

Sentence Boundary Detection Based on Parallel Lexical and Acoustic Models

Xiaoyin Che, Sheng Luo, Haojin Yang, Christoph Meinel

Indigo Orton – R250

Computer Laboratory

- Sentence boundary detection
- Combining lexical and acoustic models
- Expanding usable training data able to use unaligned lexical data

Problem – Grammar in speech

- Punctuation restoration
- Readability
- Downstream NLP
- Grammar is fundamental to meaning
- Aid for manual transcription

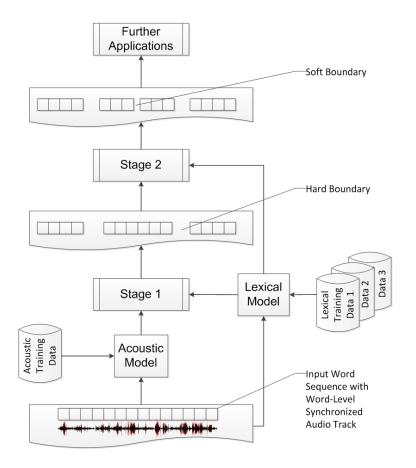
Problem – Multi-modal training data

- Modals lexical and acoustic
- Lexical models are currently the most powerful standalone models, but multi-modal is better
- Align lexical and acoustic data
- Larger corpora unaligned

- Word vectors
- *M*-sliding window
- Boundary at K-th word
- Predict punctuation *location* then *type*

Acoustic Model

- Aligned data
- Pauses
 - 0.28 seconds
- Pitch average per word
- Energy average per word


1. Hard boundary – acoustic foundation, lexical

filtering, posterior probability fusion

2. Soft boundary – lexical detection

Joint Decision Scheme – 2 Stages

Joint Decision Scheme – Posterior Probability Fusion

- Big emphasis
- If acoustic detects a boundary that lexical thinks is impossible, discard
- False positive filtering by lexical model
- Pauses due to hesitation/interruption
- Lexical model boundaries

Evaluation – Lexical only

- LMC-1, window size 5, *k*-th word 3
- LMC-2, window size 8, *k*-th word 4
- Single comparison model LSTM-[1]
- Datasets: TED-ASR and TED-Ref
- LMC-2 easily best

Evaluation – Lexical only

TED-ASR

Model	Punctuation (4 types)	Binary boundary
LSTM-[1]	46.2	65.2
LMC-1	49.6	70.7
LMC-2	53.1	75.5

Evaluation – Lexical only

TED-Ref

Model	Punctuation (4 types)	Binary boundary
LSTM-[1]	50.8	69.5
LMC-1	53.8	76.6
LMC-2	58.0	82.4

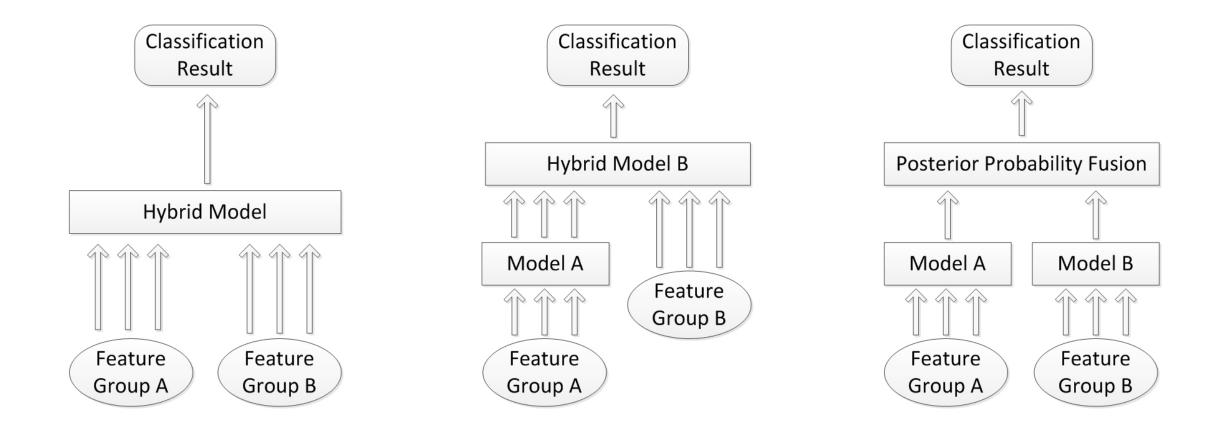
Evaluation – Joint Decision Scheme

- LMC-1 and LMC-2 with Pause and PPE (Pause, Pitch, Energy)
- Stage 1 presented as relevant, but really just lexical model improving acoustic model by filtering false positives
- Stage 2 more relevant as it is the final accuracy

Evaluation – Joint Decision Scheme

Model	Lexical	Acoustic	Stage 1	Stage 2
LMC-1 + Pause	70.7	60.9	71.1	77.6
LMC-2 + Pause	75.5	60.9	71.9	79.2
LMC-1 + PPE	70.7	61.0	72.0	76.2
LMC-2 + PPE	75.5	61.0	73.1	78.5

NB: PPE = Pause + Pitch + Energy


Uses TED-ASR dataset

- Zhang et al. [3] Lexical only
- Sinclair et al. [4] Acoustic only
- Hasan et al. [2] Multi-modal Hybrid model A
- Tilk et al. [1] Multi-modal Hybrid model B Comparison

Context – Multi-modal approaches

Review

- Expand viable lexical training data
- Approach for combining acoustic and lexical

Further questions

- Evaluation 1 comparison model
- Higher level acoustic features?
- Punctuation prediction
 - Larger scope
 - Use of acoustic model
 - Confusion matrix

- Grammar in speech transcripts
- Detect boundary then identify type
- Lexical model
- Acoustic model
- Combine with "posterior probability fusion" confidence filtering

Thank you

References

- 1. O. Tilk and T. Aluma e, "LSTM for punctuation restoration in speech transcripts," in *Sixteenth Annual Conference of the Inter- national Speech Communication Association (INTERSPEECH)*, 2015.
- 2. Hasan, M., Doddipatla, R., of, T. H. F. A. C., 2014. (n.d.). Multi-pass sentence-end detection of lecture speech. Isca-Speech.org
- 3. Che, X., Luo, S., Yang, H., & Meinel, C. (n.d.). Sentence Boundary Detection Based on Parallel Lexical and Acoustic Models. Pdfs.Semanticscholar.org
- 4. Zhang, D., Wu, S., Yang, N., Meeting, M. L. P. O. T. 5. A., 2013. (n.d.). Punctuation prediction with transition-based parsing. Aclweb.org
- 5. Sinclair, M., Bell, P., Birch, A., the, F. M. A. C. O., 2014. (n.d.). A semi-markov model for speech segmentation with an utterance-break prior. Isca-Speech.org

