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Aim
s

•Introduce softw
are engineering w

ith focus on:
•

Large system
s

•
Safety-critical system

s
•

System
s to w

ithstand attack by capable opponents

•Illustrate w
hat goes w

rong

•Best practice to avoid failure
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O
bjectives

•By the end of the course you should be able to:
•

W
rite program

s w
ith tough assurance targets

•
W

ork effectively as part of a team
•Understand

•
Softw

are developm
ent m

odels
•

Developm
ent lifecycle

•
Understand bugs, vulnerabilities and hazards
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Books
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Additional Reading

F.P. Brooks, The M
ythical M

an M
onth

J. Reason, The Hum
an Contribution

S.W
. Tham

es, Report of the Inquiry into the London 
Am

bulance Service
S. M

aguire, W
riting Solid Code

H. Thim
bleby, Im

proving safety in m
edical devices 

and system
s

O. Cam
pion-Aw

w
ad et al, The National Program

m
e 

for IT in the NHS –
A Case History
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Course O
utline –

key topics

•Security policy
•Safety case
•Security protocols
•User behaviour
•Bugs

•Softw
are crisis

•Developm
ent lifecycle 

•Critical system
s

•Testability
•Softw

are-as-a-service
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W
hat is Security Engineering?

Security engineering is about building system
s to 

rem
ain dependable in the face of m

alice, error and 
m

ischance.
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The Design H
ierarchy

Policy

Architecture, protocols, …

Hardw
are, crypto, access control, …

W
hat are w

e trying to do?   How
?   W

ith w
hat?
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Security vs Dependability

Dependability = Reliability + Security

•M
alice is different from

 error
•Reliability and security are often strongly correlated
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A system
 can be…

•equipm
ent or a com

ponent (laptop, sm
artcard, …

)
•a collection of products, their operating system

s, 
and som

e netw
orking equipm

ent
•The above plus applications
•The above plus internal staff
•The above plus external users

Com
m

on failure: policy draw
n too narrow

ly

10

Electric bike should not propelbicycle 
w

hen
speed exceeds 15.5

m
ph
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Subjects and principals

Subject: a physical person
Person: a subject or a legal person (firm

)
Principal:

•
A person

•
Equipm

ent
•

A role, including com
plex roles
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Secrecy and privacy

Secrecy: m
echanism

 to control w
hich principals can 

access inform
ation

Privacy: control of your ow
n secrets

Confidentiality: an obligation to protect som
eone 

else’s secrets.
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Anonym
ity, integrity, authenticity

•Anonym
ity: restrict access to m

etadata

•Integrity: an object has not been altered since the 
last authorised m

odification

•Authenticityhas tw
o com

m
on m

eanings:
•

an object has integrity plus freshness
•

You are speaking to the right principal
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Trust is hard; several m
eanings…

1.
A w

arm
 fuzzy feeling

2.
A trusted system

 or com
ponent is one that can 

break m
y security policy

3.
A trusted system

 is one I can insure
4.

A trusted system
 w

on’t get m
e fired w

hen it 
breaks

5.
…
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Errors, failures, reliability, accidents

•Error: a design flaw
 or deviation from

 intended 
state
•Failure: nonperform

ance of the system
 w

hen inside 
specified environm

ental conditions
•Reliability: probability of failure w

ithin a specified 
period of tim

e
•Accident: an undesired, unplanned event resulting 

in a specified kind or level of loss
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H
azards and risks

•Hazard: a set of conditions in a system
 or its 

environm
ent w

here failure can lead to an accident 
•A criticalsystem

, process or com
ponent is one 

w
hose failure w

ill lead to an accident
•Risk

is the probability of an accident
•

O
ften com

bined w
ith unit of exposure; e.g. a m

icrom
ort

•Uncertainty is w
here the risk is not quantifiable

•Safety is sim
ple: freedom

 from
 accidents
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Security policy, profile, and target

•A security policy is a succinct statem
ent of 

protection goals
•A protection profile is a detailed statem

ent of 
protection goals
•A security target is a detailed statem

ent of 
protection goals applied to a particular system

18

W
hat often passes as ‘policy’

1.
This policy is approved by M

anagem
ent.

2.
All staff shall obey this security policy.

3.
Data shall be available only to those w

ith a need-
to-know.

4.
All breaches of this policy shall be reported at 
once to Security.

W
hat’s w

rong w
ith this? 
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Traditional governm
ent approach

•Start from
 the threat m

odel: an insider w
ho is 

disloyal or careless.
•Solution: lim

it the num
ber of people you trust, and 

m
ake it harder for them

 to be untrustw
orthy

Basic idea since 1940: a clerk w
ith ‘Secret’ clearance 

can read docum
ents at ‘Confidential’ and ‘Secret’ but 

not at ‘Top Secret’  
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M
ultilevel Secure System

s (M
LS)

•Classify all docum
ents and data w

ith a level, such as 
official, secret, top secret; or high

and low
.

•Principals have clearances; clearance m
ust equal or 

exceed classification of any docum
ents view

ed.
•Enforce handling rules for m

aterial at each level.
•Inform

ation flow
s upw

ards only:
•

No read up
•

No w
rite dow

n

21

Bell-LaPadula form
al m

odel

•Bell-LaPadula (1973):
•

sim
ple security policy

(no read up)
•

*-policy
(no w

rite dow
n)

•W
ith these tw

o rules, one can prove that a system
 

that starts in a secure state w
ill rem

ain in one

•Aim
 is to m

inim
ise the Trusted Com

puting Base

22

Covert channels cause havoc

•
BLP lets m

alw
are m

ove from
 Low

 to High, just not 
to signal dow

n again.
•

W
hat if m

alw
are at High m

odulates shared 
resource (e.g. CPU

 usage) to signal to Low
?

•
How

 can you let m
essage traffic pass from

 Low
 to 

High, if any acknow
ledgem

ent of receipt could be 
delayed and used to signal?

M
oral: covert channel bandw

idth is a com
plex.

It’s an em
ergent property of w

hole system
s! 
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H
igh assurance M

LS system

•The pum
p sim

plifies the 
problem

: replace the 
com

plex em
ergent 

property of the w
hole 

system
 w

ith a sim
ple 

property of a testable 
com

ponent
•Nevertheless, often 

harder than it looks!
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M
ultilateral Security

Stop lateral flow, exam
ples:

•Intelligence, typically w
ith 

com
partm

ents 
•M

edical records
•Com

peting clients of an 
accounting firm
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Biba form
al m

odel for integrity

•
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.

2
6

Architecture m
atters

•Lots of legacy protocols 
trust all netw

ork nodes

•Chrysler Jeep recall 

•Defence in depth: 
separate subnets, 
capable firew

alls,
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Safety policies

•Industries have their ow
n standards, cultures, often 

w
ith architectural assum

ptions em
bedded in 

com
ponent design

•Plethora of safety legislation
•Som

etim
es brand new

 standards, but in m
ore 

m
ature industries safety standards tend to evolve

•Tw
o basic w

ays to evolve: 
•

failure m
odes and effects analysis 

•
fault tree analysis
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Failure m
odes and effects analysis

•Look at each com
ponent and list failure m

odes
•Figure out w

hat to do about each failure
•

Reduce risk by overdesign? 
•

Redundancy?
•

…
•Use secondary m

echanism
s to deal w

ith 
interactions
•Developed by NASA
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Fault tree analysis

W
ork backw

ards from
 bad outcom

e w
e m

ust avoid to 
identify critical com

ponents
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Exam
ple: nuclear bom

b safety

Don’t w
ant Arm

ageddon caused by a rogue pilot, a 
stolen bom

b, or a m
ad president, so use 

independent, sim
ple, technical m

echanism
s

•Authorisation: president releases code
•Intent: pilot puts key in bom

b release
•Environm

ent: N seconds zero gravity

Independent, sim
ple, technical m

echanism
s

31

Bookkeeping, 8-4
thm

illennium
 

BCE
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Bookkeeping, circa 1100 AD

•Double-entry bookkeeping: each entry in one 
ledger is m

atched by opposite entries in another
•Ensure each ledger is m

aintained by a different 
subject so bookkeepers have to collude to defraud

•Exam
ple: a firm

 sells £100 of goods on credit, so 
credit the sales account, debit the receivables 
account. Custom

er subsequently pays, so credit the 
receivables account, debit the cash account.
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Double-entry bookkeeping found 
in the G

enizah Collection

34

Separation of duties in practice

•
Serial:
•

Lecturer gets m
oney from

 EPSRC, charity, …
•

Lecturer gets O
ld Schools to register supplier

•
G

ets stores to sign order form
 and send to supplier

•
Stores receives goods; Accounts gets invoice

•
Accounts checks delivery and tell O

ld Schools to pay
•

Lecturer gets statem
ent of m

oney left on grant
•

Audit by grant giver, university, …

•
Parallel: authorization from

 tw
o distinct subjects
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Role-Based Access Control (RBAC) 
decouples policy and m

echanism

Alice

Bob

Charlie

Exam
iner

Lecturer

Student

Past exam
 

questions

Future exam
 

questions

Subjects
Roles

Actions
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Sw
iss Cheese M

odel

•Defense in depth
•Layers could include hardw

are, softw
are, policy, 

hum
an factors, etc.

Diagram
 by 

Davidm
ack

CC-BY-SA 3.0
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Sum
m

ary of security and safety

•W
hat are w

e trying to do?
•Security: threat m

odel, security policy
•Safety: hazard analysis, safety standard
•Refine to protection profile, safety case
•Typical m

echanism
s: usability engineering, 

firew
alls, protocols, access controls, …
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Do not ignore user behaviour

•M
any system

s fail because users m
ake m

istakes
•Banks routinely tell victim

s of fraud “our system
s 

are secure so it m
ust be your fault”

•M
ost car crashes are user error; yet w

e now
 build 

cars w
ith crum

ple zones

39

Chevrolet 1959 vs 2009

https://w
w
w.youtube.com

/w
atch?v=fPF4fBGNK0U
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H
ierarchy of 

harm
s

Targeted
attacks

Generic
m

alw
are

Bulk passw
ord 

com
prom

ise

Abuse of m
echanism

SophisticationVolume of harm
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M
any abuses of m

echanism

•Cyberbullying
•Doxing
•Fake rental apartm

ents
•…How

 can w
e protect against these attacks?
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U
seable privacy is also hard

•Traditional approaches –
anonym

isation and 
consent –

are really hard to deliver
•Problem

 gets harder as system
s get larger

•Autom
ated data collection (e.g. from

 sensors) 
m

akes the situation m
ore difficult again

43
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M
edical device safety

•Usability problem
s w

ith m
edical devices kill about 

the sam
e num

ber of people as cars do
•Biggest killer now

adays: infusion pum
ps

•Nurses typically get blam
ed, not vendors

•Avionics are safer, as incentives are m
ore 

concentrated
•Read Harold Thim

bleby’spaper!
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Bulk passw
ord com

prom
ise

•Exam
ple: in June 2012, 6.5m

 LinkedIn passw
ords 

stolen, cracked (encryption did not have a salt) and 
posted on a Russian forum
•

M
ethod: SQ

L injection (see later)
•

Passw
ords w

ere reused on other sites, from
 m

ail 
services to PayPal. 

•
Reused passw

ords w
ere used on those third-party sites

•There have been m
any, m

any such exploits! 
•W

hat can w
e do about passw

ord reuse?
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Phishing and social engineering

•
Card thieves call victim

s to ask for PIN
s

•
A w

ell-crafted em
ail sent to com

pany staff, w
ith 

apparently authority, can get 30%
 yield

•
Som

e big consequences (see next)
•

Think like a crook (see M
itnick reading)
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John Podesta em
ail com

prom
ise 

by Fancy Bear (allegedly Russia)
•

W
hite House chief-of-staff; chair of Hiliary

Clinton’s 
2016 U

S Presidential Cam
paign

•
Gm

ail account w
as com

prom
ised

•
20,000 em

ails subsequently published by W
ikiLeaks

•
Authenticity of som

e em
ails questioned
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Cognitive factors

•M
any errors arise from

 our highly adaptive m
ental 

processes
•

W
e deal w

ith novel problem
s in a conscious w

ay
•

Frequently encountered problem
s are dealt w

ith using 
rules w

e evolve, and are partly autom
atic

•
O

ver tim
e, the rules give w

ay to skill

•Our ability to autom
ate routine actions leads to 

absent-m
inded slips, or follow

ing the w
rong rule

•There are also system
atic lim

its to rationality in 
problem

 solving –
so called heuristicsand biases
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Risk m
isperception

People offered £10 or a 50%
 chance of £20 usually 

prefer the form
er; if offered a loss of £10 or a 50%

 
chance of a loss of £20 they tend to prefer the latter!

