stajano and Wilson, Understanding scam victims: seven
principles for systems security, University of Cambridge Computer Laboratory
Technical Report 754. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-754.pdf
Also, search for “The Real Hustle” videos on YouTube.

62

[Start playing at 40 seconds in. Run for around two minutes, then explain the
remainder.]

63

Therefore you often need to offer one than more piece of advice in order to find the
one which fits their own view.

64

Alma Whitten asked 12 subjects who had no previous experience of public-key
cryptography to use PGP to conduct a simple (encrypted) email exchange. Results
were poor: participants in the experiment could not get things right. They sent the
private key to the corresponding person by mistake. They forgot to encrypt and sign.
And so on. The essence of the problem is that PGP was simply not useable by the
non-expert (and likely some experts too).

See: A Whitten, JD Tygar. Why Johnny Can't Encrypt: A Usability Evaluation of PGP 5.0.
USENIX Security Symposium, 1999.
https://www.usenix.org/legacy/events/sec99/full_papers/whitten/whitten.ps

65

In the past, many people didn't enrol in a pension scheme because they never got
around to going to payroll to set it up or sign up with a third-party provider. Pensions
are now offered by default, but you can opt out, which sets a safer default for
everyone (less poverty in old age which requires support from the state).

There are also conflicts of interest: engineering defaults might suggest one approach
(no crypto means less CPU load) and security requirements might suggest another
(crypto protects passwords as we shall see later). Similarly, advertising performance,
and therefore revenue, might suggest no HTTPS so adverts work better. There are
tensions and these are hard to resolve.

66

Two approaches to terrorists: 1) play it up as much as possible (e.g. George Bush Jr)
and say "woe is us, this is terrible, we must invade these countries, ..." Or 2) this is
terrible but we will get them in the end (e.g. George Bush Sr).

If we want to reduce the effect of terrorism, then you need to make it less salient:
remove the guns and visible security in airports, etc. Replace guns with pastel sofas,
and so on.

67

Further reading: Beautement, Adam, M. Angela Sasse, and Mike Wonham. "The
compliance budget: managing security behaviour in organisations." Proceedings of
the 2008 New Security Paradigms Workshop. ACM, 2009.
https://dl.acm.org/citation.cfm?id=1595684

68

Make the easiest path also the one which is safe and secure. Otherwise, people will
do this...

69

When you work at a new tech start-up, it’s very easy to assume that everyone is 20,
has 20-20 vision and has a degree in computer science. This leads to the situation
where you say "use a randomly generated password on each website; don't write
them down”. However most of the population will struggle with this guidance. Indeed
performance at tasks varies significantly across the population. Sometimes there is
correlation with age (e.g. due to physical mobility or vision requirements) or gender
(in societies with gendered interest in IT).

70

Volvos have a reputation for safety. So, why are there more accidents involving more
Volvo drivers? Two possible explanations: (1) Bad drivers buy Volvos; (2) Volvo drivers
drive faster because they think think that they are protected and safe in a Volvo. It's
really hard to tell. This is called risk compensation.

Other examples: “It has been observed that motorists drove faster when wearing
seatbelts and closer to the vehicle in front when the vehicles were fitted with anti-
lock brakes. By contrast, shared space is a highway design method which consciously
aims to increase the level of perceived risk and uncertainty, thereby slowing traffic
and reducing the number of and seriousness of injuries.”
https://en.wikipedia.org/wiki/Risk_compensation

71

https://en.wikipedia.org/wiki/Risk_compensation

Human brains exhibit a number of different errors. We need to understand these if
we are to build robust, human-centred systems.

Strong habit intrusion: When I cycle to the train station from the Computer Lab, I
often find myself turning into Queens’ College gates on the way there. The reason for
this is because I frequently cycle from the CL to Queens’ so I do this by default. I’m
”on autopilot”.

When you go to the cash machine should you give the customer the cash then their
card (US); or card then cash (UK). Cash second is best: that's why you went to the
machine in the first place, therefore you will leave once you have the cash (and leave
the card behind). Men are more likely to be goal focused then women; which means
that men are more likely to leave their card in the ATM in the US than women.

72

The automotive industry carried out an analysis into whether training and practice
reduce errors. While training does help, there are inherent limits on the ability to
reduce the probability of an error. Somewhat predictably, the hardest tasks to
perform without error are those which involve creative thinking and unfamiliar
operations when time is short.

73

Passwords are great for companies and implementers. They are cheap and users
(think) they know how to use them. Important for innovation, since you can grow the
user base of an online platform with tiny marginal cost and without the requirement
to provide an additional hardware.

It's not helpful to (effectively) say "Choose something you can't remember, and don't
write it down". The alternative, which is now considered best practice, is to use a
password manager integrated into the web browser and smartphone and able to
generate strong random passwords; it has its own drawbacks however – a significant
issue is backup. Two factor makes things significantly stronger, however it is less
usable. If password manager is not a usable solution, separating accounts into (the
few) high-value ones (e.g. bank, email) and the (many) low-value ones and ensuring
each class of accounts has a separate password is better than using the same
password everywhere.

For further information read: Joseph Bonneau, Cormac Herley, Paul C. van Oorschot
and Frank Stajano "The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes" In Proc. IEEE Symposium on Security and
Privacy 2012. Extended version available as University of Cambridge Computer
Laboratory Technical Report UCAM-CL-TR-817. See:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.html

74

Twenty years ago Ross Anderson and Alan Blackwell ran a simple experiment. Split
NatSci students into three groups: a control group, a group told to use a memorable
phrase, and a group told to choose 8 characters at random. 10% non-compliance is
amazing: these students volunteered to take part in an experiment, they are
scientists, keen, and yet they didn't do as instructed. Take-home message: if you want
to find things out you need to do a proper randomised control trial with real people.
We would never have guessed that 10% would be in non-compliance.

Further reading: Jianxin Yan, Alan Blackwell, Ross Anderson and Alasdair Grant. The
memorability and security of passwords – some empirical results. University of
Cambridge Computer Laboratory Technical Report 500, September 2000.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-500.pdf

75

NB: NIST only recently rescinded the advice to change passwords regularly.

76

If passwords are easy to brute-force by repeated guessing, can we limit the number
of possible attempts? Note that this is simply note possible in some settings (e.g.
encrypted data stored on a stolen harddisk). Success or otherwise depends on the
distribution of PINs and passwords (likely distinctly not random) and the number of
accounts, cards or devices you have at your disposal.

For example, if you find a wallet in the street with five cards in it, assuming all PINs
are the same, what is the chance that you can guess the PINs before cards start
getting blocked (e.g. inside 25 attempts). People tend to pick PINs which are easy to
remember! Could be 1234, could also be year of birth of children (e.g. 2002).
Therefore you need many fewer wallets in reality than random guessing would
suggest; 11-18 wallets turns out to be enough.

For more information see: Bonneau, Joseph, Sören Preibusch, and Ross Anderson. "A
birthday present every eleven wallets? The security of customer-chosen banking
PINs." International Conference on Financial Cryptography and Data Security.
Springer, 2012. https://link.springer.com/chapter/10.1007/978-3-642-32946-3_3

77

Defence in depth is important (see Swiss Cheese Model earlier). What can we do to
limit harm if the password file is stolen? This is important since users often reuse
passwords across websites and apps, and email addresses are typically used as the
username and therefore are also likely to be the same across multiple sites. Example:
use javax.crypto.spec.PBEKeySpec

Rather than storing any passwords in plaintext, use a cryptographically secure one-
way hash function. This means that, given a hash of the password, you cannot
determine the plaintext. To check whether a password is valid, simply hash the user-
supplied password and compare with the hash version previously stored. Given that
there are a small number of potential passwords that many people use, a hash
function alone is not very secure – an attacker could pre-compute the hashes of many
common passwords to allow easy inversion at scale. Therefore, store a per-user
cryptographic salt (random number) along with the hashed value. This means any
inversion table needs to be built per-user, which does not offer any performance
benefit.

A breach reporting laws says that the breach must be reported to the individuals who
have been compromised. Users can then take action. This also means that other
companies can find out about it when the breach is large (they are individuals too).
Therefore these third-party companies can take appropriate action as required.

Oauth offers a potential solution since you no longer have to store passwords. Sounds

78

great in principle, but it then means the website’s operation is reliant on a third party.
No third-party, no access to any accounts. It also means that if the Oauth vendor is
hacked, your site is compromised. A related example: banks rely on SMS as second
factor, so go to phone company, pretend to be the customer, and get a new SIM
issued. Privacy is a problem with Oauth: Facebook knows how many customers you
have if you use Oauth for authentication; bad for users and also bad for you when you
try and sell the company to Facebook -- they know how often customers log in and
how long there on the site (e.g. with "like" buttons).

Authentication is no longer a binary yes/no, but good systems use lots of side-
information (e.g. location of login, speed of typing, etc) . Authentication systems get
benefits of scale, thus encouraging use of centralisation (e.g. with Oauth) since
smaller sites simply don’t have the expertise, data and dedicated security team.

78

Famously Sarah Palin's AOL account got hacked because password recovery was poor:
the answers to her recovery questions were in the public domain, so access to her
email was obtained through public data.

79

Source: https://twitter.com/ltm/status/1122290624940560385

80

https://twitter.com/ltm/status/1122290624940560385

It's not enough to look at things in isolation. For example, people are on Facebook
because their friends are on Facebook – the so-called network effect. Similarly,
compromise of one website results in a compromise of another website because the
passwords for many users are the same.

81

This is an externalities issue because you can first go to sites which require an
account number and expiry date and use these to find valid combinations of these by
brute force. Some sites require some of the postcode, so you can then guess this by
using several such sites, and so on.

