
Sparse Feature Learning for Deep
Belief Networks

Marc’ Aurelio Ranzato, Y-Lan Boureau, Yann
LeCun

R250 Presentation By: Vikash Singh March 8, 2019

 Brief Autoencoder Review

Deep Belief Networks

● Repeating units of
visible/hidden

● Attempt to reconstruct
visible unit from hidden
representation, trained
in greedy fashion

● Can learn features for
supervised learning

Main Idea: Enforce Sparsity in Hidden Representation
● Already a natural bottleneck by causing dimensionality

of latent state to be less than initial input
● Introduction of new method to enforce sparsity in

latent representation
● Sparsity constraint ideally generates more compact

latent representations

Viewing Unsupervised Learning Through Energy
Probability constructing an
input Y given W

Loss function: Free energy and
log partition function (penalty
term for low energy, wants high
energy everywhere else)

Simplification Assuming Peaked Distribution over Z
In the case that perfect
reconstruction is possible,
value goes close to 0

Rewrite simplified loss
function as a result of this
simplification

What is the Problem with Just Using Log Partition?
● Even with the simplification assumption, integrating

over all possible latent representations is difficult and
so is approximating the gradient

● Resort to expensive computation to approximate this
gradient

● Approach in this paper inspired by desire to free from
minimizing log partition

Sparse-Encoding Symmetric Machine (SESM)
● Symmetric encoder-decoder paradigm designed to

produce sparse latent representations
● Key Idea: Add sparsity penalty to loss function

SESM Architecture

Sigmoid function (introduce
non-linearity)

Encoder and Decoder
share same weights

Energy function
dictated by
reconstruction of both
Z and Y

The Main Story: Adding Sparsity Penalty to Loss

Apply penalty on l(z)
for being further
away from zero

Optimization is Slightly More Complex..
● We want to learn W, benc, and bdec , so why not use

straight-forward gradient descent?
● Because the loss function couples Z with these

parameters, and we DO NOT want to marginalize over
the code distribution (Z)

Iterative Online Coordinate Descent Algorithm
● For a given Y and parameter setting, find Z* (minimize the loss

function w.r.t Z)
● Fix Y and Z*, and optimize w.r.t to parameters of interest, do one

step gradient descent to update parameters

What is the Big Deal with Symmetry?!
● Weight sharing between the encoder and decoder

helps in cases when decoder weights collapse to zero
or blow up

● Since same weights are used in the encoder, we stop
the decoder from going wild (leads to poor
reconstruction and also larger code units which are
penalized)

RBM vs SESM
● Both have symmetric encoder and decoder
● SESM has sparsity instead of loss instead of log

partition function
● RBM uses Contrastive Divergence (approximate log

partition) to prevent flat energy surfaces
● SESM is faster!

Experimental Comparison
● Train SESM, RBM, and PCA on first 20000 digits on

MNIST to produce codes of 200 components
● Use test data to produce codes, and measure

reconstruction via RMSE (varying degrees of precision)
● Assess discriminative nature of each representation by

feeding into linear classifier

Experimental Comparison: Results

Evaluating the Discriminative Ability of a Code
● Is using a linear classifier on the code vector a viable

way of assessing the discriminative ability of the code?
● Ties back into validation of autoencoders discussed in

the first lecture

What are the benefits of sparsity?
● Sparse PCA developed with the authors stressing that it

assisted in interpretability of the loadings?
● How does this compare to the coefficients derived from

standard linear regression?

Questions?