Rational

Actual

Gain
Loss

Utility
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Fram
ing decisions about risk, or

the Asian disease problem
Sce

n
a

rio
 A

, ch
o

o
se

 b
e

tw
e

e
n

:

a
)

“2
0

0
 live

s w
ill b

e
 save

d
”

b
)

“w
ith

 p
=

1
/3

, 6
0

0
 save

d
; w

ith
 p

=
2

/3
, n

o
n

e
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d
”

H
e

re
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ve
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n
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e
e
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)
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Social psychology

•Authority m
atters: M

ilgram
 show

ed over 60%
 of all 

subjects w
ould torture a ‘student’

•The herd m
atters: Asch show

ed m
ost people could 

deny obvious facts to please others

•Reciprocation is built-in: give a gift, to increase your 
chance of receiving one
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Fraud psychology

All the above plus:

•Appeal to the m
ark’s kindness

•Appeal to the m
ark’s dishonesty

•Distract them
 so they act autom

atically
•Arouse them

 so they act viscerally
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People only follow
 advice w

hich 
confirm

s their ow
n w

orld view
•Users have different m

ental m
odels. Explore how

 
your users see the problem

 –
the ‘folk beliefs’

•Given a m
odel of their w

orld view, target approach 
to appeal to it. 
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Affordances: Johnny Can’t Encrypt58

The pow
er of default

M
ost people don’t opt in or out; they go w

ith default

Can exploit this for good (or evil):
•Pensions
•Privacy settings in an online service
•Use of crypto
•…Therefore defaults m

ay be contentious
59

Econom
ics versus psychology

M
ost people don’t w

orry enough about com
puter 

security, and w
orry too m

uch about terrorism

How
 could w

e fix this, and w
hy is it not likely to be?
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The com
pliance budget

•‘Blam
e and train’ as an approach is suboptim

al
•It’s often rational to ignore w

arnings
•People w

ill spend only so m
uch tim

e obeying rules, 
so choose the rules that m

atter
•Violations of rules also m

atter: they’re often an 
easier w

ay of w
orking, and som

etim
es necessary

•The ‘right’ w
ay of w

orking should be easiest: look 
w

here people w
alk, and lay the path there
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W
here should the path be?
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Differences betw
een people

•Ability to perform
 certain tasks varies w

idely across 
subgroups of the population, including by
•

Age
•

Gender
•

Education
•

…

•Yet all custom
ers receive com

plex passw
ord rules 

and anti-phishing advice
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M
ore accidents w

ith Volvos?

Volvo ÖV 4, April 1927
64



U
nderstanding error helps us 

build better system
s

•
Significant psychology research into errors

•
Slips and lapses
•

Forgetting plans, intentions (strong habit intrusion)
•

M
isidentifying objects, signals

•
Retrieval failures (“its on the tip of m

y tongue”)
•

Prem
ature exits from

 action sequences (using the ATM
)

•
Rule-based m

istakes; applying the w
rong procedure

•
Know

ledge-based m
istakes; heuristics and biases
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Training and practice reduce errors

Inexplicable errors, stress free, right cues
10

-5

Regularly perform
ed sim

ple tasks, low
 stress 

10
-4

Com
plex tasks, little tim

e, som
e cues needed 

10
-3

U
nfam

iliar task dependent on situation, m
em

ory 
10

-2

Highly com
plex task, m

uch stress 
10

-1

Creative thinking, unfam
iliar com

plex operations, 
tim

e short &
 stress high 

~1
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Passw
ords are cheap, but…

•W
ill users enter passw

ords correctly?
•W

ill they rem
em

ber them
?

•W
ill they choose a strong passw

ord?
•W

ill the w
rite them

 dow
n?

•W
ill the passw

ord be different in each context?
•Can the user be tricked into revealing passw

ords?
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U
ser studies are im

portant

Experim
ent to see if first-year N

atScis
could be 

trained to use passw
ords effectively. Three groups:

•
Control group of 100 (+100 m

ore observed)
•

G
reen group: use a m

em
orable phrase

•
Yellow

 group: choose 8 chars at random

Expected strength: 
Y > G

 > C; got Y = G
 > C

Expected resets: 
Y > G

 > C; got Y = G
 = C

W
e had 10%

 non-com
pliance
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H
ardw

are and online support to 
lim

it brute force is challenging
•O

nline services and tam
perproof hardw

are can be 
used to lim

it brute-force guessing, such as
•

Bank card PIN
 (3 guesses on card; 3 online)

•
iPhone PIN

 (tim
eouts)

•
Login attem

pts to w
ebservices (tim

eouts; care required)
•

…

If the typical person has five cards w
ith the sam

e PIN
, 

how
 m

any w
allets do you need to find before you get 

lucky?
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M
itigate w

orst effects of a stolen 
passw

ord file
•Use key stretching techniques such as PDBKF2:

p
u
b
l
i
c

P
B
E
K
e
y
S
p
e
c
(
c
h
a
r
[
]

p
a
s
s
w
o
r
d
,
 
b
y
t
e
[
]

s
a
l
t
,

i
n
t

i
t
e
r
C
o
u
n
t
,
 
i
n
t

k
e
y
L
e
n
g
t
h
)

•Establish breach reporting law
s

•Externalise the problem
 w

ith Oauth
•Use other factors to determ

ine w
hether login legit
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Passw
ord recovery is a w

eak point

•Passw
ord recovery often involves basic info w

hich 
doesn’t change:
•

W
hat w

as the nam
e of your first school?

•
W

hat w
as the nam

e of your first pet?
•

…

•Little ability to change this inform
ation

•Accounts for public figures are especially vulnerable72



Externalities need consideration

•One firm
’s action has side-effects for others

•Passw
ord sharing a conspicuous exam

ple; w
e have 

to enter credentials everyw
here

•Everyone w
ants recovery questions too

•M
any firm

s train custom
ers in unsafe behaviour 

from
 clicking on external links or redirecting the 

brow
ser to third-party dom

ains for paym
ent

•M
uch ‘training’ am

ounts to victim
 blam

ing
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Iterative guessing of card details 
w

ith botnet on w
ebsites w

orks
•O

f Alexa top 500 w
ebsites, 26 use Prim

ary Account 
N

um
ber (PAN

) and expiry date
•37 use PAN

 + postcode (num
eric digits only for 

som
e, add door num

ber for others)
•291 ask for PAN

, expiry date and CVV2

There is enough variation in requirem
ents across 

w
ebsites that you can iteratively generate valid 

credentials
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Am
azon ⇢

Apple ID ⇢
G

m
ail ⇢

Tw
itter

(And all they w
anted w

as his three letter Tw
itter handle!)

•
Tw

itter: find personal w
ebsite, then G

m
ail, hom

e address
•

G
m

ail: account recovery gave “m
••••n@

m
e.com

”
•

Am
azon: call w

ith nam
e, address, em

ail to associate a new
 

credit card num
ber (fake) to the account

•
Am

azon: call (again) w
ith nam

e, address, credit card 
num

ber and associate new
 em

ail address w
ith the account

•
Am

azon: U
se w

eb passw
ord reset to new

 em
ail address; get 

last four digits of all credit cards in the account
•

Apple: Call w
ith billing address and last four digits credit 

card to get tem
p passw

ord for “m
••••n@

m
e.com

”
•

G
m

ail: reset passw
ord sent to “m

••••n@
m

e.com
”

•
Tw

itter: reset passw
ord sent to G

m
ail
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Security protocols

•Security protocols are another intellectual core of 
security engineering
•They are w

here cryptography and system
 

m
echanism

s (such as access control) m
eet

•They introduce an im
portant abstraction, and 

illustrate adversarial thinking
•They often im

plem
ent policy directly

•And they are m
uch older then com

puters…
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O
rdering w

ine in a restaurant

1.
Som

m
elier presents w

ine list to host 
2.

Host chooses w
ine; som

m
elier fetches it

3.
Host sam

ples w
ine; then it’s served to guests

Security properties?
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Car unlocking protocols

N: nonce;a sequence num
ber, random

 num
ber or tim

estam
p

E: engine unit
T: car key fob or transponder
K: secret key shared betw

een E and T
{x}K : encrypt xw

ith K

Static
Non-interactive

Interactive

T ®
E: K

T ®
E: T, {T,N}K

E ®
T: N

T ®
E: {T,N }K
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Identify Friend or Foe (IFF)

•Basic idea: fighter challenges bom
ber

F ®
B: N

B ®
F: {N}K

•W
hat can go w

rong?

80



Person-in-the-m
iddle attack…

•Basic idea: fighter challenges bom
ber

F ®
B: N

B ®
F: {N}K

•W
hat if the bom

ber reflects the challenge back at 
the fighter’s w

ingm
an?

F ®
B: N

B ®
F: N

F
®

B: {N}K
B ®

F: {N}K
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Tw
o-factor authentication (2FA)

T ®
U: N

U ®
C: N, PIN

C ®
U: {N, PIN}K

U ®
T: {N, PIN}K

T: term
inal

U: user
C: calculator

K: key know
n to bank and P

PIN: secret know
n to bank and U

83

Card authentication protocol

•Allow
s EM

V cards to be used 
in online banking
•Users com

pute codes for 
access, authorisation
•A good design w

ould take PIN 
and challenge / data, encrypt 
to get response
•But the UK one first tells you 

if the PIN is correct
•W

hat can go w
rong w

ith this?84



Alice and Bob w
ant to talk. They 

each share a key w
ith Sam

. H
ow

?

•Alice contacts Sam
 and asks for a key for Bob

•Sam
 sends Alice a key encrypted in a blob only she 

can read, and the sam
e key also encrypted in 

another blob only Bob can read
•Alice calls Bob and sends him

 the second blob

How
 can they check the protocol’s fresh?

85

Kerberos uses tickets to support 
com

m
unication betw

een parties
A ®

S: A, B
S ®

A: {T
S , L, K

AB , B, {T
S , L, K

AB , A}KBS }KAS
A ®

B: {T
S , L, K

AB , A}KBS , {A, TA }KAB
B ®

A: {TA +1}KAB

A: Alice 
B: Resource (e.g. printer)

S: Server
T

S : Server tim
estam

p
K

AS : Secret key shared betw
een A and S

K
BS : Secret key shared betw

een B and S
K

AB : Shared session key for A and B
L: Lifetim

e of the session key
86

Europay-M
astercard-Visa (EM

V)
H

ow
 m

ight you attack this?
C ®

M
: sig

B {C, card_data}

M
 ®

C: N
, date, A

m
t, PIN

 (if PIN
 used)

C ®
M

: {N
, date, A

m
t, trans_data}KCB

M
®

B: {{N
, date, A

m
t, trans_data}KCB , trans_data}KM

B

B ®
M

 ®
C: {O

K}KCB

C: Card
sig

Y {x}: m
essage x

digisigned
by Y

M
: M

erchant
{x}K : M

essage x encrypted under K
B: Bank

K
XY : Shared key betw

een X
and Y

87

Replace insides of the term
inal 

w
ith your ow

n electronics
•Capture card details and 

PINs from
 victim

s
•Use to perform

 m
an-in-the-

m
iddle attack in real tim

e 
on a rem

ote term
inal in a 

m
erchant selling expensive 

goods

88



The relay attack: unstoppable but 
unrealistic –

too hard to scale

P
IN

$2000
$20

P
IN

a
tta

cke
rs ca

n
 b

e
 o

n
 o

p
p
o
site

sid
e
s o

f th
e
 w

o
rld

D
ave

C
arol

A
lice

B
ob

$

89

M
agstripe 

fraud is 
scalable

•Install fake term
inal and collect card data and PINs

•Either physically or w
irelessly collect data

Photo credit: Brian Krebs, krebsonsecurity.com90

The no-PIN
 attack (2010)

C ®
M

: sig
B {C, exp}

M
 ®

Ć: N
, date, Am

t, PIN
_request

Ć
®

C: N
, date, Am

t
C ®

M
: {N

, date, Am
t, trans_data}KCB

M
®

B: {{N
, date, Am

t, trans_data}KCB , trans_data’}KM
B

B ®
M

: {O
K}KCB

Ć: M
ITM

 card shim
C: Card

sig
Y {x}: m

essage x
digisigned

by Y
M

: M
erchant

{x}K : M
essage x encrypted under K

B: Bank
K

XY : Shared key betw
een X

and Y
91

Fixing the no-PIN
 attack: sim

pler 
protocol required
•

In theory m
ight com

pare card data w
ith term

inal 
data at term

inal, acquirer, or issuer
•

In practice has to be the issuer since incentives for 
term

inal and acquirer are poor
•

Barclays introduced a fix July 2010; rem
oved 

Decem
ber 2010. Banks asked for student thesis to 

be taken dow
n from

 w
eb instead.

•
Eventually fixed for U

K transactions in 2016
•

Real problem
: EM

V spec now
 far too com

plex

92



The preplay
attack (2014)

•In EM
V, the term

inal sends a random
 num

ber N to 
the card along w

ith the date d and the am
ount Am

t
•The card authenticates N, d and Am

t using the key 
it shares w

ith the bank, K
CB

•W
hat happens if I can predict N for date d?

•Answ
er: if I have access to your card I can 

precom
pute an authenticator for Am

t and d

93

Sym
m

etric key cryptography 
requires careful sharing of keys

94

Public key cryptography

Allow
s tw

o parties w
ith no prior know

ledge of each 
other to jointly establish a

shared secretkey over 
an

insecure channel

Exam
ples include Diffie-Hellm

an and RSA

95

Diffie H
ellm

an revision
Alice and Bob publicly agree to use p = 23, g = 5

1.
Alice chooses secret integer a = 4, then                   
A ®

B: g
am

od p = 5
4m

od 23 = 4
2.