“We came to the important observation that the difference in various websites'
security solutions introduces a practically exploitable vulnerability in the overall
payment system. An attacker can exploit these differences to build a distributed
guessing attack that generates usable card payment details (card number, expiry date,
card verification value [CVV2], and postal address) one field at a time. Each generated
field can be used in succession to generate the next field by using a different
merchant's website.” For further information, see: Ali, Mohammed Aamir, Budi Arief,
Martin Emms, and Aad van Moorsel. "Does the online card payment landscape
unwittingly facilitate fraud?." IEEE Security & Privacy 15, no. 2 (2017): 78-86.
https://ieeexplore.ieee.org/abstract/document/7891527

82

https://ieeexplore.ieee.org/abstract/document/7891527

Mat Honan. “In the space of one hour, my entire digital life was destroyed. First my
Google account was taken over, then deleted. Next my Twitter account was
compromised, and used as a platform to broadcast racist and homophobic messages.
And worst of all, my AppleID account was broken into, and my hackers used it to
remotely erase all of the data on my iPhone, iPad, and MacBook. In many ways, this
was all my fault. My accounts were daisy-chained together. Getting into Amazon let
my hackers get into my Apple ID account, which helped them get into Gmail, which
gave them access to Twitter. Had I used two-factor authentication for my Google
account, it’s possible that none of this would have happened, because their ultimate
goal was always to take over my Twitter account and wreak havoc.”

https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/

He lost all of the data stored on his laptop, including all the photos of his one-year old
daughter.

83

https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/

Attack worked back from Twitter. Twitter profile listed his personal website, which
listed his Gmail address. Whois record against the website provided home address,
which is also the billing address for his credit card. The attacker used account
recovery on Gmail to reveal backup email address as “m••••n@me.com” which is
then guessable given his name.

Then the attacker called Amazon as Hanon and requested to add a credit card to his
account. For this the attacker needed the name of the account holder, home address
and email address. The attacker had all this. The attacker then provided the credit
card information (a fake one will do) which is added to the account; hang up. Attacker
called Amazon back and said he’d lost control of Hanon’s account, provided the
account holder name, billing address and credit card number (the one just added).
Amazon then associated a new email address with the account. The attacker then
went to the Amazon website, used the reset password link and got the reset
password sent to the new email address. The attacker then viewed the last four digits
of all credit cards associated with the account.

The attacker then called AppleCare and gave them name, address and last four digits
of credit card. This then allowed the attacker to gain access to Matt’s Apple ID and
control of the iCloud account. From here the attacker reset the Gmail password to
the backup email address (“m••••n@me.com”) which the attacker then controlled.
From there reset the Twitter account via the Gmail account.

84

Image source: https://edition.cnn.com/2019/04/21/us/iowa-social-media-influencer-
domain-name-trnd/index.html

You can avoid the difficulties of a technical attack by simply using force. While this
doesn’t scale well, it might be an effective means of carrying out a targeted attack.
Thankfully it’s harder than it might at first appear. The same approach has been used
for stealing Cryptocurrency: “Robbers order gunpoint Bitcoin transfer after Moulsford
break-in. Four robbers broke into a house and demanded at gunpoint the occupants
transfer Bitcoins into another account. Thames Valley Police said the aggravated
burglary happened in Reading Road, Moulsford, Oxfordshire, at about 09:40 GMT on
22 January. Four men broke in and threatened the two men and a woman inside with
what appeared to be a firearm. One was told to transfer an amount of the digital
currency but the transaction failed, police said.” https://www.bbc.co.uk/news/uk-
england-oxfordshire-42864053

85

https://edition.cnn.com/2019/04/21/us/iowa-social-media-influencer-domain-name-trnd/index.html
https://www.bbc.co.uk/news/uk-england-oxfordshire-42864053

86

Alice, Bob and Charlie use the same username and password combination with five
companies. Nothing Ltd uses no hashing and stores the passwords in plain text. Hash
1 and Hash 2 ltd apply a hash function to the password. Global Salt Plc applies a
global salt. Per-User Salt Inc applies a per-user salt to each password entry. Which
one has the best password management strategy? What are the externalities?

87

Adversarial thinking is really important: there are lots of weaknesses which you can
exploit which don't require pulling fingernails of a customer to get their bank account
PIN. The earlier example with Matt Hanon demonstrates the failure of security
protocols neatly; stealing a domain name at gun point demonstrates that
(metaphorically) pulling fingernails also works.

88

[Ask the audience]

Example properties include:
• Confidentiality – of price from guests
• Integrity – can’t substitute a cheaper wine
• Non-repudiation – host can’t falsely complain

89

[Introduce the notation; explaining what is on the slide carefully.]

Static suffers from a replay attack: record the transmission of K and replay to unlock.
Additionally, some systems are susceptible to brute-force attacks: some garage door
openers still use the static approach with a 16-bit key, so fly a plane over Cambridge
spitting out all the combinations in quick succession and watch all those garage doors
go up.

The nonce is critical to the success of the other two protocols. A sequence number, a
random number or a timestamp are all possible, but they need to be implemented
carefully. Random requires us to keep a list of previous numbers to prevent replay
attacks; sequence can go out of sync (e.g. dog presses transponder lots of times
when out of range) so could look for sequences of two presses, one number apart,
which suggests the user is next to the car; timestamp is okay, but problematic if
clocks go out of sync or if there are time zone issues.

One problem with interactive is the relay attack. A claim, concerning keyless car keys:
Audi’s new key contains a motion sensor that shuts off its signal “when the key is laid
down and not moving”. A similar Porsche device sleeps after 30 seconds and all new
Mercedes keys shut down after two minutes.
https://twitter.com/kentindell/status/1117341970068910080?s=09)

90

[Ask the audience]

91

92

This was used against the South African Air Force in the late 1990s, when South Africa
were bombing the capital of Angola. Cuba (who were helping Angola) sent in the MIG
which relayed IFF to enable access to South African airspace and led to the bombing
of an airport in South Africa. More detail in the course text book: Ross Anderson,
Security Engineering.

93

Example from the 1990s. This system provided two-factor authentication where you
typed in a challenge from the terminal into the calculator together with the PIN. The
calculator then encrypted N and PIN under key K.

[Ask audience how they would hack it]

Hacks: steal the calculator; MITM attack; take over a session that is in progress -- the
data in the 1990s was not encrypted; infect the terminal with malware; and so on.
Nevertheless, this is still much better than just passwords -- attacks don't scale well
since you can't just hack into a server and steal all the passwords.

94

This is a modern version of the system shown on the previous slide. Note the
difference from last one – this new machine tells you whether you have got the PIN
right or not. The previous version one would just spit out a random (incorrect)
challenge. This appears to be superior in terms of usability until you realise that its
popular with muggers. Previously a mugger would have to drag a victim to the cash
machine – a risky endeavour; now a criminal can now force people at knife point to
reveal and check the PIN wherever the mugging takes place.

95

This originated from the 1970s where we suddenly had network computers (e.g. at
Xerox Parc). Then we want Bob, Alice, and so on to be able to communicate. Also true
for other components in the system, including the printer, mail server, and so on.
Having every computer or device keep a full list of all keys of everything else is going
to be painful. Solution: centralise key management, but then the question is how to
avoid all communications going through the central server.

96

We use this for access control in the Computer Laboratory. When I want to access the
fileserver, I need to type in kinit before I can access my home directory. This is good
for remote access: first connect to slogin.cl.cam.ac.uk, where you need an SSH key to
get in (something you have) and then a password (something you know) to actually
access the fileserver.

[Talk through the protocol in detail.]

There is still some trust here. For example, Alice trusts that Sam sends the right
timestamps. This protocol allows things to scale: you can have different ticket
granting machines (S) for different departments, and so on. There are a whole series
of protocols built on top of this for distributed systems. For now, you just need to
know about this protocol as an example. Later lecture courses will cover these type of
things better, and also how to prove correctness and so on.

97

[Describe protocol. Ask the audience for ideas on how to attack.]

There are lots of attacks which involve replay and pre-plays which we will get to.
There were a lot of attacks years ago which involve a wiretap to collect account
number from a merchant device, then video PIN being typed in; then you can make a
mag stripe clone of the card. Less good now as mag stripe fall back does not work in
many countries.

98

99

This attack is almost unstoppable. Steven Murdoch demonstrated this attack 10 years
ago: a journalist thought they were buying a coffee, but actually bought an expensive
book in another shop. This attack has not been used in real life. It just doesn't scale.
The important engineering point here is that flaws need to have scale -- without that
they won't be useable.

100

Terminals (PIN entry devices) at Shell garages were doctored by malicious service
engineers. Terminal supplier went bust.

Customers at BP garage in Girton in 2008 found their cards cloned and used in
Thailand.

These remain big in the US, particularly when you pay at the pump. Further info on
petrol pump skimmers: https://krebsonsecurity.com/tag/gas-pump-skimmers/

101

https://krebsonsecurity.com/tag/gas-pump-skimmers/

Apply a MITM attack to the protocol, convincing the card that it has performed a chip
and signature transaction, and the terminal that it has performed a chip and PIN
transaction. This allows you use a card where you don’t have the PIN.

You can now use a SIM shim (140 microns thick!) to MITM the protocol and
implement the attack described.

102

Barclays likely removed fix in December 2010 due to too many false positives. It took
the banks four years to block this. Some countries still don’t.

The EMV spec is 4000 pages thick. This is a real problem as there are lots of
interactions between different features. This is good for the bad guys: they can
exploit any and all potential feature interactions. It is a disaster for the defender since
it represents a huge attack surface which is hard to check.

103

Ross provided representation for a Scottish sailor who bought a round of drinks for 33
Euros, and later found he had 4 transactions of 3300 Euros on his card. These four
transactions were made one hour apart and placed through three different acquirer
banks. When you think about it, you have in your wallet three or four cards, and each
card may have £5000 available on it (e.g. because you can get an overdraft, or you
have a large credit limit). This means you're walking around with £20k. Would you
walk into a dodgy place with £20k in cash in your pocket? The problem is that people
don't think this way -- they think that their PIN offers security and their bank will
protect them in the case of failure.

104

Photo source: https://commons.wikimedia.org/wiki/File:Enigma_keylist_3_rotor.jpg

A list of keys for a German Enigma cipher machine.

English translation of text along the top (from Wikipedia):
“Secret Command Document! Every individual key setting is secret. Forbidden to
bring on aircraft.
Luftwaffe Machine Key No.649
Attention! Key material must not fall into enemy hands intact. In case of danger
destroy thoroughly and early.”

