Sparse Feature Learning for Deep
Belief Networks

= Marc’ Aurelio Ranzato, Y-Lan Boureau, Yann
LeCun

R250 Presentation By: Vikash Singh March 8, 2019

Brief Autoencoder Review

output (B

Hidden

Deep Belief Networks

Visible units

Hidden units

e Repeating units of

visible/hidden

Attempt to reconstruct
visible unit from hidden
representation, trained
in greedy fashion

Can learn features for
supervised learning

Main Idea: Enforce Sparsity in Hidden Representation

e Already a natural bottleneck by causing dimensionality
of latent state to be less than initial input

e Introduction of new method to enforce sparsity in
latent representation

e Sparsity constraint ideally generates more compact
latent representations

Viewing Unsupervised Learning Through Energy

[, e PEYEW) Probability constructing an
P(Ylw) — /P(Y,Z|W) — fy ze—,BE(y,z,W) input Y given W

z

1 1 Loss function: Free energy and
_ ! —BE(Y,2) | * ~BE(y,z) gY
LW,Y) = log/ze T log/yze ’ log partition function (penalty

p
term for low energy, wants high
energy everywhere else)

Simplification Assuming Peaked Distribution over Z

Fo(Y) = E(Y.Z*(Y)) = lim -~ log / ~-sevs) 1N the case that perfect
pooo B, reconstruction is possible,
value goes close to 0

1 bz, REWrite simplified loss
Lw.y) =B, 2°(Y)) + Bl"g/ye 77 function as a result of this
- simplification

What is the Problem with Just Using Log Partition?

e Even with the simplification assumption, integrating
over all possible latent representations is difficult and

SO is approximating the gradient
e Resort to expensive computation to approximate this

gradient
e Approach in this paper inspired by desire to free from

minimizing log partition

Sparse-Encoding Symmetric Machine (SESM)

e Symmetric encoder-decoder paradigm designed to
produce sparse latent representations
e Key Idea: Add sparsity penalty to loss function

SESM Architecture

l(z) =1/(1 + exp(—gx)) E\ErTI(i)ri\(i;Lrji?;)tion (introduce

Encoder and Decoder

T _
fene(Y) = W7Y + bene, faee(Z) = WUZ) +biec share same weights

Energy function
E(Ya Z) = ae||Z o fenc(Y)Hg + ”Y o fdec(Z)”% dictated by

reconstruction of both
ZandY

The Main Story: Adding Sparsity Penalty to Loss

L(W,Y) E(Y, Z) + ash(Z) + o[W]

@e[|Z = fenc(¥)II3 + Y = faec(2)|3 Hash(Z)f oW1

h(Z) — Zfil 10g(]_+l2(zz)) Apply penalty on I(z)

for being further
away from zero

Optimization is Slightly More Complex..

e WewanttolearnW,b_ andb, ,sowhy notuse
straight-forward gradient descent?
e Because the loss function couples Z with these

parameters, and we DO NOT want to marginalize over
the code distribution (2)

lterative Online Coordinate Descent Algorithm

e For agivenY and parameter setting, find Z* (minimize the loss

function w.r.t 7)
e FixY and Z*, and optimize w.r.t to parameters of interest, do one

step gradient descent to update parameters

What is the Big Deal with Symmetry?!

e Weight sharing between the encoder and decoder
helps in cases when decoder weights collapse to zero
or blow up

e Since same weights are used in the encoder, we stop
the decoder from going wild (leads to poor

reconstruction and also larger code units which are
penalized)

RBM vs SESM

Both have symmetric encoder and decoder

SESM has sparsity instead of loss instead of log
partition function

RBM uses Contrastive Divergence (approximate log
partition) to prevent flat energy surfaces

SESM is faster!

Experimental Comparison

e Train SESM, RBM, and PCA on first 20000 digits on
MNIST to produce codes of 200 components

e Use test data to produce codes, and measure
reconstruction via RMSE (varying degrees of precision)

e Assess discriminative nature of each representation by
feeding into linear classifier

A)

10 samples

45¢ :

35}

301 ;
N R
w]
S 3
2 W4
Q20 I ©
['4 ['4
w o

15} :

10+ :

Bl : e

o%&—:ﬁ

0 2
ENTROPY (bits/pixel)

Experimental Comparison: Results

100 samples 1000 samples
18f Co10p :
8L + [> RAW: train
Qucania 4 RAW: test
14} * V PCA:train
. A PCA: test
12k i RBM: train
) © RBM: test
= == SESM: train
10} Pk
3 ~@— SESM: test
1 \ A
8f ‘ ‘8 6l :
['4
W
6_ e
N had 3
4+
‘ al
0 1 i 3 i i
0 1 2 0 1 2
ENTROPY (bits/pixel) ENTROPY (bits/pixel)

45

40

35

ERROR RATE %
)
A

10 samples

N
(=]
T

-
(%)

=Y
o

(%)

(B)

@

RMSE

ERROR RATE %

100 samples

-
o

e
T

ERROR RATE %

1000 samples

0.2 0.4

RMSE

Evaluating the Discriminative Ability of a Code

e Is using a linear classifier on the code vector a viable
way of assessing the discriminative ability of the code?
e Ties back into validation of autoencoders discussed in

the first lecture

What are the benefits of sparsity?

Sparse PCA developed with the authors stressing that it
assisted in interpretability of the loadings?

How does this compare to the coefficients derived from
standard linear regression?

Questions?

