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 Brief Autoencoder Review

 



Deep Belief Networks

 

● Repeating units of 
visible/hidden

● Attempt to reconstruct 
visible unit from hidden 
representation, trained 
in greedy fashion

● Can learn features for 
supervised learning



Main Idea: Enforce Sparsity in Hidden Representation 
● Already a natural bottleneck by causing dimensionality 

of latent state to be less than initial input
● Introduction of new method to enforce sparsity in 

latent representation
● Sparsity constraint ideally generates more compact 

latent representations

 



Viewing Unsupervised Learning Through Energy
Probability constructing an 
input Y given W

Loss function: Free energy and 
log partition function (penalty 
term for low energy, wants high 
energy everywhere else)



Simplification Assuming Peaked Distribution over Z
In the case that perfect 
reconstruction is possible, 
value goes close to 0

Rewrite simplified loss 
function as a result of this 
simplification



What is the Problem with Just Using Log Partition? 
● Even with the simplification assumption, integrating 

over all possible latent representations is difficult and 
so is approximating the gradient

● Resort to expensive computation to approximate this 
gradient

● Approach in this paper inspired by desire to free from 
minimizing log partition 

 



Sparse-Encoding Symmetric Machine (SESM)
● Symmetric encoder-decoder paradigm designed to 

produce sparse latent representations
● Key Idea: Add sparsity penalty to loss function

 



SESM Architecture

 

Sigmoid function (introduce 
non-linearity)

Encoder and Decoder 
share same weights

Energy function 
dictated by 
reconstruction of both 
Z and Y 



The Main Story: Adding Sparsity Penalty to Loss

 

Apply penalty on l(z) 
for being further 
away from zero  



Optimization is Slightly More Complex..
● We want to learn W, benc, and bdec , so why not use 

straight-forward gradient descent?
● Because the loss function couples Z with these 

parameters, and we DO NOT want to marginalize over 
the code distribution (Z)

 



Iterative Online Coordinate Descent Algorithm
● For a given Y and parameter setting, find Z* (minimize the loss 

function w.r.t Z)
● Fix Y and Z*, and optimize w.r.t to parameters of interest, do one 

step gradient descent to update parameters

 



What is the Big Deal with Symmetry?!
● Weight sharing between the encoder and decoder 

helps in cases when decoder weights collapse to zero 
or blow up

● Since same weights are used in the encoder, we stop 
the decoder from going wild (leads to poor 
reconstruction and also larger code units which are 
penalized)

 



RBM vs SESM
● Both have symmetric encoder and decoder 
● SESM has sparsity instead of loss instead of log 

partition function 
● RBM uses Contrastive Divergence (approximate log 

partition) to prevent flat energy surfaces
● SESM is faster!

 



Experimental Comparison
● Train SESM, RBM, and PCA on first 20000 digits on 

MNIST to produce codes of 200 components
● Use test data to produce codes, and measure 

reconstruction via RMSE (varying degrees of precision)
● Assess discriminative nature of each representation by 

feeding into linear classifier 

 



Experimental Comparison: Results

 



Evaluating the Discriminative Ability of a Code
● Is using a linear classifier on the code vector a viable 

way of assessing the discriminative ability of the code?
● Ties back into validation of autoencoders discussed in 

the first lecture

 



What are the benefits of sparsity?
● Sparse PCA developed with the authors stressing that it 

assisted in interpretability of the loadings?
● How does this compare to the coefficients derived from 

standard linear regression?

 



Questions?

 