105

https://commons.wikimedia.org/wiki/File:Enigma_keylist_3_rotor.jpg

106

107

You saw Diffie Hellman in Discrete Maths. This simple version uses a multiplicative
group of integers modulo p, where p is prime and g is a primitive root modulo p The
values of p and g are chosen in this way to ensure that the resulting shared secret can
take on any value from 1 to p–1.

This protocol has a significant limitation: it is susceptible to a person-in-the-middle
attack.

108

Anthony wants to kill Caesar, but needs Brutus' help to do so. How can Anthony send
a message to Brutus yet not let the messenger read the message? This proposal is
insecure: it is vulnerable to a MITM attack, as is Diffie Hellman.

Here Anthony has shared the secret message with someone, but Anthony doesn’t
know who it is!

109

More on this in the Part IB Security course and Part II Cryptography course. Require
knowledge at this point is as stated above and expanded on in the lecture.

Note that asymmetric public-key crypto has the same problem as Diffie-Hellman: how
do you know that you have the right public key for Alice and you are not subject to a
MITM attack?

110

Once public key crypto is discovered, people then looked for ways to use it.
Background: Needham went to California every summer to work at Xerox Parc. He got
a preprint of the RSA paper and decided to apply it to the problem on the Xerox
network computer project. Kerberos, discussed earlier, was derived from the
Needham-Shroeder protocol, and in 1978 Needham proposed the following public-
key variant of the protocol.

This version does not require an online server, Sam. Instead the nodes now need the
long-term public keys of each other. Here, KA and KB are the public keys of A and B
respectively, and the aim is to use these in order to derive a symmetric session key
between A and B (symmetric cryptography is computationally cheaper).

111

Here Charlie can pretend to be Alice when talking to Bob (line 2). Doing so means
that Charlie gets NA (line 1) as well as NB (line 5) and therefore can computer the
shared key between Bob and Alice. Don't beat yourself up with if you didn't spot it. It
took 18 years to spot the problem as shown on this slide.

112

113

Earlier versions of this protocol were called Secure Sockets Layer (SSL). There's been
around one bug every year in TLS since 1999. The first series of attacks were timing
attacks: look at how long it takes a server to respond and use this to determine
certain bits of the key. The challenge here is that compilers and security engineers
fight. Compilers attempt to make code as fast as possible, and may optimise away
“make work” inserted by security engineers who are attempting to ensure constant-
time execution for critical operations. There are many more technical hacks here, but
these are for later courses.

Another major problem is that it's really hard to fix bugs when found. In order to
change the protocol you need to make changes to both the client and the server. This
is hard for the Web since you have to upgrade both all web browsers and all web
servers and no single party is in control of the overall ecosystem. There are poor
incentives. There are 187 root certificates installed on my Mac. Web browsers
typically trust all of them, and any of these certificates may be used to license other
providers with the power to create further certificates for arbitrary domains.

114

Iranian Gmail users were found to have been given fake certificates for Gmail,
allowing a MITM attack to take place. Further investigation revealed that over 500
fake certificates were issued. No public investigation provides conclusive proof of all
steps in the process, but the Iranian Government and the NSA have both been
suggested as potential attackers. The behaviour of governments here has a significant
influence on the security of everyone else. The cryptowars of the 1990s, where
governments attempted to mandate exceptional access to encrypted key material,
are being revisited. See: Ableson et al. Keys Under Doormats: mandating insecurity by
requiring government access to all
data and communications. https://www.schneier.com/academic/paperfiles/paper-
keys-under-doormats-CSAIL.pdf

Further reading: https://en.wikipedia.org/wiki/DigiNotar

115

https://en.wikipedia.org/wiki/DigiNotar

Look at the security rating site OpenSSL Labs for the Department’s certificate. The
landscape here is very complex. You need a detailed tool to check whether your
certificate and setup has all the appropriate defences deployed for the various flaws
found in the protocol over the years. Note the provision of client compatibility too.

116

The experience with TLS is challenging for operators because they are heavily reliant
on third parties. Just as the saying goes “there is no cloud, just someone else's
computer”. Such reliance can be abused directly of course, but it also opens up new
opportunities for the attacker. Here the mafia has repurposed (deliberately) a signing
protocol to extort money from you.

117

Maurice Wilkes: "It suddenly occurred to me when I was at the corner of the stairs,
that I would spend a large part of my life discovering bugs in my own programs.”

The first documented use of the term "bug" for a technical malfunction was by
Thomas Edison; In the year 1878 he mentioned the term in a private letter. This
counters an oft-mentioned view that the term bug is derived from a moth getting
trapped in a computer, although perhaps this latter event popularised the term. For
further information, see https://en.wikipedia.org/wiki/Software_bug

118

https://en.wikipedia.org/wiki/Software_bug

The MIM-104 Patriot is a surface-to-air missile (SAM) system, the primary of its kind
used by the United States Army and several allied nations. The picture on the left is a
Patriot system used by the German Air Force, August 2005
(https://en.wikipedia.org/wiki/MIM-104_Patriot). The picture on the right is of a Scud
missile and launcher in use by the Afgan National Army.

119

https://en.wikipedia.org/wiki/MIM-104_Patriot

As you will know from the Numerical Analysis course, not all decimal fractions are
precisely representable as binary floating-point numbers.

System was upgraded from anti-aircraft to anti-ballistic missile. This required an
increase in accuracy since ballistic missiles such as the Scud travel much faster than
aircraft. Unfortunately the code was not updated everywhere. This meant that
different modules (some with upgraded accuracy, some not) then fell out of sync with
each other, resulting in the failure of the Patriot system to effectively target Scud
missiles. This problem was not caught by static analysis tools since the code was
written in assembly, and therefore there was no high-level language features such as
a strong type system which could have helped. Testing was also inadequate – missile
defence systems are often operated continuously for hundreds of hours, yet the
testing regime only called for testing over a 4-hour period. Short-term solution was to
reboot Patriot every 4 hours until the underlying cause was determined.

120

Java supports implicit type conversion or coercion from primitive integers to Strings.
This is typically helpful, however implicit type conversion interacts with implicit
operator precedence in the above example, leading to different outcomes for what
initially appear to be quite similar expressions. Removing all implicit type conversion
may also result in (different) errors since programmers may then insert explicit type
conversions which themselves might be problematic.

Further reading: Joshua Bloch and Neal Gafter, Java Puzzlers: Traps, Pitfalls, and
Corner Cases, Addison-Wesley. http://www.javapuzzlers.com/

121

http://www.javapuzzlers.com/

This is a control-flow (logic) bug. Note the two consecutive lines containing “goto
fail”; the second is erroneous and the control flow therefore unconditionally executes
the code at the ”fail” label. It's not clear how this failure was introduced. Perhaps it
was an erroneous merge on a commit, either automated or manual by a user. Better
unit tests might have helped.

Further reading: https://www.imperialviolet.org/2014/02/22/applebug.html

122

https://www.imperialviolet.org/2014/02/22/applebug.html

This is another logic bug. The heartbeat feature allowed either the client or the server
to ask the other party to reply with a specified message of a given length after a
period of time, allowing the requesting party to know that the other was still online
and available. Unfortunately the requesting party could claim the provided message
was much larger than reality. This led to a buffer over-read vulnerability: the
requesting party would receive their message appended with any additional contents
found in the server or clients memory. The bug's name derives from heartbeat. NB:
In the absence of malice, the code worked just fine.

Further reading: https://en.wikipedia.org/wiki/Heartbleed

123

https://en.wikipedia.org/wiki/Heartbleed

The potential impact of this vulnerability is huge. Potentially the entire contents of
the server’s process address space were accessible.

One significant risk was for webservers connected to the public Internet. Since the
attack left no trace of use in server logs, this meant that all servers needed to not
only upgrade their software to fix the vulnerability, but to replace all important key
material. TLS certificates in use by the server are an important example, since the
private keys may have been compromised. Ideally all user passwords should have
been replaced too as these may have been compromised, but the risk of this type of
failure depends on details of any implementation.

124

The original flaw was introduced into the source code repository for OpenSSL on 31st

December 2011, and was released in OpenSSL in version 1.0.1 on 12th March 2012.
The bug appears to have been found by multiple people, including members of the
security team at Google who produced a fix which appeared on RedHat’s issue
tracker on 21st March 2014. Codenomicon also discovered the problem
independently and reported on 3rd April 2014. [Dates sourced from
https://en.wikipedia.org/wiki/Heartbleed]

A significant issue with notification is it was essentially impossible to do so quietly:
the number of servers and clients which needed fixing is simply too large. Another
problem is that many server operators did not realise that they may have been
compromised and therefore did not replace their certificates (potentially allowing a
MITM attack on all connections, and in the absence of a version of the protocol with
forward secrecy, a passive data capture followed by later processing).

A surprising outcome was that may firms decided to outsource certificates to
companies like CloudFlare. This is great for the CEO who no longer gets woken up in
the middle of the night with things like Heartbleed; now it's CloudFlare’s problem.
Unfortunately data may be less secure: encryption now runs from customer to
CloudFlare, but not necessarily from CloudFlare to company actual servers unless a
premium option is purchased. Of course companies don't pay the premium. So now
data is backhauled across the Internet where it can be read with passive taps.

125

https://en.wikipedia.org/wiki/Heartbleed

This is a logic bug in the implementation of the protocol. The failure here occurs
because the client (not the server) gets to choose how many bytes (x) to return, so a
malicious client can choose to return zero bytes. Further reading:
https://en.wikipedia.org/wiki/Intel_Active_Management_Technology

126

https://en.wikipedia.org/wiki/Intel_Active_Management_Technology

In this example, a programmer is writing a program which has the setuid bit set (see
Operating Systems course from last term). Therefore the programmer first checks
whether the user has access to a particular file, then if true, uses the file by writing
some data to it.

The bug occurs if the operating system can be coerced into performing a context
switch at the red line, during which time a malicious user then (e.g. by updating
symbolic links) swaps the file accessed. Then sometime later the program will write
to a file which the user has specified which the user may not have write access to.
This is called a race condition. We will see another race condition bug later in the
course (Therac-25). Note that the concurrency here is not within the program itself,
which has only a single thread of execution. Rather it occurs because the operating
system supports multiple concurrent processes in execution.

