Grammar Variational Autoencoder [4]

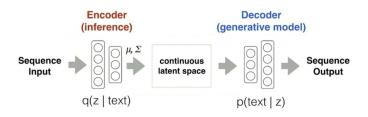
Presenter: Emanuele Rossi Authors: Kusner, Paige, Hernandez-Lobato

University of Cambridge


March 12, 2019

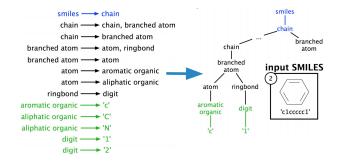
Paper

- Published in March 2017
- ▶ 91 citations until now


Motivation

Learning a meaningful latent space for discrete inputs

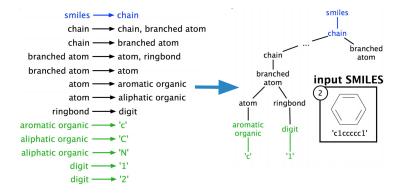
Previous Approaches: Char-VAE [1] [3]



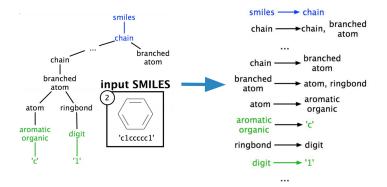
Problem: decoder sometimes generates invalid strings

Insight

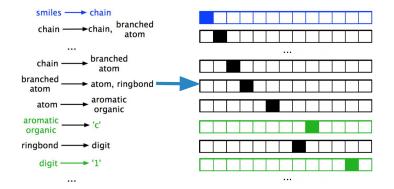
Many discrete objects (including molecules) can be described as a parse tree from a context free grammar

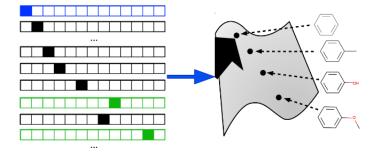


lnsight(2)

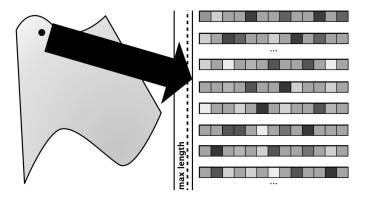

- Encoding and decoding parse trees ensures that all outputs are valid
- It also frees the model from learning 'syntactic' rules

Encoder

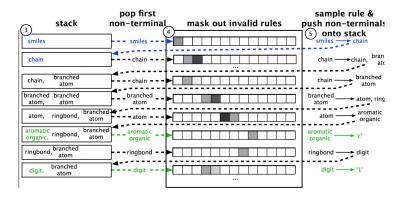

Encoder: molecule to parse tree


Encoder: parse tree to production rules

Encoder: production rules to one-hot embeddings



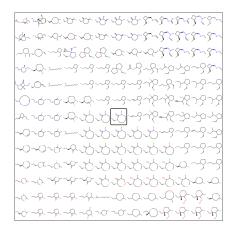
Encoder: one-hot embeddings to latent representation



Decoder

Decoder: one-hot embeddings to latent representation

Decoder: latent representation to logits sequence



Decoder: from sequence of rules to a molecule

concatenate terminals 'c1ccccc1' translate molecule

Evaluation

Evaluation 1: Latent Space Visualization

Evaluation 2: Predictive Performance of Latent Representation

Objective	Method	Expressions	Molecules	
LL	GVAE	-1.320±0.001	-1.739 ±0.004	
	CVAE	$-1.397{\pm}0.003$	-1.812 ± 0.004	
RMSE	GVAE	$\textbf{0.884} \pm \textbf{0.002}$	1.404 ± 0.006	
	CVAE	$0.975 {\pm} 0.004$	$1.504{\pm}0.006$	

Evaluation 3: Optimization in Latent Space

Problem	Method	Frac. valid	Avg. score
Molecules	GVAE	$0.31 {\pm} 0.07$	-9.57 ±1.77
	CVAE	$0.17 {\pm} 0.05$	-54.66 ± 2.66

Figure 2: Fraction of valid molecules found by method

Method	#	SMILE	Score
	1	CCCc1ccc(I)cc1C1CCC-c1	2.94
GVAE	2	CC(C)CCCCc1ccc(Cl)nc1	2.89
	3	CCCc1ccc(Cl)cc1CCCCOC	2.80
CVAE	1	Cc1ccccc1CCCC1CCc1nncs1	1.98
	2	Cc1ccccc1CCCC1(COC1)CCc1nnn1	1.42
	3	CCCCCCCC(CCCC212CCCnC1COC)c122csss1	1.19

Figure 3: Scores obtained by bayesian optimization in latent space

Discussion

Discussion 1: What about Semantic constraint?

- GVAE makes sure the ouput is syntactically correct, but what about semantic constraints?
- ▶ [2] tries to extend GVAE to include semantic constraint

The paper presents 3 evaluation techniques

- Evaluation on supervised task is standard and not very interesting
- Latent space visualization is just a nice picture
- Optimization in latent space is insightful: what about gradient-based optimization instead of bayesian optimization?

Their model consists of a 1D CNN encoder and a GRU for the decoder.

- Most autoencoders seen so far have the same encoder and decoder
- Does it make a difference whether encoder and decoder are the same type of model, or are different?

Questions?

References

- Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, and Samy Bengio.
 Generating sentences from a continuous space.
 2016.
- Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song.
 Syntax-directed variational autoencoder for structured data. *CoRR*, abs/1802.08786, 2018.
- Rafael Gómez-Bombarelli, David K. Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of molecules.

CoRR, abs/1610.02415, 2016.

Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato.