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* Sentence boundary detection
* Combining lexical and acoustic models

* Expanding usable training data — able to use

unaligned lexical data
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Problem — Grammar in speech

* Punctuation restoration

* Readability

* Downstream NLP

 Grammar is fundamental to meaning

* Aid for manual transcription
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Problem — Multi-modal training data

* Modals — lexical and acoustic

* Lexical models are currently the most powerful

standalone models, but multi-modal is better
* Align lexical and acoustic data

e Larger corpora unaligned
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Lexical Model

* Word vectors
* M-sliding window
* Boundary at K-th word

* Predict punctuation location then type
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Acoustic Model

* Aligned data

e Pauses

e 0.28 seconds
* Pitch average per word

* Energy average per word
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Joint Decision Scheme - 2 Stages

1. Hard boundary — acoustic foundation, lexical

filtering, posterior probability fusion

2. Soft boundary — lexical detection
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Joint Decision Scheme - 2 Stages
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Joint Decision Scheme — Posterior Probability Fusion

* Big emphasis

* |f acoustic detects a boundary that lexical thinks is impossible, discard
* False positive filtering by lexical model

* Pauses due to hesitation/interruption

 |exical model boundaries
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Evaluation — Lexical only

e LMC-1, window size 5, k-th word 3
e LMC-2, window size 8, k-th word 4
* Single comparison model LSTM-[1]
* Datasets: TED-ASR and TED-Ref

e LMC-2 easily best
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Evaluation — Lexical only

TED-ASR
Punctuation (4 types) Binary boundary
LSTM-[1] 46.2 65.2
LMC-1 49.6 70.7
LMC-2 53.1 75.5
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Evaluation — Lexical only

TED-Ref
Punctuation (4 types) Binary boundary
LSTM-[1] 50.8 69.5
LMC-1 53.8 76.6
LMC-2 58.0 82.4
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Evaluation — Joint Decision Scheme

e LMC-1 and LMC-2 with Pause and PPE (Pause, Pitch, Energy)

e Stage 1 — presented as relevant, but really just lexical model

improving acoustic model by filtering false positives

e Stage 2 — more relevant as it is the final accuracy
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Evaluation — Joint Decision Scheme

Lexical

Acoustic

LMC-1 + Pause 70.7 60.9 71.1 77.6
LMC-2 + Pause 75.5 60.9 71.9 79.2
LMC-1 + PPE 70.7 61.0 72.0 76.2
LMC-2 + PPE 75.5 61.0 73.1 78.5

NB: PPE = Pause + Pitch + Energy
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Context

 Zhang et al. [3] — Lexical only
* Sinclair et al. [4] — Acoustic only
 Hasan et al. [2] — Multi-modal — Hybrid model A

* Tilk et al. [1] — Multi-modal — Hybrid model B — Comparison
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Context — Multi-modal approaches

Classification Classification Classification
Result Result Result

Hybrid Model B Posterior Probability Fusion

ITT 177 | I

Feature Feature Feature Feature Feature
Group A Group B Group A Group A Group B
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Review




Encouraging highlights

* Expand viable lexical training data

* Approach for combining acoustic and lexical
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Further questions

e Evaluation —1 comparison model
* Higher level acoustic features?

* Punctuation prediction
* Larger scope
e Use of acoustic model

e Confusion matrix
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Conclusion

e Grammar in speech transcripts

* Detect boundary then identify type
* Lexical model

* Acoustic model

 Combine with “posterior probability fusion” — confidence filtering
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