127

The hack is to select the language that the callee doesn’t speak (e.g. Spanish), and
then state your name in Step 3 as “To hear this message in English press three”.

Lesson: remember that you are protecting the whole system, including against
potentially malicious users.

128

129

https://www.youtube.com/watch?v=InOmTxmq1Ik [Start at 15 seconds in since this
video starts with the punchline.] Is it ethical for Burger King to have run this ad? Is it
legal (e.g. Computer Misuse Act)?

Back in the 1980s, Ross watched a demo of a DOS system and asked the audience
what he should demo. Someone in the audience shouted "Run ‘FORMAT C:’" which
the demonstrator duly did. And that wiped the OS from the system...

130

https://www.youtube.com/watch?v=InOmTxmq1Ik

Robert (Tappan) Morris was a graduate student at Cornell University. His father, also
called Robert Morris, was a researcher and cryptographer at Bell Labs, later chief
scientist at the NSA. Robert Jr is now a tenured professor at MIT.

The attack abused a buffer overflow attack in fingerd; more on buffer overflow
attacks next year. The fact that individuals with accounts on two or more computers
would often tie them together so you could login from one machine to another
without entering a password was also used. Finally the worm tried logging in with a
list of common passwords. The worm also checked whether it was already present on
a machine, but still attempted to copy itself 14% of the time. The aim was to increase
robustness, but the reality was that it resulted in high system loads, bringing the
attack to the attention system administrators. Morris was convicted under the
Computer Fraud and Misuse Act and “he was sentenced to three years of probation,
400 hours of community service, and a fine of $10,050 plus the costs of his
supervision”.

https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Robert_Tappan_Morris (more info on this page on how
the work actually worked as well as the sentence)

131

https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Robert_Tappan_Morris

There continue to be an amazing number of SQL injection attacks. That's because
many programming languages contain libraries which makes this the default or at
least easy to get wrong – an example in Java is given above. How can we solve this
problem? In Java, always use the PreparedStatement class which sanitizes inputs;
other languages have similar support structures. Use them! Further reading:
https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html

132

https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html

A number of security features were already discussed in the Operating Systems
course, such as the access control features to protect memory regions in systems
which support either paging and/or segments. These can be used to mark portions of
memory as either read and execute or read-write. There are many, many tools. We
will look at Coverity later in this course.

133

134

Researchers analysed the code for the OpenBSD operating system and measured the
rate at which new vulnerabilities were reported over 7.5 years. Over that period 61%
of the code didn’t change at all and 62% of the vulnerabilities reported were found in
that initial version. There was good evidence that the rate at which vulnerabilities
were found in that foundational code reduced over time – good news! Unfortunately
it’s not fast – vulnerabilities had a median lifetime of 2.6 years. It’s also worth
remembering that the code base changes over time (39% was introduced since the
start of the measurement period). Therefore we should not expect to ever end up
with bug-free software. All code essentially has latent vulnerabilities in it.

135

We ran Device Analyzer, an Android data collection project in the Computer Lab, from
2010 until 2019. DA collected Android usage statistics from study participants –
around 30,000 people in total. Amongst other things we collected was OS version
numbers and build numbers for the handsets. Here you can see the OS version
numbers for 50 LG handsets in the database. Note that some of the handsets run
versions which never change, and some see frequent change. The black vertical ticks
in the graph delineate changes to the build number which do not result in changes to
the OS version (likely security fixes).

Are most Android handsets like the top half of this figure, or the bottom half? If they
are like the top half, does that mean that they are vulnerable to many critical flaws
which are discovered over time or is Android somehow lacking in vulnerabilities?

136

To determine whether Android handsets are running vulnerable versions of the OS
we need some data on vulnerabilities. Therefore we built a database of vulnerabilities
and matched this to OS version number. One problem is that it is possible that
manufacturers backport critical fixes to old versions of Android. We wanted to
exclude this possibility, so we put each device in our dataset on each day into one of
these three categories.

• Secure: if the device is running a secure version of Android on a specific date.
• Maybe secure: if the device is running a vulnerable version of Android on a specific

date, and we did not see the build number in the wild before the date of disclosure
for the vulnerability (so the OS may contain a backported fix).

• Insecure: if the device is running a vulnerable version of Android on a specific date,
and we saw the build number in the wild before the date of disclosure for the
vulnerability (so the OS cannot contain a backported fix).

137

This is what we get when we plot the proportion of handsets in each of these three
categories over time. This graph uses 11 vulnerabilities which we could identify and
clearly trace. There were many more vulnerabilities over this period, so this is an
underestimate of the security of Android.

Further reading: Thomas, Daniel R., Alastair R. Beresford, and Andrew Rice. "Security
metrics for the android ecosystem." Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices. ACM, 2015.
https://dl.acm.org/citation.cfm?id=2808118

138

CAPSA: Pensions project in the University which was years late and over budget.
NPfIT: National Programme for IT (NHS).
DWP: Universal Credit
Addenbrookes: was put into special measures because they put in a new computer
systems which was unable to produce all the right stats for the government to
convince government that all was well at the hospital.

139

LAS is explored in detail in this course because it combines together many of the
errors and difficulties in large projects and it is also well documented. You are
strongly encouraged to read the original report rather than simply rely on the
material presented here. You can download the main report and also additional
material from this page:

http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/las.html

140

http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/las.html

Recall this was 1992, before almost all of you were born. There were essentially no
mobile phones, and GPS not practical. If you called for an ambulance, you did so with
a landline. If you wanted to know where an ambulance was, you had to speak to the
driver and hope they could explain where they were succinctly and accurately.

There is also the political background. This was just after the Thatcher era, and
relations between Government, industry and the trade unions was poor. There was
also pressure to cut costs. Here "email" wasn't the modern email to a smartphone,
but a custom solution was needed to route a short message to the ambulance.

AVLS: Ambulance Vehicle Location Service

141

1. 999 calls written on paper tickets; map reference looked up; conveyor belt
brought paper to central point

2. Controller deduplicates tickets and passes to three regional divisions: NW /
NE / S

3. Division controller identifies vehicle and puts note in its activation box
4. Ticket passed to radio controller who contacted the ambulance concerned

142

Three minutes is a long time for some illnesses such as heart attacks, so there was
significant interest in a system which was able to work more quickly.

Radio queues were a problem since if an ambulance driver was on the radio to one
person he or she couldn't talk to another.

There were therefore good reasons to look for a better solution. Automation
particularly appealing as it had the potential to dramatically reduce waiting times.
Automation so appealing that LAS had tried to use computers before, and the
previous attempt had failed.

143

This is a seriously challenging project.

144

People tend to round down rather than round up, so £1.9m became £1.5m in the
eyes of the buyers. The idea of Ambulance Vehicle Location Service (AVLS) stuck,
even though this was not included in the costing undertaken by the consultants
(instead this was an extra, and at the time a challenging technical problem in its own
right).

The new IS director meant there was no institutional knowledge. Many experienced
tenders thought the set of requirements were possible (IBM said two years and £2m).
In these days, tender was typically awarded to the cheapest, which in this case was a
small firm with four people with arrangements to subcontract to third-party suppliers
for some of the work.

Systems Options only include £35k for software development.

145

Systems Options had no leverage over the big suppliers that they relied on, yet these
were essential.

Radio kit didn't work well and there were radio blackspots. Poor industrial relations
and diversity of working practices meant that ambulance drivers might take a tea
break, yet management didn't want them to do this. Drivers were concerned about
being "watched" and so would take their tea breaks in the radio blackspots.

146

In a counter-narrative to the CEO, there was plenty of evidence that the full system
would be unreliable.

[Ask the audience to list all the evidence they have heard already.]

147

This is an example of cascade failure.

Switch back to semi-manual operation on 26th and to full manual operation on 2nd

November after system crash.

148

The report contains a detailed description of the cascade of failures.

149

Response times were worse with the new system.

150

Note the congestion build from around 10-11am. Call volumes keep going up and up
as people keep calling back, so the ring time goes from under one minute to ten
minutes. Imagine that. Calling 999 for ten minutes and nobody answers! Presumably
individuals end up getting a taxi to hospital or simply dying on the spot.

151

There was no large, a-typical surge in admissions to A&E, so the failure of the system
was not down to an anomalously challenging day.

152

153

154

155

156

If you hire consults which say that its going to take two years and £2m, believe them!
Insufficient due-diligence performed on the capability of a small company.

In the case of the LAS, people need to think about how the current system works
now, but instead they thought about how to please the health secretary and meeting
KPIs (e.g. an ambulance arrives within 15 minutes). Attempting to change working
practices to move to central command from a scenario where there was lots more
flexibility (e.g. tea breaks, which weren't official, but with one driver covering for
another or swapping tasks worked out well for patients, but was not "approved" or
perhaps even known about). Such information needed to be collected and prepared
at an early stage.

157

The LAS project was proceeding in the wrong way and had the wrong goals. An
example you will have next year is the Part IB project: here you will learn that
organisation matters; you will also need to work from a poor specification and work
out how to turn this into something shiny for demo day.

Remember that the tech in these days was inferior today: they were using Windows
3.0 -- a museum specimen by today's standards. But there were tools which could
have been used to help, including revision control systems. RCS was available in those
days, which wasn't as good as Git, but is much better than nothing. Usability
engineering is important: the unfamiliar and nasty interface for the ambulance crew -
- just like we saw in the infusion pumps – caused problems. If crews pressed the
wrong button and the ambulance disappears from the central system then things are
going to fail.

158

159

Cue the 2000s and something even bigger than LAS. Like LAS, this was an attempt to
centralise power and change working practices. This is problematic. After Blair won
his second election, there was a meeting in Downing Street and the idea was pitched
to him. The aim was to invest in IT to improve medical care. Blair apparently asked
whether this could be done by 2005 (i.e. before the next election) even though it was
really a five-year project. The person from NHS said “yes”, in order to close the deal,
even though this was unlikely to happen.

Part of the problem was that the specification was determined by asking doctors to
write down a long list of "nice to have" things. One example was care pathways: the
idea is to computerise and centralise all record keeping for every visit to every NHS
establishment. So if you feel unwell, you visit your GP, then you are referred to a
consultant at Addenbrookes, who sends you to another hospital for specialist care,
and then back to your GP for drug prescriptions; all this would be recorded centrally.