Bob chooses secret integer b = 3, then                    
B ®

A: g
bm

od p = 3
4m

od 23 = 10
3.

Alice com
putes 10

4m
od 23 = 18

4.
Bob com

putes 4
3m

od 23 = 18

Alice and Bob now
 agree the secret integer is 18

Exam
ple derived from

 https://en.w
ikipedia.org/w

iki/Diffie-Hellm
an_key_exchange96



Physical public key crypto w
ith 

locks
•Anthony sends a m

essage in a box to Brutus. Since 
the m

essengeris loyal to Caesar, Anthony puts a 
padlock on it
•Brutus adds his ow

n padlock and sends it back to 
Anthony
•Anthony rem

oves his padlock and sends it to 
Brutus, w

ho can now
 unlock it

Is this secure?
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Asym
m

etric public-key crypto

•Separate keys for encryption and decryption
•Publish encryption

key w
idely (the “public key”) 

allow
ing anyone to create an encrypted m

essage; 
only holder of decryption

key (“private key”) can 
decode the m

essage and read it
•Digital signatures are the other w

ay around: only 
you can sign but anyone can verify
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Public-key N
eedham

-Shroeder

•
Proposed in 1978:

A ®
B: {N

A , A}KB
B ®

A: {N
A , N

B }KA
A ®

B: {N
B }KB

•
N

A and N
B are noncesgenerated by A and B respectively

•
K

A and K
B are public keys for A and B respectively

•
The idea is to use N

A Å
N

B as a shared key

Is this okay?

99

M
ITM

 attack found 18 years later

A ®
C: {N

A , A}KC
C ®

B: 
{N

A , A}KB
B ®

C: 
{N

A , N
B }KA

C ®
A: {N

A , N
B }KA

A ®
C: {N

B }KC
C ®

B: 
{N

B }KB

The fix is explicitness. Put all nam
es in all m

essages.

100



Binding keys to principals is hard

•
Physically install binding on m

achines 
•

IPSEC, SSH
•

Trust on first use; optionally verify later 
•

SSH
, Signal, sim

ple Bluetooth pairing
•

U
se certificates w

ith trusted certificate authority
•

Sam
 signs certificate to bind Alice’s key w

ith her nam
e

•
Certificate = sig

s {A, K
A , Tim

estam
p, Length}

•
Basis of Transport Layer Security (TLS) as used in H

TTPS
•

U
se certificate pinning inside an app
•

U
sed by som

e sm
artphone apps

101

Transport Layer Security (TLS)

•Uses public key cryptography and certificates to 
establish a secure channel betw

een tw
o m

achines
•Protocol proven correct (Paulson, 1999)
•Yet, the protocol is broken annually
•Often a large num

ber of root certificate authorities. 
Are these all trustw

orthy?

102

DigiN
otarw

ent bust after issuing 
bogus certificates
•Dutch certificate authority
•M

ore than 300,000 Iranian Gm
ail users targeted

•M
ore than 500 fake certificates issued

•M
ajor w

eb brow
sers blacklisted all DigiNotarcerts

103

TLS security landscape is com
plex

104



Chosen protocol attack

The M
afia asks people to sign a random

 
challenge as proof of age for porn sites!

105

Bugs are found in and around code
•Bugs in the code

•
Arithm

etic
•

Syntactic
•

Logic
•

Concurrency
•Bugs around the code

•
Code injection

•
Usability traps

106

Patriot m
issile failures in G

ulf W
ar I

•
Failed to intercept an Iraqi Scud m

issile in first Gulf 
W

ar on 25
thFebruary 1991

•
Scud struck U

S barracks in Dhahran; 28 dead
•

O
ther Scuds hit Saudi Arabia, Israel

Germ
an Air Force; CC-BY-SA, Darkone, W

ikipedia
Afgan

N
ational Arm

y; PD, Davric, W
ikipedia107

Caused by arithm
etic bug

•
System

 m
easured tim

e in 1/10 sec, truncated from
 

0.0001100110011…
b

•
A

ccuracy upgraded as system
 upgraded from

 air-
defence

to anti-ballistic-m
issile defence

•
Code not upgraded everyw

here (assem
bly)

•
M

odules out by 1/3rd sec after 100h operation

•
N

ot found in testing as spec only called for 4h tests

Lesson: Critical system
 failures are typically 

m
ultifactorial

108



Syntactic bugs arise from
 features 

of the specific language
For exam

ple, in Java:

1 + 2 + ""
evaluates to "3"

"" + 1 + 2
evaluates to "12”

This is due to coercion from
 prim

itive integers to 
java.lang.String

109

s
t
a
t
i
c
O
S
S
t
a
t
u
s
S
S
L
V
e
r
i
f
y
S
i
g
n
e
d
S
e
r
v
e
r
K
e
y
E
x
c
h
a
n
g
e
(
S
S
L
C
o
n
t
e
x
t
*
c
t
x
,

b
o
o
l
i
s
R
s
a
,
 
S
S
L
B
u
f
f
e
r
s
i
g
n
e
d
P
a
r
a
m
s
,
 

u
i
n
t
8
_
t
*
s
i
g
n
a
t
u
r
e
,
 
U
I
n
t
1
6
s
i
g
n
a
t
u
r
e
L
e
n
)
 

{
 

O
S
S
t
a
t
u
s
e
r
r
;
 

//...
i
f
(
(
e
r
r
 
=
 
S
S
L
H
a
s
h
S
H
A
1
.
u
p
d
a
t
e
(
&
h
a
s
h
C
t
x
,
 
&
s
e
r
v
e
r
R
a
n
d
o
m
)
)
 
!
=
 
0
)
 

g
o
t
o
f
a
i
l
;

i
f
(
(
e
r
r
 
=
 
S
S
L
H
a
s
h
S
H
A
1
.
u
p
d
a
t
e
(
&
h
a
s
h
C
t
x
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&
s
i
g
n
e
d
P
a
r
a
m
s
)
)
 
!
=
 
0
)
 

g
o
t
o
f
a
i
l
;
 

g
o
t
o
f
a
i
l
;
 

i
f
(
(
e
r
r
 
=
 
S
S
L
H
a
s
h
S
H
A
1
.
f
i
n
a
l
(
&
h
a
s
h
C
t
x
,
 
&
h
a
s
h
O
u
t
)
)
 
!
=
 
0
)
 

g
o
t
o
f
a
i
l
;

/
/...
f
a
i
l
:
 

S
S
L
F
r
e
e
B
u
f
f
e
r
(
&
s
i
g
n
e
d
H
a
s
h
e
s
)
;
 

S
S
L
F
r
e
e
B
u
f
f
e
r
(
&
h
a
s
h
C
t
x
)
;
 

r
e
t
u
r
n
 
e
r
r
;
 

}

Apple’s goto
fail bug (2014)
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Credit: https://xkcd.com
/1354/
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H
eartbleed allow

s clients to read 
the contents of server m

em
ory

Therefore a m
alicious client could read:

•Secret keys of any TLS certificates used by server
•User creds such as em

ail address and passw
ords

•Confidential business docum
ents

•Personal data

The attack left no trace of use in server logs

112



N
otification and clean-up difficult

12
thM

arch 2012
Bug introduced (OpenSSL 1.0.1)

1
stApril 2014

Google secretly reports vuln
3

rdApril 2014
Codenom

icon
reports vuln

7
thApril 2014

Fix released
7

thApril 2014
Public announcem

ent
9

thM
ay 2014

57%
 of w

ebsite still using old 
TLS certificates

20
thM

ay 2014
1.5%

 of 800,000 m
ost popular 

w
ebsites still vulnerable
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Intel AM
T Bug

•AM
T allow

s sysadm
ins rem

ote access to a m
achine, 

even w
hen turned off  (but m

ains pow
er on)

•Provides full access to m
achine, independent of OS

•A sketch of the protocol for authentication 
betw

een m
achine and rem

ote party is as follow
s:

C ®
S: “Hi. I’d like to connect”

S ®
C: “Please encrypt X

w
ith our secret key”

C ®
S: “Here are the first xbytes of {X}KCS ”

114

Concurrency bug: tim
e of check 

to tim
e of use failure (TO

CTO
U

)
…File

file
= new

File(args[0]);
if(!file.canWrite())

return;

RandomAccessFile
fp

= new
RandomAccessFile(file, "rw");

fp.writeChars("Some replacement text");
fp.close();
…

Adapted
exam

ple
from

https://en.w
ikipedia.org/w

iki/Tim
e_of_check_to_tim

e_of_use

CheckUse
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Clallam
 Bay Jail inm

ates perform
 

code injection on payphones
1.

Inm
ate typed in the num

ber they w
ished to call

2.
Inm

ate selected w
hether the recipient spoke 

Spanish or English
3.

Inm
ate w

as asked to say their nam
e, “Eve”, say

4.
The phone then dialled the num

ber and read out 
a recorded m

essage in chosen language and 
appended inm

ate nam
e to the end:

“An inm
ate from

 Clallam
Jail w

ishes to speak 
w

ith you. Press three to accept the collect 
call charges. The inm

ate’s nam
e is” …

 “Eve”
116



O
kay G

oogle, w
hat’s a W

hopper?

117

The M
orris W

orm
: breaking into 

com
puters at scale (1988)

•Exploited vulnerabilities in sendm
ail, fingerd, rsh

•Used a list of com
m

on w
eak passw

ords
•Gov

assessm
ent: $100k to $10M

 in dam
age

•6,000* m
achines infected

•Internet partitioned for days to prevent reinfection
•Robert M

orris w
as the first person convicted under 

the 1986 Com
puter Fraud and M

isuse Act. 
•

3 year suspended sentence
•

400 hr com
m

unity service 
•

$10k fine.
118

SQ
L Injection attack: failure to 

sanitize untrusted inputs

String sql
= 

"INSERT INTO Students (Name) VALUES (‘” 
+ studentName
+ "');";

119

Softw
are counterm

easures: 
system

s and tools
•Operating system

 protections
•

Data execution prevention
•

Address space layout random
isation

•
…

•Tools, e.g. Coverity
•

Static analysis
•

Dynam
ic analysis

•
Testing fram

ew
orks

•
…

•Autom
ated update system

s to install patches

120



Softw
are counterm

easures: 
reducing bug num

ber and severity
•Defensive program

m
ing

•Secure coding standards
•

See How
ard and LeBlanc on M

S standards for C

•Contracts, e.g. in the Eiffel language
•API analysis 

•
Com

bining API calls m
ay lead to vulnerabilities

•
Challenging for APIs accessible over the Internet

121

W
e cannot w

rite code w
ithout 

latent vulnerabilities

122

O
S

versions of50
LG

handsets

123

Link
O
S
versionsto

database
of

vulnerabilities
M

atch OS version inform
ation to OS and Build 

Num
ber to put each handset into one group:

•Insecure
•M

aybe
secure

•Secure

124



O
n average, 85%

 are vulnerable

11%

85%

4%

125

The Softw
are Crisis

•
Softw

are still lags behind hardw
are’s potential

•
M

any large projects are late, over budget, 
dysfunctional, or abandoned (CAPSA, N

PfIT, DW
P, 

Addenbrookes, …
)

•
Som

e failures cost lives (Therac
25) or billions 

(Ariane 5, N
PfIT)

•
Som

e expensive scares (Y2K, Pentium
)

•
Som

e com
bine the above (LAS)

126

London Am
bulance Service disaster

•
W

idely cited exam
ple of project

•
M

any aspects of the failure w
idely repeated since

•
Attem

pt to autom
ate am

bulance dispatch in 1992
•

Result left London w
ithout service for a day

•
N

um
ber estim

ated deaths ran as high as 20
•

CEO
 being sacked; public outrage

127

Project background

•Attem
pt to autom

ate in 1980s failed –
system

 failed 
load test
•Industrial relations poor; pressure to cut costs
•Public concern over service quality
•South W

est Tham
es Regional Health Authority 

decided on fully autom
ated system

: responder 
w

ould “em
ail” am

bulance
•Consultancy study said this m

ight cost £1.9m
 and 

take 19 m
onths, provided a packaged solution 

could be found. AVLS w
ould be extra

128



O
riginal dispatch system

 w
orked 

on paper w
ith regional control

resource 
m

obilisation
call taking

resource identification

resource m
anagem

ent

Control 
Assistant

M
ap

Book

Resource
Controller

Incident
form

Resource 
Allocators

Allocations
Box

Radio 
Operator

Dispatcher
Incident
form

'
Incident
Form

''
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M
any problem

s w
ith original system

•It took 3 m
inutes to dispatch an am

bulance
•It required 200 staff (out of 2700 in total). 
•There w

ere errors, especially in deduplication
•Queues and bottlenecks, especially w

ith the radio
•Call-backs tiresom

e

130

Com
puter-aided dispatch system

call 
taking

resource 
m

obilisation
resource
identification

resource 
m

anagem
ent

•
Large

•
Real-tim

e

•
Critical

•
Data rich

•
Em

bedded

•
Distributed

•
M

obile  
com

ponents 131

Tender process w
as poor

•Idea of a £1.5m
 system

 stuck; idea of AVLS added; 
proviso of a packaged solution forgotten; new

 IS 
director hired
•Tendered on 7

thFeb 1992; com
pletion due Jan 1992

•35 firm
s looked at tender; 19 proposed; m

ost said 
tim

escale unrealistic, only partial autom
ation 

possible by early 1992
•Tender aw

arded to consortium
 of System

s O
ptions 

Ltd, Apricot and Datatrak
for £937,463

•
£700K cheaper than next low

est bidder!

