
R250 Advanced topics in machine learning 
and natural language processing

Topic: autoencoders and 
generative models
Damon Wischik



Arrangements

▪ 1 introductory lecture 

▪ 2 sessions of paper presentations 
6 papers to present, 15-20 min each 

You should all read the papers and participate in the discussion 

Assessment: 

▪ Paper presentation (5%) 

▪ Attendance and contribution to discussion (5%) 

▪ Project report or essay on one of the topics (90%) 
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What is an autoencoder?

A classifier
Input: labelled data 𝑋𝑛, 𝑌𝑛 𝑛=1..𝑁

Task: predict the output 𝑌 given input 𝑋
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An autoencoder
Input: unlabelled data 𝑋𝑛 𝑛=1..𝑁

Task: given an input, reconstruct it
Challenge: squeeze the data through a “bottleneck”



What’s the point in learning to recreate the input?

latent
repr. 𝑍encoder decoder

1. Autoencoders are like PCA, but fancier.
The latent representation 𝑍 = enc(𝑋) is a 
dimension-reduced version of the input. Data 
scientists love dimension reduction.

2. Autoencoders learn a useful 
representation of the data.
It stands to reason that, in order to reproduce
the input, you have to “understand” the input.

3. Autoencoders can be used to synthesize 
new data.
Simply generate a random 𝑍, then return 
dec 𝑍 .

𝑋 ෨𝑋



1. Autoencoders are like PCA but fancier. What is PCA?

Given a collection of points 𝑋1, … , 𝑋𝑁 ∈ ℝ𝑑, PCA looks for 
a linear subspace of dimension 𝑒 < 𝑑 to represent the 
data.

▪ Approximate 𝑋𝑛 by its orthogonal projection ෨𝑋𝑛 onto 
the subspace

▪ Equivalently, encode 𝑋𝑛 into enc 𝑋𝑛 = 𝑍𝑛 ∈ ℝ𝑒, and 
decode as ෨𝑋𝑛 = dec 𝑍𝑛

▪ PCA picks the subspace so as to minimize the 
reconstruction loss

𝐿(subspace) =
1

2
෍
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𝑁

𝑋𝑛 − ෨𝑋𝑛
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Hope: the coordinates in the subspace capture some 
important “intrinsic features” of the data.



1. Autoencoders are like PCA but fancier. Fancier in what way?

PCA only looks for linear subspaces. But if we allowed nonlinear maps enc:ℝ𝑑 → ℝ𝑒 and 
dec:ℝ𝑒 → ℝ𝑑, surely we’d be able to describe the data better.



1. Autoencoders are like PCA but fancier.

Paper 5:
“β-VAE: learning basic visual concepts with 
a constrained variational framework”

Autoencoders can be cajoled into learning 
meaningful subspaces — subspaces whose 
dimensions correspond to human-
meaningful concepts.



1. Autoencoders are like PCA but fancier.

▪ Choose the size of the latent layer to control the dimension of the reduced space
▪ Choose the number of hidden layers in the encoder and decoder, to control how much 

nonlinearity is allowed
▪ Choose the reconstruction loss function 𝐿(𝑋, ෨𝑋) to measure what you care about keeping

latent
repr. 𝑍encoder decoder𝑋 ෨𝑋



2. Autoencoders learn useful representations, for initializing deep networks.

𝑋 𝑍

In the olden days, before people got deep learning to work smoothly, a particular type of 
autoencoder was used to initialize weights so that training didn’t take forever. 
Hinton and Salakhutdinov, Deep Boltzmann Machines, 2009

▪ Define a physics-inspired joint probability distribution ℙ𝑤(𝑋, 𝑍) and calculate the marginal distribution ℙ𝑤(𝑋)
▪ Pick weights 𝑤 to maximize the likelihood of the observed data 𝑋1, … , 𝑋𝑁
▪ Calculate 𝑍𝑛 = 𝔼(𝑍|𝑋𝑛)
▪ Repeat for each successive pair of layers



2. Autoencoders learn useful representations. Useful for multi-task learning.

An autoencoder learns the subspace in which most of the data lies. It must be learning the 
useful “intrinsic features” that describe the dataset. It stands to reason that this can help us 
with other tasks such as classification. 

▪ Train a neural network with two objectives:
(a) reproduce the input
(b) output the desired label

▪ This is useful if labels are low entropy
e.g. sentiment classification of text, where you need 
huge amounts of labelled data to learn useful 
weights in a RNN

▪ It’s also useful if you have lots of unlabelled data 
and only a little labelled data

https://medium.com/@rajatheb/music2vec-generating-vector-
embedding-for-genre-classification-task-411187a20820



2. Autoencoders learn useful representations.

Paper 2:
“Unsupervised learning of video 
representations using LSTMs”

How should sequence data be plugged into 
an autoencoder? For good results you need 
multi-task training (otherwise the LSTM 
decoder is too powerful...)

Paper 6:
“Grammar variational autoencoder”

A nice application of autoencoders to 
structured sequence data



the central challenge of autoencoders:

The Goldilocks Problem, or, 
how do we make sure they learn something useful?



The more layers we have, the more complex the nonlinearity we can learn.



How do we prevent over-fitting?