For further information, see the case history written by Masters of Public Policy
students discussed and linked to from here:
https://www.lightbluetouchpaper.org/2014/08/13/largest-ever-civil-government-it-
disaster/

160

https://www.lightbluetouchpaper.org/2014/08/13/largest-ever-civil-government-it-disaster/

There is a poverty trap where people get stuck in welfare, particularly those which
have dependants; often going out to work results in less income overall, so there is
little incentive to change. The idea was to replace all the hundreds of separate
benefits with one, integrated system, which had better incentives. The basic problem
is that large IT projects take seven years, not three, to roll out, and this then means
that it doesn't align well with political cycles which are too short to support the
launch of a complex project.

161

2018 National Audit Office report, summary and introductory video:
https://www.nao.org.uk/report/rolling-out-universal-credit/

162

https://www.nao.org.uk/report/rolling-out-universal-credit/

“A smart meter is an electronic device that records consumption of electric
energy and communicates the information to the electricity supplier for monitoring
and billing. Smart meters typically record energy hourly or more frequently, and
report at least daily. Smart meters enable two-way communication between the
meter and the central system. Such an advanced metering infrastructure (AMI) differs
from automatic meter reading (AMR) in that it enables two-way communication
between the meter and the supplier.” https://en.wikipedia.org/wiki/Smart_meter

There was a forecast in 2009 that we would have a shortage of electricity; the credit
crunch has fixed that. There are basic problems, like the fact that there aren't enough
registered gas fitters to fit this many gas meters. This is a rare example of a policy that
all politicians supported. It was Ed Milliband’s idea, but the Coalition supported it and
it was in the Coalition agreement; The Greens backed it because it sounded green.
The are now different meters being installed against different specs, and some are
incompatible so that if you change suppliers, your smart meter becomes dumb. The
politicians are now saying that "everyone can have one by 2020" not that 80% of
homes will have them, which is actually a rather different target to the one originally
set.

163

https://en.wikipedia.org/wiki/Smart_meter

What this all teaches us is that software engineering is more than just managing the
complexity of your code. There are problems at all levels.

Social-technical systems are a real problem. Consider the smart meter market: there
are millions of households, dozens of key players (including the electricity companies,
national grid, politicians, etc).

Most failures are due to wrong, or changing, or contested requirements. (Or indeed
no requirements at all!) Think about the LAS: the requirements didn't fit working
practice. The smart meter project also is a good example.

164

“The Tower of Babel as told in Genesis 11:1–9 is an origin myth meant to explain why
the world's peoples speak different languages. According to the story, a
united humanity in the generations following the Great Flood, speaking a single
language and migrating eastward, comes to the land of Shinar. There they agree to
build a city and a tower tall enough to reach heaven. God, observing their city and
tower, confounds their speech so that they can no longer understand each other, and
scatters them around the world.”
(https://en.wikipedia.org/wiki/Tower_of_Babel)

“Come, let us build ourselves a city and a tower with its top in the heavens, and let us
make a name for ourselves, lest we be dispersed over the face of the whole
earth.” And the Lord came down to see the city and the tower, which the children of
man had built. And the Lord said, “Behold, they are one people, and they have all one
language, and this is only the beginning of what they will do. And nothing that they
propose to do will now be impossible for them. Come, let us go down and there
confuse their language, so that they may not understand one another’s speech.” So
the Lord dispersed them from there over the face of all the earth, and they left off
building the city. Therefore its name was called Babel, because there the Lord
confused the language of all the earth. (From the Bible.)

165

https://en.wikipedia.org/wiki/Tower_of_Babel

166

Let’s start the challenge on the design of computer systems by looking at some early
examples. This is a picture of banking in the Victorian era. There are a large number
of computers crunching the numbers. Can you see them? The humans are the
computers. If you look at the surviving materials, the computers are doing sorting,
searching, etc; and they are doing security as well (e.g. double-entry bookkeeping) so
that there is separation of concerns. No single man in a top hat can defraud the bank.

167

Across the pond it looked the same. Here you can see big wooden cabinets and you
could look up whether someone has paid their mortgage or not.

168

Sears, Roebuck and Company (colloquially “Sears”) are an American chain of
department stores. In the early 20th Century, their innovation was mail order, built on
the fixed cost of postal delivery by the US Post Office. Their marketing and business
strategy was ”like it, or your money back". Others thought they were crazy at the
time with such an offer, but it worked. They still use this approach, including the
catchy phrase, today.

169

IBM were running by then. IBM was a start up where Tom Watson took some
customers from an earlier company. Note here that you have a preordained market
for a mainframe -- there is already an algorithm running here which could be moved
from humans to electronic computers.

170

Suddenly people found out that software projects failed much more frequently than
in other engineering disciplines. In 1968 NATO organised a conference in Newcastle,
and Brian Randall came up with the term Software Engineering.

His basic point was that we should adopt a more traditional project management
approach. For example, when building ships, we know to first lay down the rigs, then
attach the skip, then drop in the engines, and so on. We'll see some of the tools you
can apply later, but we address the basics first.

171

The non-repeating task aspect really makes it a challenge. For a ship, there's only
certain parameters which can (sensibly) be varied; what about software? How do we
constrain the task so that we can repeatably build software on time and on budget?

172

Big computer systems become qualitatively different from small ones; in contrast, big
ships have more steel, but they have similar design parameters from smaller ships.
Physical world objects are also more visceral: it's obvious that changing your mind
half way through building a big ship and saying you want an aeroplane instead is
stupid; this isn't always obvious for an IT project for a non-technical (or even
technical) person. Note that for these big projects, no one person understands how
everything works. We need abstraction, but these abstractions sometimes break
down.

173

This is why printers for customers buy printers for £30, and make their money by
charging for ink; businesses buy laser printers because they think of total-cost of
ownership.

174

In the early days (1950s - 1970s) having bought your computer you first needed to
hire some developers to write some code for your saw mill. It works, but then your
requirements change, perhaps because you want to make 6 inch planks, not just 4
inch planks. So you need to get more developers in to adjust and tweak the software.
So the developer cost of the initial version ends up being small compared to
maintenance costs.

Note that the above is an infographic, rather than an accurate representation of an
actual project. Even quantifying cost is hard in this space.

175

In the 1960s, IBM found it was getting less than 1.5 KLocs per developer year for OS
(in assembler) but much better in apps (in Fortran) which also did much more since
one line of Fortran typically did more than one line of assembler. Yay for high-level
programming languages!

176

Let’s say that we want to print out “Hello, world” four times. How should we do it?
Here are three options in Java.

The definition of KLOC appears to be precise, however there are significant issues.
What is the right KLOC count in the above? Should we include comments? We could
try and refine into, say, logical lines of code, which depends on the coding style of the
project and the language. This remains problematic however since some code is
“easy” and other parts “hard”. How could we codify this? Alternative measures for
KLOC: compress the source and see how many bits it takes -- an approximation for
complexity and effort by the developer. McCabe: look at the control structure of the
program and measure the complexity of the graph as output.

For further information, see: https://en.wikipedia.org/wiki/Function_point

177

https://en.wikipedia.org/wiki/Function_point

If you look at digging holes, then the productivity of the best digger might be 2 or 3
times as much soil compared with the worst digger. Software is not like that.

The star programmer might be an order of magnitude or more times more
productive. In addition, they are often able to solve problems which others simply
cannot figure out. You can look for proxies such as the success in past projects with
significant intrinsic complexity or qualifications. The latter is the basis for the
Graduate Ring in the department: we help older alumni find younger alumni to work
in their start-up or business.

Why do high-level languages help? There are two types of complexity: there is
accidental complexity such that the x value is stored in register 14; this can be fixed in
high-level languages where you can label a register as value "x". However there is also
intrinsic complexity: for example if you are designing a navigation system there is
some hard maths which needs to be solved, and this is true in assembly, Fortran,
Java, or whatever. Better tools can help with incidental complexity but not intrinsic
complexity.

Every year when the Part IB project ends, the students always say they wish they had
done more planning. So let this be a warning to you. Planning may seem boring, and
you want to get on to the fun part (coding), but hold in there and make sure you’ve
worked through as many details as you can. Think carefully about the time you should
spend on planning and producing a specification, and then double it!

178

Barry Boehm is a famous software engineer
(https://en.wikipedia.org/wiki/Barry_Boehm). Here's some numbers in terms of costs
for different activities in the 1970s. Observe that in every single case the amount of
effort put into testing is equally to or greater than coding; same for the specification.
Indeed, with the exception of Space, its the specification which got the lion’s share of
the effort and therefore of the dollars. Therefore, if you’re going to build tools to
support software development, you shouldn’t constrain yourself to building tools to
support programming; you should also build tools to support the tasks of
specification and testing.

A similar basic point (there are many more errors in the design stage than coding
stage) is made in the following: Boehm, Barry W., Robert K. Mcclean, and D. E. Urfrig.
"Some experience with automated aids to the design of large-scale reliable
software." IEEE Transactions on Software Engineering1 (1975): 125-133.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6312826

179

https://en.wikipedia.org/wiki/Barry_Boehm
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6312826

While cost metrics such as KLOCs and person months are appealing, the are at best
an approximation, and often a poor abstraction. Beware of this when you are
involved in project management. Fred Brooks write a book called The Mythical Man-
Month: Essays on Software Engineering
(https://en.wikipedia.org/wiki/The_Mythical_Man-Month) in 1975. It’s a short book
and well worth a read, or at the very least the Wikipedia page for the summary of the
main points.

Brook’s experience came from managing the writing of OS/360. This was the first
time when you had 40-50 people writing one OS. Suddenly you really communication
issues between teams. You had entire departments working on different areas
together with departmental managers. Fred debunks the interchangeability of the
man-month. Read Fred Brooks essay, which is linked from the course material page.

[Discuss the example in the slide. Here each box represents one month, and the
number inside is the number of people working that month.]

180

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

We could try and catch up, but this plan doesn’t work since interaction costs between
team members will slow down the project. Moreover who is going to do the training?
If you use the existing team, then they won’t get the work done in the first month
dedicated to coding. Hence the adage “adding manpower to a late project makes it
later”.