132



Phase one: design w
ork ‘done’ in 

July and contract signed in August
M

inutes of a progress m
eeting in June recorded:  

•
A 6-m

onth tim
escale for an 18-m

onth project
•

A lack of m
ethodology

•
N

o full-tim
e LAS users providing dom

ain know
ledge

•
Lead contractor (System

 O
ptions) relied heavily on 

cozy assurancesofsubcontractors

U
nsurprisingly LAS told in Decem

ber that only partial 
autom

ation by January deadline –
front end for call 

taking, gazetteer, docket printing
133

Phase tw
o: full autom

ation
•

Server never stable in 1992; client and server lockup
•

Radio m
essaging w

ith blackspots and congestion; 
couldn’t cope w

ith established w
orking practices

•
M

anagem
ent decided to go live on 26

thO
ct 1992

•
Independent review

 had called for volum
e testing, 

im
plem

entation strategy, change control, …
all ignored

•
CEO

: “N
o evidence to suggest that the full system

 
softw

are, w
hen com

m
issioned, w

ill not prove reliable”
•

O
n 26 O

ct, room
 w

as reconfigured to use term
inals, not 

paper. There w
as no backup…

134

Circle of disaster on 26/7
thO

ctober

•
System

 progressively lost track of vehicles
•

Exception m
essages scrolled off screen and w

ere lost
•

Incidents held as allocators searched for vehicles
•

Callbacks from
 patients increased causing congestion

•
data delays ®

voice congestion ®
crew

 frustration ®
pressing w

rong buttons and taking w
rong vehicles ®

m
any vehicles sent to an incident, or none

•
System

 slow
dow

n and congestion leading to collapse

135
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137
138

139
140



Collapse likely resulted in deaths

•One am
bulance arrived to find the patient dead 

and taken aw
ay by undertakers 

•Another answ
ered a ‘stroke’ call after 11 hours and 

5 hours after the patient had m
ade their ow

n w
ay 

to hospital
•…•Chief executive resigns
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Specification m
istakes

•LAS ignored advice on cost and tim
escale

•Procurers insufficiently qualified and experienced 
•No system

s view
•Specification w

as inflexible but incom
plete: it w

as 
draw

n up w
ithout adequate consultation w

ith staff
•Attem

pt to change organisation through technical 
system
•Ignored established w

ork practices and staff skills

142

Project m
anagem

ent m
istakes

•Confusion over w
ho w

as m
anaging it all

•Poor change control, no independent QA, suppliers 
m

isled on progress
•Inadequate softw

are developm
ent tools

•Ditto data com
m

s, w
ith effects not foreseen

•Poor interface for am
bulance crew

s
•Poor control room

 interface

143

O
perational m

istakes

•System
 w

ent live w
ith know

n serious faults
•

slow
 response tim

es
•

w
orkstation lockup 

•
loss of voice com

m
s

•Softw
are not tested under realistic loads or as an 

integrated system
•Inadequate staff training
•No effective back-up system

 in place
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N
H

S N
ational Program

m
e for IT

Idea:com
puterise and centralise all record keeping 

for every visit to every N
HS establishm

ent

•
Like LAS, an attem

pt to centralise
pow

er and 
change w

orking practices
•

Earlier failed attem
pt in the 1990s

•
The February 2002 Blair m

eeting
•

Five LSPs plus national contracts: £12bn
•

M
ost system

s years late or neverw
orked

•
Coalition governm

ent: N
PfIT

‘abolished’
145

U
niversal Credit: fix poverty trap 

Id
e

a
: H

u
n

d
re

d
s o

f w
e

lfa
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 b
e

n
e

fits w
h

ich
 m

e
a
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re
 is o
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n
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 in
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n
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 to
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.

•
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l p

la
n
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 go
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1
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•
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D
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p
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Sm
art m

eters: m
ore centralisation 

Idea: expose consum
ers to m

arket prices, get peak 
dem

and shaving, m
ake use salient

•
2009: EU

 Electricity D
irective for 80%

 by 2020
•

2009: Labour£10bn centralised
project to save the 

planet and help fix supply crunch in 2017
•

2010: Experts said w
e just can’t change 47m

 m
eters 

in 6 years. So excluded from
 spec

•
Coalition governm

ent: w
anted deploym

ent by 2015 
election! Planned to build central system

 M
ar–Sep 

2013 (then: Sep 2014 …
)

•
Spec still fluid, tech getting obsolete, despair …
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Softw
are engineering is about 

m
anaging com

plexity at m
any levels

•
Bugs arise at m

icro levelin challenging com
ponents

•
As program

s get bigger, interactions betw
een 

com
ponents grow

 at O
(n

2) or even O
(2

n)
•

The
‘system

’isn’tjustthe
code: com

plex socio-
technical interactions m

ean w
e can’t predict 

reactions to new
 functionality

M
ost failures of really large system

s are due to 
w

rong, changing, or contested requirem
ents
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Project failure, circa 1500 BCE

149

O
n contriving m

achinery

“It can never be too strongly im
pressed upon the 

m
inds of those w

ho are devising new
 m

achines, that 
to m

ake the m
ost perfect draw

ings of every part 
tends essentially both to the success of the trial, and 
to econom

y in arriving at the result”CharlesBabbage150

Bank
ofEngland, 1870

151

Dun, Barlow
 &

 Co, 1876
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Sears, Roebuck and Com
pany, 1906 

•Continental-scale m
ail order m

eant specialization
•Big departm

ents for single bookkeeping functions
•Beginnings of autom

ation

153

First N
ational Bank of Chicago, 1940154

The softw
are crisis, 1960s

•Large, pow
erful m

ainfram
es m

ade com
plex system

s 
possible

•People started asking w
hy project overruns and 

failures w
ere so m

uch m
ore com

m
on than in 

m
echanical engineering, shipbuilding, etc.

•The term
 softw

are engineering coined in 1968
•The hope w

as that w
e could things under control 

by using disciplines such as project planning, 
docum

entation and testing
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Those things w
hich m

ake w
riting 

softw
are fun also m

ake it com
plex

•Joy of solving puzzles and building things from
 

interlocking parts
•Stim

ulation of a non-repeating task w
ith 

continuous learning
•Pleasure of w

orking w
ith a tractable m

edium
, ‘pure 

thought stuff’
•Com

plete flexibility –
you can base the output on 

the inputs in any w
ay you can im

agine
•Satisfaction of m

aking stuff that’s useful to others
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H
ow

issoftw
are

different?

•
Large com

puter system
s becom

e qualitatively m
ore 

com
plex, unlike big ships or long bridges

•
The tractability of softw

are leads custom
ers to dem

and 
flexibility and frequent changes
•

This m
akes system

s m
ore com

plex to use over tim
e as 

features accum
ulate, and interactions have odd effects

•
The structure can be hard to visualise

or m
odel

•
The hard slog of debugging and testing piles up at the 
end, w

hen the excitem
ent’s past, the budget’s spent 

and the deadline’s loom
ing
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Softw
are econom

ics can be nasty

•Consum
ers buy on sticker price

•Businesses buy based on total cost of ow
nership

•Vendors use lock-in tactics
•Com

plex outsourcing
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Cost of softw
are: developm

ent 10%
, 

m
aintenance 90%

cost

developm
ent             operations           

legacy
tim

e

159

M
easuring cost of code is hard

First IBM
 m

easures (1960s)

•
1.5 KLO

C per developer-year (operating system
)

•
5 KLO

C per
developer-year (com

piler)

•
10 KLO

C per developer-year (app)

AT&
T m

easures

•
0.6 KLO

C
per developer-year (com

piler)

•
2.2 KLO

C
per developer-year (sw

itch)
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KLO
C is a poor m

easure

Alternatives:
•Halstead (entropy of operators/operands)
•M

cCabe (graph entropy of control structures)
•Function point analysis
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Early lessons: use a high-level 
language, productivity varies
•Huge variations in productivity betw

een individuals
•The m

ain system
atic gains com

e from
 using an 

appropriate high-level language since they reduce
accidental com

plexity; program
m

er focuses on 
intrinsic com

plexity
•Get the specification right: it m

ore than pays for 
itself by reducing the tim

e spent on coding and 
testing
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Barry Boehm
 surveyed relative costs 

of softw
are developm

ent (1975)

Spec
Code

Test
C3I

46%
20%

34%
Space

34%
20%

46%
Scientific

44%
26%

30%
Business

44%
28%

28%

•
Allstages of softw

are developm
ent require 

good tools
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M
ythical M

an-M
onth: “adding m

anpow
er 

to a late project m
akes it later”

Exam
ple project w

ith
3 developers and 9 m

onths. 
Initial estim

ate is 6 person-m
onths each for spec, 

code and test.

•
But spec ends up taking 9 PM

s. W
hat do you do?

3
3

3
3

3
3

3
3

3

Specification
Code

Test
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M
ythical M

an-M
onth: “adding m

anpow
er 

to a late project m
akes it later”

W
e

try
to

catch up:
•

Train 3 m
ore developers in the first m

onth, then use 
all 6 developers in the next m

onth
•

But: w
ork of 3 developers in 2 m

onths can’t be done 
by 6 developers in 1 –

interaction costs m
aybe O

(n
2)

3
3

3
3

3
6

3
3

3

Specification
Code

Test

Train
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Tim
e

to first shipm
ent is cube root of 

developer-m
onths (Boehm

, 1981)

!
=
2.5

&d
w

here !
is tim

e to first shipm
ent and d

is developer 
m

onths

•W
ith

m
ore

tim
e, costs rise slow

ly
•W

ith
lesstim

e,costs rise sharply
•Hardlyanyprojectssucceed at ¾

!
•Som

e
projectsstillfail
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The Softw
are Tar Pit

167

Take a structured, m
odular approach

•O
nly practical w

ay forw
ard is m

odularisation
•Divide a com

plex system
 into sm

all com
ponents

•Define
clearAPIsbetw

een
them

•Lots of m
ethodologies based on this idea:

•
SSDM

•
Jackson

•
Yourdon,

•
U

M
L,

•
…
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The W
aterfall M

odel (1970)

Requirem
ents

Specification

Im
plem

entation &
Unit TestingIntegration &

System
 TestO

perations &
M

aintenance

169

The W
aterfall M

odel (1970)

Requirem
ents

Specification

Im
plem

entation &
Unit TestingIntegration &

System
 TestO

perations &
M

aintenance

validate

validate

verify

verify

170

W
aterfall M

odel has advantages

•
Com

pels early clarification of system
 goals

•
Supports charging for changes to the requirem

ents
•

W
orks w

ell w
ith m

any m
anagem

ent and tech tools
•

W
here it’s viable it’s usually the best approach

•
The really critical factor is w

hether you can define 
the requirem

ents in detail in advance. Som
etim

es 
you can (Y2K bugfix); som

etim
es you can’t (HCI)
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W
aterfall fails w

here iteration is 
required, such as:
•Requirem

ents not yet understood by developers
•Not yet understood by the custom

er
•The technology is changing
•The environm

ent (legal, com
petitive) is changing

•…

172



Iterative developm
ent

Develop
outline spec

Build system
Use system

Deliver system

O
K?

