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Language Modelling

N-gram based models with smoothing

Structured language models

Neural (RNN) Language Models

1 Billion Words Training Data

Perplexity, e.g. 2bits/word , halved by LSTM models

Word embeddings = word similarity

Unlimited but selective left context
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Recurrent Neural Networks

Logistic Regression classification via Sigmoid (0 - 1)
function; minimize log-likelihood via gradient descent to
optimize weights

Mutilayer Perceptron / Feedforward Networks, non-linear
representation learning, iterative gradient-based stochastic
optimization (non-convex), backpropagation

Recurrent Neural Networks, feedforward networks with
recurrent connections, variable length sequences,
backpropagation through time (BPTT)

Resource:
https://www.cl.cam.ac.uk/teaching/1819/DataSciII/-

materials.html
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RNN Recurrence

Output becomes part of input at t+1

(All Images courtesy of Christopher Olah’s blog, Understanding
LSTMs)
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RNN Recurrence Unrolled

Same parameters / composition function (matrix + tanh)
different contexts and inputs
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BPTT (Simplified)

For each training instance of length k (and each timestep):

1 Forward propagate the inputs through the unfolded
network

2 Compute the error

3 Back propagate the derivatives of the error across the
unfolded network

4 Sum the weight changes in the k instances of the
recurrent units

5 Roll up the network and update all the weights

6 Repeat for each timestep
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RNN Language Model Components / Training

1 Input Word Embeddings – One hot / continous vectors

2 Recurrent Sentence Embedding – Identity Matrix +
Sigmoid

3 Output SoftMax (‘Multinomial Sigmoid’) over Vocabulary
– One hot vector

1 At each time step forward propagate

2 Train to maximize log of softmax(ht) (= MLE)

3 BPTT error derivatives to sentence and word embeddings
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RNN / BPTT Problems

Recurrent weights >1 network becomes chaotic (truncate
weights / gradients)

Recurrent weights <1 exponential decay (iterated weight
multiplication + derivative of saturated tanh/sigmoid)

Depending on whether trying to model local / global
context effects, a single recurrent weight may both
increase / decrease during training – weight conflict

Difficult and slow to train (Elman – starting small)

Composition function too simple (despite Turing approx.)
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Long Short Term Memory

Memory cell no longer the identity matrix + sigmoid/tanh, but
now a ‘gated copy’ of the previous hidden state
= more complex composition function
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Forget Gate

Looks at previous output vector and current input vector and
outputs a vector or 0/1s that determines which parts of the
context vector are kept
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Input Gate / Context Vector

Input gate same as as forget gate but applied to tanh (-1 - 1)
vector of new context vector derived by applying composition
function weights to input and previous output
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Context Update

Pointwise add old state vector after forgetting by new context
vector after filtering = new state vector
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Output Gate and Vector

Output gate same as other gates then scale (tanh) state vector
and pointwise multiply by output vector to derive next hidden /
output vector
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Gated Recurrent Unit

Forget + Input Gates = Update Gate

Learned part of composition function is 3/4 weight vectors

Ted Briscoe



Introduction

What do LSTM Lg Models Learn?

Black box so perturb test data to pretrained model

How much left context used?

What type of contextual information is used?

av. 200 previous words (PWs) of context

1% increase in perplexity with only 150 PWs of context

Mostly affects infrequent (content) words

Word order tracked for about 20 PWs

Shuffling word order beyond 50 PWs no effect

Replacing words out to 50 PWs does

Beyond 20 PWs omitting function words no effect

Remember target words that have already occured within
50 PWs
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Why focus on LSTM Lg Models for the Topic?

Unsupervised training / Large datasets

Not directly training for parsing / syntax

Natural Task(?) Shannon’s game

Sequential to hierarchical – NL is a mostly sequential
realisation of a hierarchical ‘language of thought’

Steve Pulman, Wheeler Lecture, 2018 argues that a
Recursive Neural Model captures syntax and imposes the
right sort of prior inductive bias for hierarchical structure,
but such models tend also to be trained on treebanks...

Resource:
https://www.cl.cam.ac.uk/seminars/wheeler/stephen-pulman/-slides.pdf

and more technical version: Pulman-Wheeler-Extra-Slides on
Topic page
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