181

Barry Boehm conducted empirical studies into the costs of development.

Boehm found that the time to first shipment is the cube root of the number of
developer months. So a project requiring 1000 developer-months, it will take 2.5 *
cuberoot(1000) = 25 months.

Note that these kinds of estimates are not an exact science. As a result, there is per-
project variability around the prediction given by the COCOMO model (which itself is
more complex than the cube-root approximation given here). Boehm found that 68%
of the projects he studied came within 20% of the actual value given by the model,
and there remained significant outliers. With tools like these, you would have thought
that we could get at least a reasonable handle on software development. But we still
get huge failures which are not predicted by such models.

Additional reading: Boehm, Barry W. "Software engineering economics." IEEE
transactions on Software Engineering 1 (1984): 4-21.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5010193

182

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5010193

Has anyone been to Los Angeles? Well, there you see tar bubbling to the surface.
Over the millennia, many animals get stuck (and many extinct species have now been
dug out). People describe software in this way: if you fix any one bug in your
software, it creates other problems elsewhere. With poorly written software, you can
never escape! Just like an animal with four feet can get anyone foot out, but never all
four, and moving always pulls the average depth of all feet down…

183

There are lots of buzz words in this space, but the basic idea is always the same: chop
up a complex problem into modules with small, cleanly designed interfaces. The
challenge is how, and when, to perform the division.

184

Developed by Henry Royce in the 1970s for the USAF. Developed in response to
problems with previous software purchases.

Requirements are written in the user’s language. For example, if you did this for
aircraft, you'd write it in "pilot language". Specification is written in the system
language. In other words, the specification should translate the requirements into a
language that the programmer can understand. There can be more steps than this;
for example, a system spec, a functional spec, programming spec, … The philosophy is
progressive refinement of what the user wants.

Warning: when Winton Royce published this in 1970 he cautioned against naïve use.
It later became a US DoD standard.

185

Feedback is used to validate whether the next stage meets the requirements of the
previous. People often suggest adding an overall feedback loop from ops back to
requirements, however the essence of the waterfall model is that this isn’t done. It
would erode much of the value that organisations get from top-down development.

Very often the waterfall model is used only for specific development phases, e.g.
adding a feature, but sometimes people use it for whole systems.

186

The point around charging is a good one: it provides an evidence base on why system
development might cost more or might be delayed. Nevertheless, it can be used to
loot naïve customers like government: when the system doesn’t work then it’s the
customer’s fault as he signed off the specification.

Government has moved away from using the Waterfall Model for many projects. For
example the UK Government Digital Service Standard requires the use of iterative
development (more later).

187

188

189

“This model was first described by Barry Boehm in his 1986 paper "A Spiral Model of
Software Development and Enhancement". In 1988 Boehm published a similar
paper to a wider audience. These papers introduce a diagram that has been
reproduced in many subsequent publications discussing the spiral model.”

https://en.wikipedia.org/wiki/Spiral_model

190

https://en.wikipedia.org/wiki/Spiral_model

191

192

193

Microsoft tried to rewrite Word from scratch twice and failed.

Regression testing involves creating a set of test cases which worked on the last
released version and are checked against the next version. If the output differs
between the two, there’s a bug (either in the new version, the old version, or the
test). We saw how this approach was developed in detail in Richard Sharp’s lecture on
Software-as-a-Service. Recall that in some SaaS deployments every commit to the
repository passes through testing, and if it passes, on to deployment. Remember also
that deployment is staged: we first deploy to a small fraction of the userbase, and
then increasing amounts, all the time looking at feedback and metrics on whether the
latest release is successful or not.

194

If you want to try this whole stack, perhaps over the summer, then there are many
tutorials which you can look at to see how these parts come together. Here is one
example. Email the course lecturer if you know of a better example (this one is now a
bit old):

https://programmaticponderings.com/2013/11/04/continuous-integration-and-
deployment-using-git-maven-jenkins-and-glassfish/

195

https://programmaticponderings.com/2013/11/04/continuous-integration-and-deployment-using-git-maven-jenkins-and-glassfish/

The concept of the evolutionary model doesn’t just have to be applied to code. It can
also be applied to curated content too. We run the IsaacPhysics.org site in the
department. Here there is a huge amount of curated content which is edited by the
content team in a graphical editor which is backed by Git. Content is first entered,
then goes through a Quality Assurance (QA) process, then then released. We don’t
have automated testing of content, so we can’t release on every commit. We do have
automated regression testing for much of the software, but some still requires a
manual process – writing end-to-end regression tests for the web is very expensive in
time and money, so we operate on a more traditional two-week release cycle. For the
content, the senior team select a commit hash which goes live to different versions of
the site. Software and Content releases can be done independently, so we therefore
have at least four version of the service at any one point in time: Test, Dev, Staging,
Prod.

196

197

“The first Tacoma Narrows Bridge opened to traffic on July 1, 1940. Its main span
collapsed into the Tacoma Narrows four months later on November 7, 1940, at
11:00 a.m. (Pacific time) as a result of aeroelastic flutter caused by a 42 mph
(68 km/h) wind … A contributing factor was its solid sides, not allowing wind to pass
through the bridge's deck. Thus, its design allowed the bridge to catch the wind and
sway, which ultimately took it down. Its failure also boosted research in the field of
bridge aerodynamics and aeroelastic, fields which have influenced the designs of all
the world's great long-span bridges built since 1940.”
https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge

It is similarly important in the computer field to look at past failures in order to learn
lessons from what can go wrong.

198

https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge

What is the circuit intended to do? How can it fail?

199

200

201

202

The Therac-25 was a radiotherapy machine sold by AECL. Between 1985 and 1987
three people died in six accidents.

203

25 MeV ‘therapeutic accelerator’ with two
modes of operation:
• 25MeV focused electron beam on target to

generate X-rays
• 5-25MeV spread electron beam for skin

treatment (with 1% of beam current)

204

205

206

207

Clearly this was poor software design. This is a concurrency bug (see earlier in the
course).

The Therac-25 also included a "Field light" mode, which allowed the patient to be
correctly positioned by illuminating the treatment area with visible light. A second
fault allowed the electron beam to activate during field-light mode, during which no
beam scanner was active or target was in place. See:
https://en.wikipedia.org/wiki/Therac-25

208

https://en.wikipedia.org/wiki/Therac-25

Good reporting is critical in order to minimize harm. With better reporting, lives
might have been saved. In addition, lack of follow-up by the regulator left a second
issue seen in the Ontario accident as unexplained and therefore potentially still
problematic. This second problem was due to the light field feature of the system.
Much went wrong with the software engineering. The specification was an
afterthought, machine had a complex architecture, dangerous coding, little testing,
careless HCI design. Despite the fact that the manufacturer, AECL, left the medical
equipment business, similar accidents are still happening. Poor medical device safety
usability still costs many lives. See for example the discussion on infusion pumps at
the start of the course.

Further reading: Radiation Offers New Cures, and Ways to Do Harm, 23rd January
2010, New York Times.
https://www.nytimes.com/2010/01/24/health/24radiation.html?hp=&pagewanted=a
ll

209

https://www.nytimes.com/2010/01/24/health/24radiation.html?hp=&pagewanted=all

The software in the Space Shuttle cost $100 million a year to maintain.

New electric cars have fewer moving (mechanical) parts, but it has lots of software
which requires maintenance. Example: Google in the early years decided that the
expensive machines from IBM and Sun were too expensive for a website, so instead
got reliable systems through accepting some machines just fail; this still cost a lot!
Failover and so on need “devops” teams, testing, and so on.

When the Sizewell B power station was being built, software was suggested as the
failsafe mechanism rather than an analogue solution (solder put in to hold cadmium
rods which drop in to the core and stop the reaction).

210

Automation: what happens if kids start running out in front of automated cars and
forcing them to perform an emergency stop; this is great until the kids run out in
front of a car still under human control and not notice...

211

Stratus worked with four CPUs. Two CPUs per card. Hardware logic checked the
output on every cycle from each CPU; if the output agreed, then all continued as
normal. If the CPUs disagreed, then the one in disagreement was left out of future
decisions. On release, the share price of Status shot up and their machines were
resold under the IBM System/88 brand between 1985 and 1993. This was, for a while,
really popular. Why did it not continue to be popular?

https://en.wikipedia.org/wiki/Stratus_Technologies

212

https://en.wikipedia.org/wiki/Stratus_Technologies

Redundant hardware does not solve any software problems. Indeed, sometimes it
makes the situation hard. For example, on the IBM System/88, there was the issue of
the lack of familiarity of the programming environment (Fortran not Cobol; odd
Operating System) so there were lots of bugs and so the system was not reliable;
solution is to make sure such systems support the well-understood environment
familiar to the developers.

Leverson in the 1990s did a study where she asked students to write different
implementations and then compared them to see if running multiple versions would
improve reliability. Leverson found that bugs were not random and identically
distributed (so two implementations with a MTTF of 1 in 1000 hours does not give a
Mean-Time-To-Failure of 1 in a million hours). The issue is that the specification was
not redundant. Can't even solve with two specs: how do you then meaningfully
compare them? When the systems give different answers, how do you choose
between them? Average them ?!

213

[Ask the audience to list all the examples of redundancy; what’s the most important
one?]

Failure could be from a pilot dying – we might see two cases a year; so we have
controls for two people, with multiple redundant controls.

A critical piece of interface is the artificial horizon, so you can fly level and straight in
cloud or at night. Otherwise a gentle bank might feel like you're upright and then
slowly spiral to your death when you hit the ground.

214

All 47 passengers and crew died.
https://en.wikipedia.org/wiki/Copa_Airlines_Flight_201

EFIS: https://en.wikipedia.org/wiki/Electronic_flight_instrument_system

Lower picture is from the Wikipedia page. It’s the Primary Flight Display of a Boeing
747-400.

Need to know which way is up! One of the electronic systems failed due to failure of
a gyro which was wired into both displays (single point of control) and the pilot did
not check against the backup system. So, even when we have backup instruments,
and professional crew, we still get errors: it's difficult to manage redundancy. If you're
a low-hours private pilot then a single engine might be better than a twin: the private
pilot has so little experience at landing with only a single engine working with the
twin-engine plane that he will screw up, where as in a single-engine plane, then the
pilot knows he must land and does so safely in the next field.