No

Problem
: this algorithm

 
m

ight not term
inate!
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Spiral M
odel

1. Determ
ine objectives

2. Identify and 
resolve risks

3. Developm
ent and test

4. Plan next 
iteration

174

•Decide in advance on a fixed num
ber of iterations

•Each iteration is done top-dow
n

•Driven
byrisk

m
anagem

ent(i.e. prototype bits you 
don’t yet understand)

Spiral m
odel invariants
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Evolutionary m
odel

•By the 1990s som
e codebases had becom

e so big 
and com

plex they had
to evolve

•Solution:use
autom

atic regression testing
•Firm

snow
have

huge
suites of test cases w

hich run 
against daily builds of softw

are
•Developm

entcycle
isthen

to
add

changes,check
them

into
a

repository,and
testthem
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The Integrated Developm
ent 

Environm
ent (IDE) includes…

•Code and docum
entation under version control (Git)

•Code
review

(Gerrit)
•Autom

ated build system
 (M

aven)
•Continuousintegration

(Jenkins)
•Dev

/Test/Prod
deploym

ent(W
ebserver)

177

Content-heavy appsbenefit from
 

four host types
Content

Latest
Stable

Test
Dev

Staging
Prod

Software

Stable Latest

178

Assurance of critical softw
are: 

m
ust study how

 things fail
•Critical softw

are avoids certain class of failures w
ith 

high assurance
•Safety-critical system

s: failure could cause, death, 
injury or property dam

age
•Security-critical system

s: failure could allow
 leakage 

of confidential data, fraud, …
•Real-tim

e system
s: softw

are m
ust accom

plish 
certain tasks on tim

e

Critical com
puter system

s have m
uch in com

m
on 

w
ith m

echanical system
s (bridges, brakes, locks)

179

Tacom
a N

arrow
s, 7

thN
ov 1940

https://w
w
w.youtube.com

/w
atch?v=j-zczJXSxnw
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H
azard elim

ination

•W
hich m

otor reversing circuit is the safe above?
•Som

e architecture and tool choices can elim
inate 

w
hole classes of softw

are hazards, e.g. using a 
garbage collector to elim

inate and m
em

ory leaks.
•But usually hazards involve m

ore than just softw
are181

Ariane 5, 4
thJune 1996

•Ariane 5 accelerated faster than Ariane 4,causing 
an error in float-to-integer conversion 

•
The backup inertial navigation set core dum

ped, 
w

hich w
as interpreted by as flight data

•
Full nozzle deflection ®

20
oangle of attack

®
booster separation

182

M
ulti-factor failure

•M
any safety-critical system

s are also real-tim
e 

system
s used in m

onitoring or control
•Exception handling is often tricky
•Criticality of tim

ing m
akes m

any sim
ple verification 

techniques inadequate
•Testing is often really hard 
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Em
ergent properties

•In general, safety is a system
 property and has to be 

dealt w
ith holistically

•The sam
e goes for security, and real-tim

e 
perform

ance too
•A very com

m
on error is not getting the scope right

•For exam
ple, designers don’t consider hum

an 
factors such as usability and training
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Therac-25: radiotherapy m
achine

•Three people 
died in six 
accidents
•Exam

ple
offatal 

program
m

ing 
error
•Usability issues
•Poorsafety

engineering

185

Therac
had tw

o operating m
odes

•25 M
eV electron 

focused beam
 to 

generate X-rays
•5-25

M
eV spread 

electron beam
 for 

skin treatm
ent

Safety requirem
ent: 

don’t fire focused 
beam

 at hum
ans
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Therac-25
used

softw
are to

enforce safe operation
•Previous m

odels (Therac-6 and 20) used 
m

echanical interlocks to prevent high-intensity 
beam

 use unless X-ray target in place
•The Therac-25 replaced these w

ith softw
are

•Fault tree analysis arbitrarily assigned probability of 
10

-11to ‘com
puter selects w

rong energy’
•Code w

as poorly w
ritten, unstructured and not 

properly docum
ented
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Therac-25 caused injuries

•
M

arietta, G
A

, June 1985: w
om

an’s shoulder burnt. 
Settled out of court. FD

A
 not told

•
O

ntario, July 1985: w
om

an’s hip burnt. A
ECL found 

m
icrosw

itch error but could not reproduce fault; 
changed softw

are anyw
ay

•
Yakim

a, W
A

, D
ec 1985: w

om
an’s hip burned. ‘Could 

not be a m
alfunction’

188



Therac-25 killed three people

•
East Texas Cancer Centre, M

arch 1986: m
an burned 

in neck and died five m
onths later of com

plications
•

Sam
e place, three w

eeks later: another m
an 

burned on the face and died three w
eeks later

•
Hospital physicist m

anaged to reproduce flaw
: if 

param
eters changed too quickly from

 X-ray to 
electron beam

, the safety interlock failed
•

Yakim
a, W

A, January 1987: m
an burned on the 

chest and died due to different bug now
 thought to 

have caused O
ntario accident
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Therac-25: East Texas deaths due 
to editing beam

 type too quickly
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Therac-25: root cause analysis

•M
anufacturer ignored safety aspects of softw

are
•Confusion

betw
een reliability and safety

•Lack
ofdefensive

design
•Inadequate reporting, follow

-up or regulation
•Unrealistic risk assessm

ents
•Inadequate softw

are engineering practices
•M

anufacturerleftthe
m

edicalequipm
ent business191

Softw
are safety m

yths: cheaper, 
easy to change, reliable
•Com

puters are cheaper than analogue devices
•

Shuttle softw
are cost $10

8 pa to m
aintain

•Softw
are is easy to change

•
Exactly! But it’s hard to change safely…

•Com
puters are m

ore reliable
•

Shuttle softw
are had 16 potentially fatal bugs found 

since 1980 –
and half of them

 had flow
n

•Increasing reliability increases safety
•

They’re correlated but not com
pletely
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Softw
are safety m

yths: reuse, form
al 

m
ethods, testing and autom

ation
•

Reuse increases safety
•

Counter exam
ples: Ariane 5, Patriot and Therac-25

•
Form

al verification can rem
ove all errors

•
N

ot even for 100-line program
s

•
Testing can m

ake softw
are arbitrarily reliable

•
For M

TBF of 10
9hours you m

ust test >10
9hours 

•
Autom

ation can reduce risk
•

Also an opportunity for new
 types of failure

193

Stratus com
puter: redundant 

hardw
are for non-stop processing

C
PU

C
PU

C
PU

C
PU

?
?

194

Redundant hardw
are does not 

solve softw
are engineering issues

•Hardw
are can still fail; backup inertial navigation 

failed first on the Ariane rocket
•Redundant hardw

are creates additional softw
are 

engineering issues
•Redundant softw

are (m
ulti-version program

m
ing) 

sounds prom
ising…

•But: errors are correlated, dom
inated by failure to 

understand requirem
ents (Leveson)

•Im
plem

entations often give different answ
ers

195

Redundancy in the Boeing 737

196



Panam
a crash w

ith 47 fatalities
6

thJune 1992
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Kegw
orth crash, 47 fatalities

8
thJanuary 1989

•Fan blade broke
•Crew

 shutdow
n w

rong 
engine
•Em

ergencylanding at 
East M

idlands
•Opened

throttle
on

final 
approach: no pow

er
•Initiallyblam

ed
w

iring;
latercockpit design
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Aviation is actually an easy case

•It’s a m
ature evolved system

•Stable com
ponents: aircraft design, avionics design, 

pilot training, air traffic control …
•Interfaces are stable
•Crew

 capabilities are w
ell know

n 
•The w

hole system
 has good incentives for learning 

–
m

uch better than w
ith m

edical devices
•Excellent regulation and reporting

Stillcom
plex social-technical system

 that exhibits failure199

U
nderstand and prioritise hazards

Exam
ple from

 the m
otor industry:

1.
Uncontrollable: outcom

es can be extrem
ely   

severe and not influenced by hum
an actions

2.
Difficult to control: very severe outcom

es, 
influenced only under favourable

circum
stances

3.
Debilitating: usually controllable, outcom

e at 
w

orst severe
4.

Distracting; norm
al response

lim
its and outcom

e 
to m

inor
5.

Nuisance: affects custom
er satisfaction but not 

norm
ally safety
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M
anaging safety and security 

across the softw
are lifecycle

•Develop
a

safetycase or security policy
•Design a m

anagem
ent plan

•Identifycritical com
ponents

•Develop test plans, procedures, training
•Plan

forand
obtain

certification
•Integrate

allthe
above

into
yourdevelopm

ent
m

ethodology (w
aterfall, spiral, evolutionary, …

)
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M
ost m

istakes occur outside the 
technical phases
Challenging parts are often:
•Requirem

entsengineering
•Certification
•Operations
•M

aintenance

This is due to the interdisciplinary nature of these 
parts, involving technical staff, dom

ain experts, users, 
cognitive factors, politics, m

arketing, …
202

The Internet of Things: 
safety now

 includes security
•

Cars, m
edical devices, electricity grid all have 10+ 

year lifetim
es as w

ell as form
al certification

•
All contain softw

are; w
ill be Internet connected

•
Apparentconflict betw

een
safety

and
security

•
E.g. first DDoS attack (Panix

ISP) w
as from

 driven from
 

hacked
U

nix m
achines w

ith m
edical certification

•
Good

security
requiresus to m

ove to m
onthly 

patching, yet this conflicts w
ith the safety case

203

Softw
are engineering tools help 

us m
anage com

plexity
Hom

o sapiens uses tools w
hen som

e param
eter of a 

task exceeds our native capacity. So:

•Heavy object: raise w
ith lever

•Tough object: cut w
ith axe

•…•Softw
are

com
plexity: ?
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G
ood tools elim

inate incidental
and m

anage intrinsic
com

plexity

Incidentalcom
plexity:dom

inated program
m

ing in 
the early days, including

w
riting program

s in 
assem

bly. Better tools elim
inate such problem

s.

Intrinsiccom
plexity: the m

ain problem
 today, since 

w
e now

 w
rite com

plex system
s w

ith big team
s. There 

are no solutions, but tools help, including
structured 

developm
ent, project m

anagem
ent tools, …
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H
igh-level languages rem

ove 
incidental com

plexity
•2 KLOC per year goes m

uch farther than assem
bler

•Code easier to understand and m
aintain

•Appropriate abstraction: data structures, functions, 
objects rather than bits, registers, branches
•Structure finds m

any errors at com
pile tim

e
•Code m

ay be portable; or at least, the m
achine-

specific details can be contained

Huge perform
ance gains possible, now

 realised
206

H
igh-level languages support 

structure and com
ponentisation

M
u

ch
 h

isto
rica

l w
o

rk o
n

 b
o

th
 la

n
g

u
a

ge
s a

n
d

 la
n

g
u

a
ge

 
fe

a
tu

re
s, in

clu
d

in
g

:

•
“Goto

statem
ent considered

harm
ful” (D

ijkstra
, 1

9
6

8
)

•
Stru

ctu
re

d
p

ro
g

ra
m

m
in

g
w

ith
P

a
sca

l (W
irth

, 1
9

7
1

)

•
O

b
je

ct-o
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n
te

d
 p

ro
g

ra
m

m
in

g
 (se

e
 O

O
P

 co
u

rse
)

•
…

D
o

n
’t

fo
rge

t: th
is is to

m
anage

intrinsiccom
plexity

2
0

7

Form
al m

ethods finds bugs, 
but it is fallible
History:
•

Turing talked about proving program
s correct

•
Floyd-Hoare logic; Floyd (1967),Hoare (1969)
•

HO
L; Gordon (1988)

•
Z

notation
•

BAN
logic

•
…
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Static analysis tools are a useful 
result of form

al m
ethods

209

Chief program
m

ers (IBM
, 1970s)

Aim
: avoid loss of great program

m
ers to m

anagem
ent 

and capitalise
on w

ide productivity variance

•Team
s consisting of chief program

m
er, apprentice, 

toolsm
ith, librarian, adm

in assistant, etc.
•Can be effective during im

plem
entation

•But each team
 can only do so m

uch

210

Egoless program
m

ing: m
inim

ize 
personal factors (W

einberg, 1971)
•C

ode should be ow
ned by the team

•Direct opposite to the Chief Program
m

er approach
•Groupthink can entrench bad practice deeply

211

Literate program
m

ing (Knuth, 1984)

•Treat program
s as literature, readable by hum

ans
•Prim

arily a w
ork of literature, w

ith code added
•Literate program

s are com
piled in tw

o w
ays:

•
W
eaving: a com

prehensive hum
an-readable docum

ent 
about the program

 and its m
aintenance.

•
Tangling: the m

achine executable code
•Literate program

m
ing is notdocum

entation 
em

bedded in code, such as Javadoc.
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Capability M
aturity M

odel 
(H

um
phrey, 1989)

1.
Initial(chaotic, ad hoc, individual heroics) –

the 
starting point for use of a new

 process
2.

Repeatable
–

the process is able to be used 
repeatedly, w

ith roughly repeatable outcom
es

3.
Defined

–
the process is defined/confirm

ed as a 
standard business process

4.
M
anaged

–
the process is m

anaged according to 
the m

etrics described in the Defined stage
5.

Optim
ized

–
process m

anagem
ent includes 

deliberate process optim
ization/im

provem
ent
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Extrem
e program

m
ing (Beck, 1999)

•Iterative developm
ent w

ith short cycles
•Autom

ated
build

and
testsuites

•Frequent points to integrate new
 requirem

ents
•Solve the w

orst problem
, repeat

•Avoid program
m

ing a feature until needed
•Program

m
ing in pairs, one keyboard and screen

•Extensive code
review
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Agile softw
are developm

ent (2001)

Four values:
•Individuals and interactionsover processes and tools
•W

orking softw
are

over com
prehensive docum

entation
•Custom

er collaboration
over contract negotiation

•Responding to change
over follow

ing a plan

Also tw
elve principles (see related w

ork), including 
frequent release, daily m

eetings, w
orking softw

are as 
m

easure of progress, regular reflection, etc.
215

The
specification stillm

atters

Curtis (1988) found causes offailure
w

ere:

1.
Thin spread of application dom

ain know
ledge

2.
Fluctuating and conflicting requirem

ents
3.