Paper 1:
“Sparse feature learning for deep belief 
networks”

The obvious way to prevent overfitting is to 
include a regularizer in the loss function, 
which penalizes overly complex networks.

It’s all very well and good to invent a regularizer —
but we also need to be able to cross-validate, to work out how much regularization 
is needed. How do we cross-validate?



How should we validate an autoencoder? A thought experiment...

▪ The naive way to validate is to run the network on new unseen data 
(the validation dataset), and measure the reconstruction loss  

𝔼 𝐿 𝑋, ෨𝑋

▪ Consider a super-intelligent autoencoder, which has learnt to encode 
input pixel 𝑖 into bit 𝑖 of the latent variable 𝑍 ∈ ℝ.

▪ This autoencoder is surely not what we want — but it will score 
perfectly on our naive validation test.



How should we validate an autoencoder?

Paper 3:
“Extracting and composing robust features 
with denoising autoencoders”

A cunning way to validate:
train an autoencoder whose task is to 
predict a complete image given its masked 
version; then we can measure its accuracy 
on unseen validation data.

?



The generative view of autoencoders

▪ Suppose we see our goal as “Find a distribution 
over ℝ𝑑 that fits the data well”

▪ Let’s call our best-guess distribution 𝑃 ⋅

▪ We want 𝑃(⋅) to put its probability mass where 
there is data. We can train it by maximizing the log 
likelihood of the training dataset

log lik 𝑋1, … , 𝑋𝑁 = Σ𝑛 log𝑃 𝑋𝑛

▪ A distribution that puts its mass in useless places, 
or spreads it out too thin over the entirety of ℝ𝑑, 
will have less to put where there is data, so it will 
have a bad log likelihood
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The generative view of autoencoders

Here’s a family of distributions that seems to work 
well for fitting:

▪ Let 𝑍 ∼ Normal 0, 𝐼𝑒

▪ Let 𝑋 ∼ Normal(dec𝜇 𝑍 , dec𝜎 𝑍 )

▪ The decoder functions (dec𝜇, dec𝜎) are 
computed by a neural network, and we tune its 
weights to maximize the likelihood of the training 
data

▪ For maximizing the likelihood, it’s useful to be 
able to approximate the conditional distribution 
of 𝑍 given 𝑋, 

𝑍|𝑋 ≈ Normal(enc𝜇 𝑋 , enc𝜎 𝑋 )

𝑍 𝑋

𝑋𝑍

𝑍|𝑋𝑋

𝑁(0, 𝐼𝑒)



The generative view of autoencoders

Question: does the noise in this 
probabilistic autoencoder prevent it 
from overfitting? Do we still need cross 
validation?

▪ There is a standard way to measure how 
well a proposed distribution fits a new 
(validation) dataset:

score = 𝔼 log𝑃(𝑋new)
(This is equivalent to perplexity in NLP)

▪ A distribution that overfits and puts all its 
probability mass on the training datapoints 
will score badly on new data

▪ If 𝑃 depends on hyperparameters, we can 
use this score for cross-validation

𝑁(0, 𝐼𝑒)

decenc



The generative view of autoencoders

Paper 4:
“Auto-Encoding Variational Bayes”

This is an important paper, very deep 
and very subtle. It will take many 
readings.
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𝑋𝑍

𝑍|𝑋𝑋

𝑁(0, 𝐼𝑒)



Presentation schedule

Friday 
8 March 
3–5pm

vrs26 Sparse feature learning for deep belief 
networks
Naive regularization

sat62 Unsupervised learning of video representations 
using LSTMs
How to hook up autoencoders to other neural 
networks

zz362 Extracting and composing robust features with 
denoising autoencoders
Denoising, as a form of validation

mfb37 Auto-Encoding Variational Bayes
Autoencoders as generative models

Tue 12 
March 
2–3pm

dai24 β-VAE: learning basic visual concepts with a 
constrained variational framework
Interpretable latent spaces

er513 Grammar variational autoencoder
A little bit of everything...

▪ Present for 15–20 minutes

▪ Find a key message and 
explain that idea

▪ Provoke discussion

▪ Don’t try to summarize 
everything in the paper

▪ Don’t believe everything you 
read

▪ Working code is always 
good!

▪ Don’t show us slide after 
slide of evaluation numbers.



Autoencoder projects

You all pick one of the six topics, and write a 5000-word project for it. It could be 

▪ a survey of existing methods 

▪ replication of a method from previous work 

▪ small novel experiment 

If you want to do your project on autoencoders, send me a 500-word proposal by 11 March. 
Project due date is 24 April 16:00

Example project:

Why does no one do 
cross-validation on 
autoencoders? What 
are the methods in use 
for “validation”?

Example project:

PCA gives us a collection of principal 
components, ordered by importance. 
Current autoencoders only give a 
“blob” latent variable, not ordered 
components. How can we fix this?

Example project:

We are brainwashed into supervised 
learning, 𝑃(𝑌|𝑋). Autoencoders can 
learn the joint distribution 𝑃(𝑋, 𝑌). 
Can we extract the conditional 
distribution 𝑃(𝑌|𝑋)? Or 𝑃(𝑋|𝑌)?