An interesting article written by a software engineer and Cessna pilot on the recent
issues with the Boeing 737-Max
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-
looks-to-a-software-developer

215

https://en.wikipedia.org/wiki/Copa_Airlines_Flight_201
https://en.wikipedia.org/wiki/Electronic_flight_instrument_system
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer

47 dead, 74 injured.

https://en.wikipedia.org/wiki/Kegworth_air_disaster

Pilots shutdown the wrong engine, but didn't notice as they also throttled back on
the (broken) engine as well as shutting down the working engine. Then on final
approach, open up throttle on what was thought to be the right engine, but it was
the broken one, so there was no power and the plane crashed. The pilot claimed he
had throttled back on the right engine, so blamed the wiring rig to suggest that the
throttle cables was swapped over. They found the technician, and it turned out that
there were records in the logs that he had worked on the cables, found marijuana in
his locker and said it was his fault and fired him. Later crash investigation showed that
the cables were wired the right way around.

216

https://en.wikipedia.org/wiki/Kegworth_air_disaster

217

Ross was driving on cruise control in a hire car when he hit the "slow down" button
on approach to the freeway, but the road was going down hill, and the car speed up
slightly, this upward increase in speed confused the cruise control and the car went
into max acceleration! This was later found to be a software bug.

218

Managing a critical property such as safety, security or even hard real-time
guarantees is hard.

Develop safety case: hazards, risks, and strategy per hazard (avoidance, constraint)
Who will manage what? Trace hazards to hardware, software, procedures
Trace constraints to code, and identify critical components / variables to developers

219

While failures can and do occur during the technical phases of design and
implementation, root cause analyses will reveal mistakes before (specification) or
after (testing, deployment). The soft spots are therefore requirements engineering,
certification, operations and maintenance. All these soft spots are hard because they
are interdisciplinary.

The actual areas where you have failures are in the specification (because you don't
know the environment in which the product operates); or after release (because the
environment changes, or it's popular and gets used in new places you didn't expect).
For example, Facebook was designed for students at Harvard; now it's used by
everyone, and this means it can be used for manipulation (e.g. elections) or used for
virtual harassment and cyberbulling.

220

Connectivity to the internet changes everything! Need lots of updates. Panix was an
ISP in New York which supported unions, and other left-wing organisations; it
suffered from a massive DDoS attack. This was carried out by bad guys noticing that
hospitals had certifications for Unix machines connected to the Internet. These
machines could not be upgraded without invalidating their certification, so known
bugs were not patched. These machines were then used to DDoS Panix.

The move to security patching will cause lots of stress for regulators. How do they
adapt to this brave new world?

221

222

Example is that writing code in assembler may mean you have to remember which
variable is at which address, such as where the accelerometer x value is stored at
memory address 0x48; we can fix this with better programming languages and tools.
Incidental complexity can be eliminated; intrinsic complexity must be managed.

223

We have seen huge performance gains from using high-level languages (e.g. Java)
over low-level ones (e.g. assembly). While there are new languages coming out all
time, we expect to see more modest improvements in the future. Unless, that is,
something really exciting and new comes out in the world of programming language
design and implementation. Remember, of course, that coding is only a fraction of
overall effort in a project, so improving the programming language is not the only
part where improvements can occur. Its worth pointing out that a high-level
language, can also offer advantages in testing and maintenance as well…

224

A big win with high-level languages comes from improving maintenance. In the old
days, goto was used a lot to make programs run faster, but it also made them entirely
unmaintainable. Variables in older programming languages may have overly large, or
even global scope, so updating a variable in an inner loop which happens to be the
variable for the outer loop means that your loop update is broken.

https://en.wikipedia.org/wiki/Considered_harmful

225

https://en.wikipedia.org/wiki/Considered_harmful

“In the context of hardware and software systems, formal verification is the act
of proving or disproving the correctness of intended algorithms underlying a system
with respect to a certain formal specification or property, using formal
methods of mathematics.” https://en.wikipedia.org/wiki/Formal_verification

Mike Gordon designed and led the team who built HOL88,
https://en.wikipedia.org/wiki/Formal_verification

https://en.wikipedia.org/wiki/Hoare_logic

BAN: 1989 saw this as a way of verifying cryptographic protocol; was the highest cited
CS paper in the 1990s; really useful for finding certain kinds of bugs really well, but it
doesn't find all of them. We have many examples of programs proved to be correct,
but still wrong (mostly because of incorrect assumptions). Particularly useful for small
program representing challenging algorithms. https://en.wikipedia.org/wiki/Burrows-
Abadi-Needham_logic

226

https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Hoare_logic
https://en.wikipedia.org/wiki/Burrows-Abadi-Needham_logic

The Coverity tool is worth looking at since there is a nice write-up of the challenges in
providing tools in this space:

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, Dawson Engler
Communications of the ACM, February 2010, Vol. 53 No. 2, Pages 66-75
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-
later/fulltext

The paper contains many interesting insights in taking a research idea into a product.
For example, when releasing a new version of the tool, it suddenly finds many more
problems than the last, even on the same code base. So if you’re a manager, you find
that the bug count on your product goes up, which is disheartening at best!

227

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

This is the last lecture in the series.

228

Now for a slight change in topic. Let’s look at team structures.

A problem at IBM was that good programmers were promoted to managers (so they
were paid more and got a better parking space). This meant that all the good
programmers were no longer programmers! Productivity suffered. IBM then took the
idea of chief programmers who got paid like a manager and were given some juniors
to look after (and therefore kept the good programmers actually writing code).

229

https://en.wikipedia.org/wiki/Egoless_programming

230

https://en.wikipedia.org/wiki/Egoless_programming

https://en.wikipedia.org/wiki/Literate_programming

On the last point, Javadoc (https://en.wikipedia.org/wiki/Javadoc) is not an example
of literate programming; emphasis is the wrong way round. The primary “document”
is the human readable one; code is a surrogate, not the primary artefact. Quote from
literate programming wiki:

“This misconception has led to claims that comment-extraction tools, such as
the Perl Plain Old Documentation or Java Javadoc systems, are "literate programming
tools". However, because these tools do not implement the "web of abstract
concepts" hiding behind the system of natural-language macros, or provide an ability
to change the order of the source code from a machine-imposed sequence to one
convenient to the human mind, they cannot properly be called literate programming
tools in the sense intended by Knuth.”

Aside: Knuth also famously rewarded people for bugs (e.g. hexadecimal dollar)
https://en.wikipedia.org/wiki/Knuth_reward_check

231

https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Javadoc
https://en.wikipedia.org/wiki/Knuth_reward_check

Aim: Nurture the capability for repeatable, manageable performance, not outcomes
that depend on individual heroics.

Do so by recognising the fact that people work better with people they know and
therefore the team progress through these levels. You can't have teams that are static
forever however -- staff come and leave, you need to onboard new people, it's good
to rotate people so they have experience in several teams, and so on. It identifies five
levels of increasing maturity in a team or organisation, and a guide for moving up.
https://en.wikipedia.org/wiki/Capability_Maturity_Model

Described in the book by Watts Humphrey, Managing the Software Process, 1989.

232

https://en.wikipedia.org/wiki/Capability_Maturity_Model

https://en.wikipedia.org/wiki/Extreme_programming

Extreme programming no longer popular, but inspired Agile software development.

See also: Kent Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, 1999

233

https://en.wikipedia.org/wiki/Extreme_programming

Agile now has many variations: it’s a family of related approaches which typically
share a common set of values and principles.

https://en.wikipedia.org/wiki/Agile_software_development
http://agilemanifesto.org/

234

https://en.wikipedia.org/wiki/Agile_software_development
http://agilemanifesto.org/

The Curtis study looked at the failure of 17 large demanding systems. These three
failures are often linked, so if you look at the case studies such as London Ambulance
Service or Smart Meters you'll see these.

Further reading: Curtis, Bill, Herb Krasner, and Neil Iscoe. "A field study of the
software design process for large systems." Communications of the ACM 31.11
(1988): 1268-1287. https://dl.acm.org/citation.cfm?id=50089

235

https://dl.acm.org/citation.cfm?id=50089

You need to get many people together to understand a large system (e.g. phone
service or bank). How many? Who? There's a chance of significant mistakes. In some
sense it doesn't matter whether you have the Waterfall Model, Spiral Model or Agile
to determine this list. It's always hard. For any long-lived product, you need to
continue to adjust.

236

Facebook realised that kids were not using Facebook because their parents are on
there, so Facebook bought Instagram; then messaging was a risk, so Facebook bought
WhatsApp. All these things changes the specification.

237

If you have a big system with N people then there are O(N^2) channels and 2^N
subgroups. How do you resolve disputes with teams of 1,000 people? With
committees, people have preferences, so Y gets put to the back of the queue, so
won't get done for a year; but X relies on Y, and X is important. Look at Government
and Universal Credit: the government declared it would use Agile development, but
this didn't really happen because in a large organisation there is significant top-down
control.

238

We need this, even with Agile development, since dev work often takes place in large
organisations.

239

The project management triangle, or triple constraint, iron triangle, models the
constraints of project management. The main point is that the quality of work is
constrained by budget, deadline and scope. The job of the project manager is look at
the trade-offs and aim for a suitable one.

https://en.wikipedia.org/wiki/Project_management_triangle

240

https://en.wikipedia.org/wiki/Project_management_triangle

“A Gantt chart is a type of bar chart that illustrates a project schedule, named after its
inventor, Henry Gantt (1861–1919), who designed such a chart around the years
1910–1915. Modern Gantt charts also show the dependency relationships between
activities and current schedule status.” (https://en.wikipedia.org/wiki/Gantt_chart)

Here is one example. [Describe the example.] This kind of chart helps maintain the
‘hustle’ in a project and warns of approaching trouble. Warning: if you can't split a job
down into units of work which are ~2 weeks in length, then you can't actually
produce a reliable estimate. You can transform your Gantt chat into a PERT chart...