Breakdow
n of com

m
unication, coordination

Causes w
ere very often linked, and the typical 

progression to disaster w
as 1 ®

2 ®
3 
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Specification is hard: thin spread 
of application dom

ain know
ledge

•How
 m

any people understand everything about 
running a phone service, bank orhospital?
•M

any aspects are jealously guarded secrets
•Som

e fields try hard to be open, e.g. aviation
•W

ith luck you m
ight find a real ‘guru’

•You should expect m
istakes in specification
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Specification is hard: fluctuating 
and conflicting requirem

ents

•Com
peting products, new

 standards, fashion
•Changing environm

ent (takeover, election, …
)

•New
 custom

ers (e.g. overseas) w
ith new

 needs
•…
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The specification can kill you

•Spec-driven developm
ent of large system

s leads to 
com

m
unication problem

s since N people m
eans 

N(N-1)/2 channels and 2
Nsubgroups

•Big firm
s have

hierarchy; if info flow
s via ‘least 

com
m

on m
anager’, bandw

idth w
ill be inadequate

•Proliferation of com
m

ittees, staff departm
ents 

causing politicking, blam
e shifting

•M
anagem

ent attem
pts to gain control result in 

restricting m
any interfaces, e.g. to the custom

er
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Project m
anagem

ent: plan, 
m

otivate, control
A m

anager’s job is to:
•

Plan
•

M
otivate

•
Control

•The skills involved are interpersonal, not technical; 
but m

anagers m
ust retain respect of technical staff

•Grow
ing softw

are m
anagers a perpetual problem

! 
(M

anaging program
m

ers is like herding cats.)
•Nonetheless there are som

e tools that can help
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Project m
anagem

ent triangle

Scope

Cost
Tim

e

Quality

221

G
antt charts: tasks and m

ilestones

Can be
hard

to
visualise

dependencies in large charts

T
1

W
eeks

1     2    3     4
5     6

7    8

T
2

T
3

T
4

T
5

T
6

Com
plete

Today

75%
 com

plete

50%
 com

plete

0%
 com

plete

10%
 com

plete

0%
 com

plete
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PERT charts: show
 critical paths

T
1 = 3

T
4 = 3

T
6 = 3

T
2 = 4

T
5 = 2

T
3 = 1

W
hich paths are critical?
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M
otivating people in groups

•People can slack in groups (free rider, social loafing)
•Com

petition no good: people w
ho don’t think they

w
illw

in stop trying
•Dan Rothw

ell’s three C’s of m
otivation:

•
Collaboration –

everyone has a specific task
•

Content –
everyone’s task clearly m

atters
•

Choice –
everyone has a say in w

hat they do
•M

any other factors
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Testing: half the effort (and cost)

Happens at m
any levels:

•Design validation, UX prototyping
•M

odule test after coding
•System

 test after daily build
•Beta test / field trial
•Subsequent litigation

Cost per bug rises dram
atically dow

n this list!
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Design for testability, use CI and 
autom

ate regression testing

Regression Tests: check that new
 versions of the 

softw
are give sam

e answ
ers as old versions

•Custom
ers m

ore upset by failure of a fam
iliar 

feature than at a new
 feature w

hich doesnotw
ork

•W
ithout regression testing, 20%

 of bug fixes 
reintroduce failures in already tested behaviour
•Test the inputs that your users actually generate
•In hard-core Agile philosophy, tests are

the spec

226

A M
TBF of x

requires testing for x

•Reliability grow
th m

odels help us assess M
TBF, 

num
ber of bugs rem

aining, econom
ics of further 

testing, etc.
•Failure rate due to one bug can

be
m

odelled as

!" =
$
%&

and w
ith m

any bugs these sum
 !" =

'(
•So for 10

9hours M
TBF, m

ust test >10
9hours 
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Changing testers finds m
ore bugs

Bugs

Tim
e

Tester 1
Tester 2

Tester 3
…
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Think about diversity &
 inclusion

“Today, I sim
ply w

anted to 
renew

 m
y passport online. 

After num
erous attem

pts 
and changing m

y clothes 
several tim

es, this exam
ple 

illustrates w
hy I regularly 

present on Artificial 
Intelligence/M

achine 
Learning bias, equality, 
diversity and inclusion” 
@
CatHallam

1
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Tests should exercise the 
conditions w

hen system
 is in use

•M
any failures result from

 unforeseen input or 
environm

ent conditions (e.g. Patriot)
•Random

 testing –
fuzzing

–
now

 good practice
•Incentives m

atter: com
m

ercial developers look for 
friendly certifiers, w

hile m
ilitary, N

ASA, DoE 
arrange hostile review

 
•So: to w

hom
 do you have to prove w

hat?
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Keeping all docum
ents in sync is 

hard
•How

 w
ill you deal w

ith m
anagem

ent docum
ents 

(budgets, PERT charts, staff schedules)?
•Engineering docum

ents (requirem
ents, hazard 

analyses, specifications, test plans, code)?
•Possible partial solutions: 

•
High tech: integrated developm

ent environm
ent

•
Bureaucratic: plans and controls departm

ent
•

Social consensus: style, com
m

ents, form
atting
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Release m
anagem

ent: from
 

developm
ent code to production

•M
ain focus is on stability

•Add
copyprotection,rightsm

anagem
ent

•Criticaldecision:patch
old

version
orforce

upgrade?

Version
1.x release branch

1.1
1.2

2.1
1.0

2.0
3.0

2.x branch
3.x branch
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Change control and operations: 
im

portant and can be overlooked
•Change control and config are critical; often poor
•Objective: m

anage testing and deploym
ent

•Som
eone

m
ustassess risk and be responsible for:

•
Live running

•
M

anage backup
•

Recovery
•

Rollback
•

…

•DevOps integrates developm
ent and operations
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Vulnerability disclosure: the m
odern 

consensus is coordinated disclosure
Possible options for discoverer:
1.

Disclose w
ithoutnotice: a

zero day
2.

Publicly disclose after a fixed delay: coordinated
or 

responsible disclosure
3.

Publicly disclose after vendor fix
4.

No
disclosure, but then vendor can’t fix

Vendors use bug bounty program
m

es to discourage 1.234

4

Vulnerability lifecycle

1.
Engineer introduces a bug

2.
Som

eone discovers it
3.

Coordinated disclosure; disclose
at once; or exploit

4.
Prim

ary exploit w
indow

5.
Patch released

6.
Public notification of bug

•W
hat about orphaned devices or M

irai?

1
2

3
5

6
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Shared infrastructure provides 
benefits &

 im
plies responsibilities

•W
e share a lot of code through open source 

operating system
s, libraries and tools

•Huge benefits but also interaction issues
•Can you cope w

ith an em
ergency bug fix? 

•How
 do you feed your fixes back to others?

•Do you encourage coordinated disclosure?
•Are you aw

are of different license term
s?
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Bew
are of agency issues

•
Em

ployees often optim
ize their ow

n utility, not 
project utility (recall London Am

bulance Service)
•

Bureaucracies are m
achines for avoiding blam

e 
•

Risk reduction becom
es com

pliance
•

Tort law
 reinforces herding: negligence judged ‘by 

the standards of the industry’
•

So firm
s do the checklists, use fashionable tools, 

hire the big consultants…
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Focus on outcom
es over process

•M
etrics easier for regular losses (risk)

•But rare catastrophes are hard (uncertainty)
•How

 reassuring are fatality statistics? E.g. Train 
Protection System

s, Tesla 
•Accidents are random

, but security exploits are not
•Product liability for death or injury is strict 
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Focus on process over outcom
es

•Necessary to adapt as environm
ent changes

•Security developm
ent lifecycle is established

•Safety rating m
aintenance 

•Blam
e avoidance is w

hat bureaucracies do 
•Public sector is really keen on com

pliance
•But leaves a gap of residual risk and uncertainty
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G
etting incentives right is both 

im
portant and hard to do

•The w
orld offers hostile review, w

hich w
e tackle in 

stages
•Som

e use hostile review
ers deliberately 

•Standard contract of sale for softw
are in Bangalore: 

seller m
ust fix bugs for 90 days

•Businesses avoid risk (regulatory gam
es)
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U
K’s Digital Service Standard: an 

exam
ple pulling it all together

•
U

nderstand user needs
•

Do
ongoing research

•
Have

a
m

ultidisciplinary
team

•
U

se agile m
ethods

•
Iterate

&
im

prove
frequently

•
Evaluate tools and system

s
•

U
nderstand

security
&

privacy
issues

•
M

ake all new
 source code open

•
U

se open standards and 
com

m
on platform

s
•

Test the end-to-end service

•
M

ake a plan for being offline
•

M
ake

sure
userssucceed first 

tim
e

•
M

ake
the

userexperience
consistentw

ith
G

O
V.U

K
•

Encourage
everyone

to
use

the 
digitalservice

•
Collect perform

ance data
•

Identify perform
ance indicators

•
Report perform

ance data on the 
Perform

ance Platform
•

Test w
ith the m

inister
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The future is challenging: how
 to 

w
e provide safety and security?

•Car m
anufactures m

ust do pre-m
arket testing

•Cars now
 contain

lots of safety critical softw
are

•Securityrequiresusto
patch

bugsw
hen

they
are

found,yetthism
ightinvalidate

safetycase
•How

 w
ill today’s car get patches in 2039? 2049?

•W
hatnew

toolsand ideas do w
e need?
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Softw
are

engineering
isabout

m
anaging

com
plexity

•Security and safety engineering are going in the 
sam

e direction
•W

e can cut incidental com
plexity using tools, but 

the intrinsic com
plexity rem

ains
•Top-dow

n approaches can som
etim

es help, but 
really large system

s evolve
•Safetyand

securityare
often

em
ergentproperties

•Rem
em

ber:all softw
are has latentvulnerabilities
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Softw
are and security engineering 

stretches w
ell beyond the technical

•Com
plex system

s are social-technical
•Institutions and people m

atter
•Confluence

ofsafety and
security m

ay
m

ake
m

aintenance the lim
iting factor
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S
oftw

are as a S
ervice 

E
ngineering

R
ichard S

harp
D

irector of S
tudies for C

om
puter S

cience, R
obinson C

ollege

1

W
hat is S

aas?

2

S
aaS

 (S
oftw

are as a S
ervice) refers to 

softw
are that is

hosted centrally and licensed to custom
ers on 

a subscription basis.

U
sers access S

aaS
 softw

are via thin clients, 
(often w

eb brow
sers).

3

Traditional softw
are distribution

P
oC

P
urchasing
D

ecision
D

eploy
M

anage/
upgrade

P
oC

P
urchasing 
D

ecision
D

eploy
M

anage/
upgrade

C
ustom

er_1

C
ustom

er_n

S
oftw

are,
and updates.
(versioned 
binaries)

B
uild 

softw
are

R
elease 

versioned 
binaries

...
S

oftw
are com

pany

4



Traditional softw
are distribution

P
oC

P
urchasing
D

ecision
D

eploy
M

anage/
upgrade

P
oC

P
urchasing 
D

ecision
D

eploy
M

anage/
upgrade

C
ustom

er_1

C
ustom

er_n

S
oftw

are,
and updates.
(versioned 
binaries)

B
uild 

softw
are

R
elease 

versioned 
binaries

...
S

oftw
are com

pany

E
xpensive duplication

Lack of specialization (cf. The W
ealth 

of N
ations, A

dam
 S

m
ith!)

5

S
aaS

D
eploy

M
anage/

U
pgrade

B
uild 

softw
are

P
oC

P
urchasing
D

ecision
P

rovision 
accounts

P
oC

P
urchasing
D

ecision
P

rovision 
accounts

A
ccess to centrally 

m
anaged, on-line 

services

M
uch less duplication

B
etter specialization

P
lus central m

anagem
ent of state so m

uch sim
pler

S
oftw

are com
pany

C
ustom

er_1

C
ustom

er_n

6

In reality it’s a spectrum

W
eb, w

ith all 
code and state 

server-side

W
eb, w

ith 
Javascript 

(som
e code on 

client, but 
re-dow

nloaded 
each session)

V
N

C
 (m

ake the 
internet into a 
long m

onitor/ 
keyboard  
cable!)

E
verything’s a 

service
S

hipping binaries

M
obile 

application w
ith 

backend 
services (e.g. 
typical m

obile 
gam

e)

W
indow

s 
Installer / .exe; 

runs 
standalone

M
obile app w

ith 
server-side 

crash reporting

7

Im
pact of S

aaS
 on the

S
oftw

are E
ngineering 

P
rocess

8



Im
pact on the ‘softw

are com
pany’

D
eploy

M
anage/

U
pgrade

B
uild 

softw
are

S
oftw

are com
pany

B
uild 

softw
are

R
elease 

versioned 
binaries

S
oftw

are com
pany

B
efore

A
fter

9

Im
pact on the ‘softw

are com
pany’

●
N

ow
 have to w

orry about building softw
are and running it

●
H

ave to continue evolving/upgrading the softw
are w

ith zero dow
ntim

e

B
ut the good new

s:

●
‘S

oftw
are release’ no longer an all-or-nothing discrete event

○
P

rovides new
 w

ays to m
anage quality and reduce risk

●
C

ontinuous visibility into user behavior
○

P
rovides user/com

m
ercial insights back into iterative softw

are developm
ent process

●
S

tate and runtim
e environm

ent fully controlled by service provider
○

Im
proves quality and m

akes upgrades a lot easier

10

M
anaging C

ontinuous 
D

eploym
ent W

ithout 
D

ow
ntim

e

11

C
ontinuous Integration (C

I):
short integration cycles lead to greater throughput

S
hared 

code repo

D
evelopers com

m
it to shared 

dev ‘m
ainline’ branch 

frequently (e.g. at least once a 
day)

B
uild on 
every 

com
m

it

R
un 

autom
ated 

unit tests

Im
m

ediate alerting/feedback
on fail condition

B
uilt 

artifacts

12



C
ontinuous D

eploym
ent (C

D
):

bring ‘deploy’ into the ‘short cycle’

B
uilt 

artifacts

A
utom

ated 
deploy to ‘test 

server’ 
environm

ent

R
un autom

ated 
acceptance 

tests

C
ontinuous Integration

...