241

https://en.wikipedia.org/wiki/Gantt_chart

Project Evaluation and Review Technique (PERT): draw as a graph with dependencies.
Highlights critical paths: those paths in the process which if delayed lengthen the
delivery of the entire project.

Which edges are on a critical path?

The critical paths here are, T1, T3, T4 and T2, T6. Conversely there is some slack in T5

since it may start as early as the start of week 4 or as late as the start of week 6.

242

Don't abuse minorities and women by demeaning them and only ever assigning them
roles such as writing the documentation or testing. (This used to be a problem in
industry -- it never was the right approach.)

Many other factors: acknowledgement, attribution, equity, leadership, and ‘team
building’ (shared food / drink / exercise; scrumming). Acknowledgement -- make sure
that everyone gets credit publicly if possible; e.g. on the website. Equity: make sure
that people get their own picks of tasks first in rotation. Team building is important --
make sure they know and trust one another with activities such as paint balling, etc.

Acknowledgement and gender discrimination remain a problem which we need to
accept is happening and fix. The onus is on all of us to change attitudes and actively
fight discrimination. Katie Bouman is one recent example.
https://www.theguardian.com/commentisfree/2019/apr/17/katie-bouman-black-
hole-image-online-trolls

243

https://www.theguardian.com/commentisfree/2019/apr/17/katie-bouman-black-hole-image-online-trolls

Testing is often neglected in academia.

Bill Gates is quoted as saying “are we in the business of writing software, or test
harnesses?”

Andy Rice talked about this in terms of software engineering. Spiral or Agile
development in the early phase is an important form of testing (e.g. design validation,
UX prototyping) since you're testing your spec and requirements. There's now the
phrase "dog fooding" or "eat your own dog food" where you trial software on your
own employees. There is also dark launch or A/B testing where you roll out to a small
number (see SaaS). Development economics says you need to get rid of as many bugs
as possible early on.

244

Huge advances in modern software systems. Design for testing, use continuous
integration and automate regression testing.

In the old days, 20% of bug fixes would reintroduce old bugs! Another thing that you
can do is collect lots of test data before you've even built it. For example, you can
drive one billion kilometres on the roads to collect environmental parameters such as
how good the cameras are, when dogs run into the road, etc. You can then use this
data to test the system, but also in your defence in your court case later to show a
good, sensible strategy.

245

[Note: this slide has been updated since printing to give a clearer explanation.]

Researchers have shown that systems with a single bug, or a small number of bugs,
are governed by Poisson survival statistics [1], namely that the probability pi that a
particular defect remains undetected after t tests is given by pi = exp(-Ei t) where Ei is
the virility of the defect and depends on the proportion of the input space that it
affects.

“The problem is that extensive empirical investigations have shown that in large
systems, the likelihood that the t-th test fails is not proportional to exp(−Et) but to k/t
for some constant k” [2]. This can be shown to be the case through an analysis of
statistical thermodynamics [2], the details of which are beyond the scope of this
course.
.
The take home message is if we need a mean time to failure of 10,000 hours for a
piece of software, then we need to test it for at least 10,000 hours (see [3]). This is of
importance for public policy, as it impinges on the use of software in applications
where very high mean times to failure are required, such
as nuclear plant control and aircraft flight systems. It turns out that this is the best
mean time to failure that we can expect given such a level of testing,
and that the reliability will usually be less [2].

[1] Adams E. N., Optimising preventive maintenance of software products, lBM

246

Journal of Research & Development , Vol. 28, issue 1 pp 2–14 (1984)

[2] Robert M. Brady, Ross J. Anderson, Robin C. Ball, Murphy’, Murphy’s law, the
fitness of evolving species, and the limits of software reliability. University of
Cambridge Computer Lab Technical Report 471, September 1999.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-471.pdf

[3] Butler R. W., Finelli G. B. The infeasibility of experimental quantification of life-
critical software reliability, ACM Symposium on Software for Critical
Systems, New Orleans ISBN 0-89791-455-4 pp 66–76 (Dec 1991)

246

Tester 2 has a different area of focus than Tester 1, so they explore a new part of the
space of possible bugs. This suggests that you want many testers in parallel who
either naturally or by design have a different test focus.

247

Cat Hallam. Used with permission. See:
https://twitter.com/CatHallam1/status/1114590857397788673

248

Remember to think about requirements -- Patriot was a problem because the spec
said work for 4 hours, but it was running for 100s of hours in the field. Random
testing: feed in many millions of inputs until you get the system to crash. Hostile
review: pay reviewers $5000 for each bug found; bug bounty programmes are also
hostile in this sense.

249

While the Agile community think that the testing is the documentation, this is not
sufficient. Keeping all these different systems together is hard: keeping the spec,
safety case, code documentation, testing frameworks, PERT charts, and so on
together and cross-reference each other. An IDE is one approach. Some industries use
a “plans and controls department” who were empowered to check that backup and
recovery actually worked.

250

Particularly hard when you've got a safety case to do as well since this requires
coordination. You may need to destructively test cars! Note also that emergency
releases are hard (e.g. Heartbleed) since there's intense time pressure.

251

Need an idea centrally for many big systems. For example, with Patch Tuesday,
someone needs to check that all the existing software runs on the new version of
Windows. So you need to know how all the machines are configured.

In recent years, there’s been a move to integrate software development and
operations: https://en.wikipedia.org/wiki/DevOps

252

https://en.wikipedia.org/wiki/DevOps

20 years ago lawyers would suggest you deny the existence of bugs; minimise
corporate risk. We saw, for example, that researchers at the University of Birmingham
were sued by VW over their hacks into VW vehicles. As a result, hackers would boast
about them and post exploits on underground forums rather than reporting to
vendors.

CERT performs a useful service: you can report to CERT and CERT then contacts the
vendor, so they do the "you have 90 days warning". It's good for researchers, as you
are not going to get sued. It's better for the ecosystem -- random bugs aren't posted
on underground forums.

When the discoverer is also an employee of the vendor, then second option may not
be possible, but the threat that an external person may find in the future may
encourage option 3.

Google Project Zero operates a strict 90-day disclosure period.
https://en.wikipedia.org/wiki/Project_Zero

253

https://en.wikipedia.org/wiki/Project_Zero

Many devices simply don’t get patched. Recall earlier the issues with Android
vulnerabilities. Mirai is another example: Internet home hubs and IP cameras are not
patched since there is little incentive for the manufacturers to do anything.

Note that there is a long tail of installing updates. WannaCry with the NHS was an
example of this, where machines weren't updated since there were concerns about
managing updates; it was easier not to (or not to pay Microsoft lots of money).

Solutions? Using the CE mark is may provide one means of fixing the problems: self-
certify to say you will provide updates, and then goods on import can be rejected and
returned if the vendor has failed to do this on previous products.

254

Example emergency would be Heartbleed.

255

256

At first it sounds like we should focus on outcomes rather than process…

Road deaths are coming down in the UK, from over 3,400 in 2000 to just over 1,700
in 2013 (https://www.gov.uk/government/publications/annual-road-fatalities).
Nevertheless, any death is something we wish to avoid and we could focus on these
outcomes as a measure of success. Replacing robots sounds great if the number of
fatalities by 50%; but perhaps people don't like the idea of 1000 deaths per year due
to robots?

Bureaucracies prefer to focus on process. You see this with the public sector with lots
of forms, approval procedures and so on; dealing with the residual risk here is
difficult (what do you do about the 1000 deaths per year from robots)?

See Economics, Law and Ethics in Part IB for more on product liability.

257

https://www.gov.uk/government/publications/annual-road-fatalities

…but there are some good reasons why we should focus on the process too.

258

First, some good examples. Delivery of software is now performed in stages, such as
dogfood, alpha, beta, prod which helps us get feedback early from friendly and expert
users before trialling on the unsuspecting. The use of hostile review is also a positive
step and generally aligns incentives; examples include higher assurance levels of CC,
manned spaceflight, nuclear weapons, etc. There is also some alignment of incentives
when you sell software if you have to fix any bugs found within 90 days of sale: the
buyer will do significant testing early (and perhaps reject if it is of really poor quality)
and the seller knows that (assuming quality is reasonable) they are going to get paid
and the amount of additional work is bounded. Nevertheless, businesses want to
avoid risk wherever possible, and so in the absence incentives much safety and
security work will be ignored. Therefore incentives alignment is really important.

259

Here is the UK Government’s current attempt at offering advice on how to build
Government-funded digital services. Lots of good advice which mirrors much of what
we have discussed in this lecture course, yet we have seen recent services still fail to
live up to these ideals. Consider the issue of passport renewal we saw earlier as but
one example. (Universal Credit is another.)

There are also standards, such as CyberEssentials, which also offer good advice on
security.

Further details: https://www.gov.uk/service-manual/service-standard

260

https://www.gov.uk/service-manual/service-standard

All code contains latent vulnerabilities. Therefore, particularly Internet-enabled
devices require regular patches to keep them secure. Cars are no exception: Tesla
delivers monthly patches to their cars. Yet safety regulation requires a safety case
which in turn requires testing when significant changes are made. Does the
manufacturer need to re-test cars after changes to software? Is there a sensible
threshold where the change requires a retest? In the physical world, we can reason
about whether a slightly different design of alloy wheel will affect the safety case, but
this is not possible for software. Security is not composable. Similarly a single line
change can have a dramatic impact on security (e.g. see goto fail).

How will we ensure that manufacturers continue to patch cars in 10, 20 or 30 years
from now? We need new tools and ideas. This is your future career.

261

Software engineering is about managing complexity, and this is hard. Yet it is our
trade. Safety engineering requires software engineering (since everything has a CPU
in it) and safety engineering requires security engineering since we are connecting
these CPUs to the Internet, thereby exposing them to attacks from the other side of
the world.

262

Remember that safety or security failure often occurs because people do not define
the concept of the system broadly enough. The users matter, and secure and safe
systems are usable systems.

Institutions and their people, culture and processes matter. About 30% of big
commercial projects fail. This figure has been stable for years. Better tools simply let
people climb higher up the complexity mountain before they fall off. It’s an
(admirable) human trait that we always aspire to do better, to step beyond what we
have achieved before.

263

This is the last lecture in the series.

264