Im
m

ediate alerting/feedback
on fail condition

A
utom

ated 
deploy to 

production (‘live 
servers’)

P
roduction m

onitoring / alerting
provides im

m
ediate feedback; but

now
 failures are visible to custom

ers...

13

B
uilt 

artifacts

A
utom

ated 
deploy to ‘test 

server’ 
environm

ent

R
un autom

ated 
acceptance 

tests

C
ontinuous Integration

...

Im
m

ediate alerting/feedback
on fail condition

A
utom

ated 
deploy to 

production (‘live 
servers’)

H
ow

 to do this w
hile reducing risk?

H
ow

 to do this w
hile ‘alw

ays on’?

P
roduction m

onitoring / alerting
provides im

m
ediate feedback; but

now
 failures are visible to custom

ers...

C
ontinuous D

eploym
ent (C

D
):

bring ‘deploy’ into the ‘short cycle’

14

R
olling deploy

Load B
alancer

x.y
x.y

x.y
x.y

25%
 of traffic each

N
ote: these resources are 

usually running in a cloud 
platform

. S
o virtual 

m
achines, load balancers, 

storage, netw
ork etc. can 

all be provisioned and 
configured through the 
cloud platform

’s A
P

Is.

15

R
olling deploy: 1) D

eploy ‘canary’ (lim
it exposure/risk)

Load B
alancer

x.(y+1)

24.75%
 of traffic each to x.y 

instances

1%
 of traffic to x.(y+1)

x.y
x.y

x.y
x.y

16



R
olling deploy: 2) A

utom
ated m

onitoring of error rates - O
K

?

Load B
alancer

24.75%
 of traffic each to x.y 

instances

1%
 of traffic to x.(y+1)

C
entralised logging

A
utom

ated
alerts

x.(y+1)
x.y

x.y
x.y

x.y

17

R
olling deploy: 3) M

ove traffic from
 old instance to new

Load B
alancer

25%

C
entralised logging

A
utom

ated
alerts

0%
25%

25%
25%

x.(y+1)
x.y

x.y
x.y

x.y

18

R
olling deploy: 4) U

pgrade 0%
 instance

Load B
alancer

25%

C
entralised logging

A
utom

ated
alerts

0%
25%

25%
25%

x.(y+1)
x.y

x.y
x.y

x.(y+1)
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R
olling deploy: 5) M

ove traffic from
 old instance to new

 etc. 

Load B
alancer

25%

C
entralised logging

A
utom

ated
alerts

25%
0%

25%
25%

x.(y+1)
x.y

x.y
x.y

x.(y+1)

20



R
olling deploy: R

epeat {m
ove traffic old->new

; upgrade old}

Load B
alancer

25%

C
entralised logging

A
utom

ated
alerts

25%
25%

25%
0%

x.(y+1)
x.y

x.(y+1)
x.(y+1)

x.(y+1)

21

R
olling deploy: …

  

Load B
alancer

25%

C
entralised logging

A
utom

ated
alerts

25%
25%

25%

x.(y+1)
x.y

x.(y+1)
x.(y+1)

x.(y+1)

D
estroy last x.y instance

(If anything 
unexpected 
happens then 
can pause at any 
point; aim

 to ‘roll 
forw

ard’ rather 
than ‘rolling 
back’...)

22

R
olling deploy w

ith service dependencies

Load B
alancer

x.y
x.y

x.y
x.ya.b

D
ependent service

C
hallenge:

H
ow

 do w
e upgrade the 

dependent service w
hile keeping 

everything running?

A
nd how

 do w
e handle this if w

e 
need to m

ake a ‘breaking change’ 
to the dependent service’s A

P
I?

23

Load B
alancer

x.y
x.y

x.y
x.ya.(b+1)

D
ependent service

C
O

N
S

TR
A

IN
TS

:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

1.
D

eploy a.(b+1)

R
olling deploy w

ith service dependencies

24



Load B
alancer

x.(y+1)

a.(b+1)
D

ependent service

C
O

N
S

TR
A

IN
TS

:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

1.
D

eploy a.(b+1)
2.

S
tart rolling out x.(y+1)

R
olling deploy w

ith service dependencies

x.y
x.y

x.y
x.y

25

Load B
alancer

D
ependent service

C
O

N
S

TR
A

IN
TS

:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

1.
D

eploy a.(b+1)
2.

S
tart rolling out x.(y+1)

3.
Finish deploy of x.(y+1)

R
olling deploy w

ith service dependencies

x.(y+1)
x.(y+1)

x.(y+1)
x.(y+1)

a.(b+1)

26

Load B
alancer

(a+1).0
D

ependent service

C
O

N
S

TR
A

IN
TS

:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

(a+1).0 supports x.(y+1)
[(a+1).0 doesn’t have to support x.y]

1.
D

eploy a.(b+1)
2.

S
tart rolling out x.(y+1)

3.
Finish deploy of x.(y+1)

4.
D

eploy (a+1).0

R
olling deploy w

ith service dependencies

x.(y+1)
x.(y+1)

x.(y+1)
x.(y+1)
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Load B
alancer

D
ependent service

C
O

N
S

TR
A

IN
TS

:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

(a+1).0 supports x.(y+1)
[(a+1).0 doesn’t have to support x.y]

W
e say:

a.(b+1)’s A
P

I is backw
ards 

com
patible w

ith a.b’s A
P

I

(a+1).0’s A
P

I can introduce a 
breaking change

1.
D

eploy a.(b+1)
2.

S
tart rolling out x.(y+1)

3.
Finish deploy of x.(y+1)

4.
D

eploy (a+1).0

R
olling deploy w

ith service dependencies

(a+1).0

x.(y+1)
x.(y+1)

x.(y+1)
x.(y+1)

28



O
n A

utom
ation: Infrastructure-as-C

ode
●

P
roblem

:
○

M
anual deploym

ents are tim
e-consum

ing and error-prone. S
ubtle environm

ental differences 
cause bugs.

●
S

olution:
○

W
rite code to autom

ate deploym
ents, using C

loud A
P

Is etc.
○

P
ut deploym

ent code under version control, just like all other code
○

H
ave developm

ent team
s w

rite:
■

A
pplication code

■
C

ode to test the application
■

C
ode to deploy the application and its associated cloud infrastructure

■
C

ode to m
onitor the application and generate alerts

●
Fram

ew
orks like Terraform

 and C
loudForm

ation help w
ith this

29

O
ther S

aaS
 tools for 

m
anaging quality

30

R
olling deploy + alerting is a very 

effective w
ay of m

anaging quality 
vs. big bang release.

(Insight: as long as w
e m

anage user 
im

pact, real users becom
e an 

invaluable part of the Q
A

 process. 
N

B
: Q

A
 != Q

uality)

31

W
hat other S

aaS
-specific tools are 

available for assuring quality?

32



S
aaS

 service
A

utom
ated

alerts

A
lerting based on

real usage

S
ynthetic m

onitoring

33

S
aaS

 service

S
ynthetic 

m
onitoring 
service

A
utom

ated
alerts

A
utom

ated 
playback of 
com

m
on user 

actions

S
ervice

responses

A
lert if response differs from

 expected result or perform
ance

A
lerting based on

real usage

C
om

plem
ents regular alerting:

●
D

eeper testing of 
end-to-end behavior

●
C

an test parts of the site 
that are not actively being 
used

●
C

an test im
portant corner 

case paths that are not 
sufficiently exercised by 
real users to show

 up in 
aggregate m

onitoring 

S
ynthetic m

onitoring

34

Traffic m
irroring

M
irroring

P
roduction 

S
aaS

 service
=?

N
ew

 S
aaS

 
service under 

test

N
ew

 service w
orking?

35

B
ehavioural analytics
and experim

ents

36



A
nalytics collectors

U
sers; often each identified by unique ID

B
ehavioural ‘events’ (e.g. A

t tim
e t, user u, clicked button b)

B
ig tim

e 
sequence 
of events 
for all users

R
eporting

Q
ueries run by 

analysts 

P
rocessing/

E
nrichm

ent

S
aaS

 com
pany’s infrastructure

A
 sim

ple behavioural analytics pipeline

37

W
hat can w

e learn from
 the event logs?

●
U

ser/grow
th m

etrics:
○

M
onthly A

ctive U
nique U

sers (M
A

U
); D

aily A
ctive U

nique U
sers (D

A
U

)

●
E

ngagem
ent:

○
Tim

e spent using the service

●
Feature usage/grow

th/engagem
ent m

etrics:
○

X
%

 of users tried feature F at least once in the last m
onth

○
Y

%
 of users used feature F2 for at least 5 m

inutes last w
eek

○
Feature F3 usage grow

ing at Z%
 year-on-year

●
Insights based on user segm

entation:
○

U
sers w

ho signed up in January 2018 exhibit an average 2%
 m

onthly churn
○

Fem
ale users aged betw

een 20-25 are X
%

 m
ore likely to use feature F at least once

38

W
hat else can w

e learn from
 the event logs?

●
C

orrelations
○

U
sage of feature F2 is correlated w

ith usage of feature F1
○

D
aily tim

e spent on the platform
 is correlated w

ith the num
ber of days since sign-up

●
B

ut N
O

T cause and effect…
 A

t least not w
ithout an experim

ent fram
ew

ork.

39

H
ow

 can w
e m

ove from
 correlations to cause/effect?

●
R

un controlled experim
ents:

○
D

eterm
ine hypothesis to test

○
D

eterm
ine level of exposure, E

, (%
 of users that w

ill go into experim
ent group)

○
B

ucket users into either experim
ent group (E

%
) or control group (100-E

)%
○

R
elease a change to the experim

ent group only
○

M
easure relevant m

etric(s) in both control group and experim
ent group and determ

ine w
hether 

the observed difference is statistically significant
●

B
y m

easuring difference betw
een control and experim

ent groups w
e can have 

som
e confidence that the only m

eaningful difference is our ‘change under 
test’

●
O

ften pick low
 E

 and ram
p up (e.g. 1%

, 10%
, 25%

, 50%
)

○
S

im
ilar to phased deploy alerting, but m

easures ‘do users like it’ rather than ‘are there errors’

●
E

xperim
ent throughput can quickly becom

e lim
ited by traffic volum

e

40



A
/B

 test architecture

S
aaS

 service

IF (hash(U
ID

.E
ID

) m
od 100) < E

 then serve experim
ent variant

E
LS

E
 serve control variant

W
here:

U
ID

 = U
ser ID

E
ID

 = E
xperim

ent ID
 (one per experim

ent)
E

 = size of experim
ent group for experim

ent E
ID

U
sers

41

A
/B

 test architecture

S
aaS

 service

IF (hash(U
ID

.E
ID

) m
od 100) < E

 then serve experim
ent variant

E
LS

E
 serve control variant

W
here:

U
ID

 = U
ser ID

E
ID

 = E
xperim

ent ID
 (one per experim

ent)
E

 = size of experim
ent group for experim

ent E
ID

U
sers

●
U

sers persistently in a control or 
experim

ent group; don’t ‘flap’
●

U
sers in existing experim

ent group rem
ain 

in experim
ent group as E

 increased
●

W
orks for m

ultiple concurrent experim
ents 

(but be careful of independence 
assum

ptions)

42

A
/B

 test architecture

S
aaS

 service

U
sers

A
nalytics collectors

B
ehavioural ‘events’:

A
t tim

e t, user u, in experim
ent groups for EID

1, EID
5, clicked button b

For each experim
ent, e, 

generate reports for m
etrics 

of interest segm
ented by (i) 

‘in E
ID

_e’; and (ii) ‘not in 
E

ID
_e’. C

om
pare these 

results for each m
etric and 

test statistical significance.
B

ig tim
e- 

sequence 
of events 
for all users

43

H
ybrid apps/S

aaS

44



M
odern apps are often a hybrid of native, w

eb, S
aaS

●
A

 m
obile app you can dow

nload from
 a store ...

○
N

ative binaries can deliver low
er latency, m

ore controlled on-device experience

●
…

 w
hich accesses w

eb services ...
○

For real-tim
e interaction w

ith other users, accessing live inform
ation, m

aking paym
ents, 

requesting services etc.

●
…

 w
hich m

ay contain w
ebview

s
○

For flexible rendering of content, the structure of w
hich doesn’t have to be specified w

ithin the 
m

obile app itself

45
46

M
obile app

M
obile app

M
obile store

M
obile app

C
an even do phased releases here to m

anage quality!

C
onfig

service
W

eb/
content

S
aaS

A
P

Is
A

nalytics
/ logs

E
xperim

ent fram
ew

ork / bucketing state

R
eporting

E
xperim

ent results

S
um

m
ary

47

S
um

m
ary

●
P

utting the m
anage/deploy/upgrade cycle to the softw

are com
pany is a 

profound change w
ith far-reaching consequences:

○
E

conom
ically:

■
R

educes custom
er TC

O
 and barriers to purchasing

■
Leads to better specialisation, and less duplication; creates new

 business m
odels

○
O

perationally:
■

E
nables new

 w
ays of doing Q

A
, w

hich changes the econom
ics of testing

■
P

hased releases (w
hich can take place over days if required, w

ith flexibility to pause and 
fix at any tim

e); live m
onitoring/alerting

■
P

lus other techniques like traffic m
irroring; synthetic m

onitoring
■

A
 continual gam

e of chess: m
ultiple projects, active phased releases, experim

ents ...
○

E
nables building of higher quality softw

are through increased visibility of user behavior. (N
.B

. 
w

ith great pow
er com

es great responsibility!)
■

B
ehavioural analytics

■
E

xperim
ents

48



A
n introduction to softw

are 
testing
A

ndrew
 R

ice

S
om

e problem
s can be detected statically

1
f
u
n
 
n
t
h
 
0
 
(
x
:
:
_
)
 
=
 
x

2
 
|
 
 
n
t
h
 
n
 
(
x
:
:
x
s
)
 
=
 
n
t
h
 
(
n
-
1
)
 
x
;

2

M
any problem

s cannot

1
f
u
n
 
n
t
h
 
0
 
(
x
:
:
_
)
 
=
 
x

2
 
|
 
 
n
t
h
 
n
 
(
x
:
:
x
s
)
 
=
 
n
t
h
 
(
n
-
1
)
 
x
s
;

34
v
a
r
 
l
 
=
 
n
t
h
 
1
0
 
[
1
,
2
,
3
]
;

3

Testing checks how
 softw

are perform
s at run-tim

e

S
ystem
under
test

Input
values

O
utput

behaviour

4

O
racle

P
ass
or

Fail?



O
bjectives

1.
Identify different types of test

2.
B

e able to w
rite a 'good' unit test

3.
K

now
 about som

e techniques for m
easuring test quality

4.
U

nderstand how
 testing fits into the softw

are developm
ent process

5

D
ifferent types of test

6

U
nit tests

check isolated pieces of functionality

Integration tests
check that the parts of a system

 w
ork together

E2E (end-to-end) tests
sim

ulate real-user scenarios

W
e w

ill consider three kinds of testing

7

U
nit tests
70%

Integration tests
20%

E2E tests
10%

C
om

plex &
E

xpensive

S
im

ple &
 

C
heap

8

These form
 the 'testing pyram

id'



(1) W
hat kind of test is this?

Testing w
hether clicking the logout button on a w

ebsite clears the cookie set in the 
user's brow

ser.

9

U
nit

Integration

E2E

(2) W
hat kind of test is this?

Testing that the c
o
m
p
u
t
e
S
h
o
r
t
e
s
t
P
a
t
h function returns a sensible result w

hen 
there are negative edge-w

eights in the graph.

10

U
nit

Integration

E2E

(3) W
hat kind of test is this?

Testing w
hether the room

 booking system
 is able to query a user's calendar 

correctly

11

U
nit

Integration

E2E

U
nit testing dem

o

s
t
a
t
i
c
 
l
o
n
g
 
c
a
l
c
u
l
a
t
e
A
g
e
I
n
D
a
y
s
(
S
t
r
i
n
g
 
d
a
t
e
O
f
B
i
r
t
h
)
 
{

I
n
s
t
a
n
t
 
d
o
b
 
=
 
d
a
t
e
F
o
r
m
a
t
.
p
a
r
s
e
(
d
a
t
e
O
f
B
i
r
t
h
)
.
t
o
I
n
s
t
a
n
t
(
)
;

I
n
s
t
a
n
t
 
c
u
r
r
e
n
t
T
i
m
e
 
=
 
n
e
w
 
D
a
t
e
(
)
.
t
o
I
n
s
t
a
n
t
(
)
;

D
u
r
a
t
i
o
n
 
a
g
e
 
=
 
D
u
r
a
t
i
o
n
.
b
e
t
w
e
e
n
(
d
o
b
,
 
c
u
r
r
e
n
t
T
i
m
e
)
;

l
o
n
g
 
a
g
e
I
n
D
a
y
s
 
=
 
a
g
e
.
t
o
D
a
y
s
(
)
;

i
f
 
(
a
g
e
I
n
D
a
y
s
 
<
 
0
)
 
{

r
e
t
u
r
n
 
0
;

}r
e
t
u
r
n
 
a
g
e
I
n
D
a
y
s
;

 
 
}

}

12



U
nit testing takeaw

ay points

D
esign for test: dependency injection

Test nam
ing

O
ne property per test

A
rrange, A

ct, A
ssert

W
riting assertions

JU
nit lifecycle

U
sing @

B
efore vs constructors

13

M
ocking can be used to sim

ulate a dependency

1
i
m
p
o
r
t
 
s
t
a
t
i
c
 
o
r
g
.
m
o
c
k
i
t
o
.
M
o
c
k
i
t
o
.
m
o
c
k
;

2
i
m
p
o
r
t
 
s
t
a
t
i
c
 
o
r
g
.
m
o
c
k
i
t
o
.
M
o
c
k
i
t
o
.
w
h
e
n
;

3
i
m
p
o
r
t
 
s
t
a
t
i
c
 
o
r
g
.
m
o
c
k
i
t
o
.
M
o
c
k
i
t
o
.
v
e
r
i
f
y
;

45
L
i
n
k
e
d
L
i
s
t
 
m
o
c
k
e
d
L
i
s
t
 
=
 
m
o
c
k
(
L
i
n
k
e
d
L
i
s
t
.
c
l
a
s
s
)
;

67
/
/
 
c
a
n
 
s
p
e
c
i
f
y
 
b
e
h
a
v
i
o
u
r
 
t
h
a
t
 
y
o
u
 
w
a
n
t

8
w
h
e
n
(
m
o
c
k
e
d
L
i
s
t
.
g
e
t
(
0
)
)
.
t
h
e
n
R
e
t
u
r
n
(
"
f
i
r
s
t
"
)
;

91
0

m
o
c
k
e
d
L
i
s
t
.
a
d
d
(
"
a
d
d
e
d
"
)
;

1
2

/
/
 
a
s
s
e
r
t
 
t
h
a
t
 
t
h
i
n
g
s
 
g
o
t
 
c
a
l
l
e
d

1
1

v
e
r
i
f
y
(
m
o
c
k
e
d
L
i
s
t
)
.
a
d
d
(
"
a
d
d
e
d
"
)
;
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Integration and E
2E

 tests are m
ore com

plicated

Testing w
hether clicking the logout button on a w

ebsite clears the cookie set in the 
user's brow

ser

1.
S

tart up a test instance of the server
2.

S
tart a w

ebdriver
3.

Login to the site and collect the session cookie
4.

S
im

ulate a click on the logout button
5.

C
heck the response from

 the server contains the directive to clear the cookie

15

A
 'flaky' test w

ill pass and fail on the sam
e code

non-herm
etic reliance on external system

s

m
ore com

plex tests tend to be m
ore flaky%

 of tests that are flaky

A
ll tests

1.65%

Java w
ebdriver

10.45%

A
ndroid em

ulator
25.46%

https://testing.googleblog.com
/2017/04/w

here-do-our-flaky-tests-com
e-from

.htm
l

16



A
utom

ated test generation can find unnoticed bugs

M
any approaches

O
ne exam

ple is random
 testing

●
G

enerate inputs at random
●

U
se search to refine these inputs to m

ake them
 m

ore effective
●

C
heck for 'bad things' like a buffer overflow

●
S

ee https://github.com
/google/oss-fuzz - found thousands of security 

vulnerabilities in open source code

17

H
ow

 good are m
y tests?

18

C
ode coverage detects how

 m
uch code you execute

(D
em

o)

19

100%
 coverage does not m

ean bug-free!

p
u
b
l
i
c
 
s
t
a
t
i
c
 
v
o
i
d
 
x
P
l
u
s
Y
M
i
n
u
s
Z
(
d
o
u
b
l
e
 
x
,
 
d
o
u
b
l
e
 
y
,
 
d
o
u
b
l
e
 
z
)
 
{

d
o
u
b
l
e
 
t
 
=
 
x
 
+
 
y
;

r
e
t
u
r
n
 
t
 
-
 
z
;

}@
T
e
s
t

p
u
b
l
i
c
 
v
o
i
d
 
x
P
l
u
s
Y
M
i
n
u
s
Z
_
c
o
r
r
e
c
t
l
y
C
o
m
b
i
n
e
s
_
s
m
a
l
l
N
u
m
b
e
r
s
(
)
 
{

d
o
u
b
l
e
 
r
 
=
 
x
P
l
u
s
Y
M
i
n
u
s
Z
(
2
.
0
,
 
2
.
0
,
 
2
.
0
)

/
/
 
c
h
e
c
k
 
f
l
o
a
t
i
n
g
 
p
o
i
n
t
 
v
a
l
u
e
s
 
w
i
t
h
 
e
r
r
o
r
 
t
o
l
e
r
a
n
c
e
.
.
.
 

a
s
s
e
r
t
T
h
a
t
(
r
)
.
i
s
W
i
t
h
i
n
(
0
.
1
)
.
o
f
(
2
.
0
)
;

}This has 100%
 coverage but the code still has a bug...

20



Test coverage can use various properties

1
i
f
 
(
a
 
=
=
 
0
)
 
{
 

2
.
.
.
;

3
}

4
e
l
s
e
 
{

5
i
f
 
(
b
)
 
{

6
.
.
.
;

7
}

8
i
f
 
(
c
)
 
{

9
.
.
.
;

1
0

}

1
1

}

21

S
tatem

ent coverage: all lines w
ere 

executed

B
ranch coverage: all decisions w

ere 
explored at every branch

P
ath coverage: all paths through the 

program
 w

ere taken

D
ata flow

 coverage: is every possible 
definition tested

M
utation testing can tell us how

 robust our tests are

G
enerate sm

all changes to the program
 under test

●
change + to a -

●
change constant term

●
negate a condition

V
erify that this causes a test to fail

22

Integrating testing into your softw
are 

engineering process

23

D
efects in softw

are are inevitable

E
xpect 1-25 errors per 1000 lines for delivered softw

are

S
ee S

teve M
cC

onnell, "C
ode C

om
plete" 2nd edition, p521, p517 

80%
 of errors are in 20%

 of the project's classes

24



D
efects in softw

are are inevitable

E
xpect 1-25 errors per 1000 lines for delivered softw

are

●
w

hen w
e find a problem

 w
e need to know

 w
e've fixed it

●
once w

e fix a bug it needs to stay fixed

S
ee S

teve M
cC

onnell, "C
ode C

om
plete" 2nd edition, p521, p517 

80%
 of errors are in 20%

 of the project's classes

●
if w

e can't test everything then prioritise the error prone parts

25

C
ontinuous integration autom

atically runs tests

D
on't w

ant broken code com
m

itted to the repository

R
un test suite on every change: can reject changes w

hich break tests or just 
report

26

R
egression testing preserves existing functionality

1.
W

rite tests that exercise existing functionality
2.

D
evelop new

 code 
3.

R
un tests to check for regressions

27

R
egression testing helps w

ith bug fixing

1.
W

rite test that reproduces bug
2.

C
heck that it fails

3.
Fix bug 

4.
C

heck that test passes

28



W
e can't run all the tests on every change

G
oogle has 4.2 m

illion tests and 150 m
illion test executions every day

N
eed to deliver results to developers quickly

N
eed to m

anage the execution cost of running tests

S
ee "The S

tate of C
ontinuous Integration Testing @

G
oogle"

29

Test suite m
inim

isation
C

hoose a subset of tests w
hich achieve coverage on the project

Test set selection
C

hoose a subset of tests w
hich are appropriate for the change subm

itted

Test set prioritisation
C

hoose an ordering such that tests m
ore likely to find a defect are run earlier

30

E
xam

ple: test suite m
inim

isation

S
elect a m

inim
al subset of tests w

hich m
axim

ise coverage over the project

N
P

-com
plete problem

 so use heuristics

If som
e test is the only test to satisfy a test requirem

ent then it is an essential test.

1)
C

hoose all the essential tests
2)

C
hoose rem

aining tests greedily in order of coverage added

31

Test D
riven D

evelopm
ent uses tests as specification

1.
W

rite tests w
hich dem

onstrate the desired behaviour
2.

Im
plem

ent new
 functionality

3.
C

heck tests now
 pass

4.
R

epeat

P
ros: guarantees that you w

rite tests and that your code is testable, tests can be 
w

ritten that directly describe the custom
er's requirem

ents.

C
ons: early com

m
itm

ent to how
 the project w

ill w
ork, changes in approach are 

hard, som
e areas are m

ore im
portant to test than others.

32



O
bjectives

1.
Identify different types of test

2.
B

e able to w
rite a 'good' unit test

3.
K

now
 about som

e techniques for m
easuring test quality

4.
U

nderstand how
 testing fits into the softw

are developm
ent process

33

...program
 testing m

ay convincingly dem
onstrate the presence of bugs, but can 

never dem
onstrate their absence…

--- E
. W

. D
ijkstra
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