Crypto protocols

ACS R209: Computer Security – Principles and Foundations Ross Anderson

Security Protocols

- Security protocols are the intellectual core of security engineering
- They are where cryptography and system mechanisms meet
- They allow trust to be taken from where it exists to where it's needed
- But they are much older then computers...

Real-world protocol

- Ordering wine in a restaurant
 - Sommelier presents wine list to host
 - Host chooses wine; sommelier fetches it
 - Host samples wine; then it's served to guests
- Security properties?

Real-world protocol

- Ordering wine in a restaurant
 - Sommelier presents wine list to host
 - Host chooses wine; sommelier fetches it
 - Host samples wine; then it's served to guests
- Security properties
 - Confidentiality of price from guests
 - Integrity can't substitute a cheaper wine
 - Non-repudiation host can't falsely complain

Car unlocking protocols

- Principals are the engine controller E and the car key transponder T
- Static $(T \rightarrow E: KT)$
- Non-interactive

 $T \rightarrow E: T, {T,N}_{KT}$

• Interactive

```
E \rightarrow T: N
T \rightarrow E: \{T,N\}_{KT}
```

• N is a 'nonce' for 'number used once'. It can be a sequence number, a random number or a timestamp

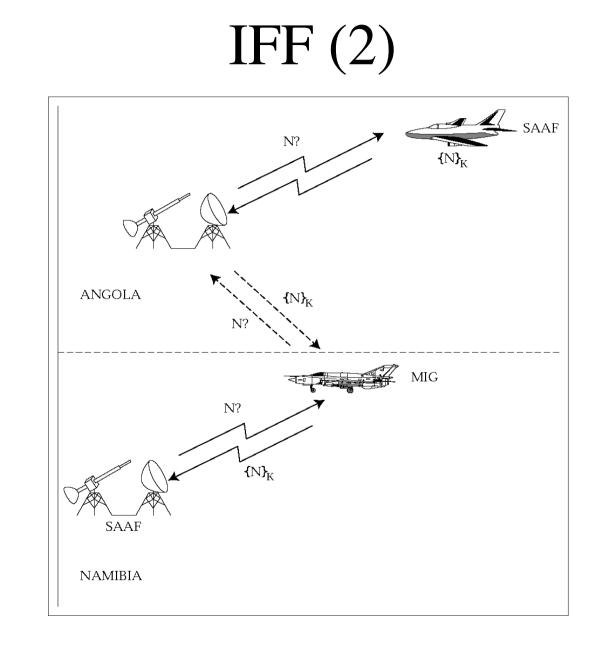
Two-factor authentication

 $S \rightarrow U: N$ $U \rightarrow P: N, PIN$ $P \rightarrow U: \{N, PIN\}_{KP}$

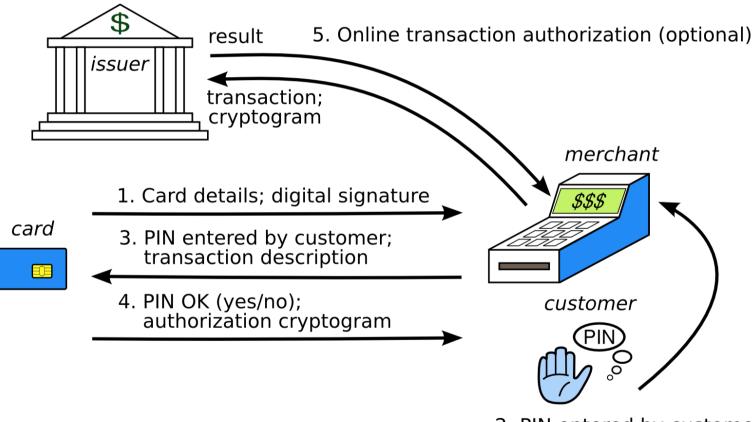
Key management protocols

- Suppose Alice and Bob each share a key with Sam, and want to communicate?
 - Alice calls Sam and asks for a key for Bob
 - Sam sends Alice a key encrypted in a blob only she can read, and the same key also encrypted in another blob only Bob can read
 - Alice calls Bob and sends him the second blob
- How can they check the protocol's fresh?

Needham-Schroder


- 1978: uses 'nonces' rather than timestamps $A \rightarrow S: A, B, NA$ $S \rightarrow A: \{NA, B, K_{AB}, \{K_{AB}, A\}_{KBS}\}_{KAS}$ $A \rightarrow B: \{K_{AB}, A\}_{KBS}$ $B \rightarrow A: \{NB\}_{KAB}$ $A \rightarrow B: \{NB - 1\}_{KAB}$
- The bug, and the controversy...

Identify Friend or Foe (IFF)


- Basic idea: fighter challenges bomber
 F → B: N
 B → F: {N}_K
- What can go wrong?

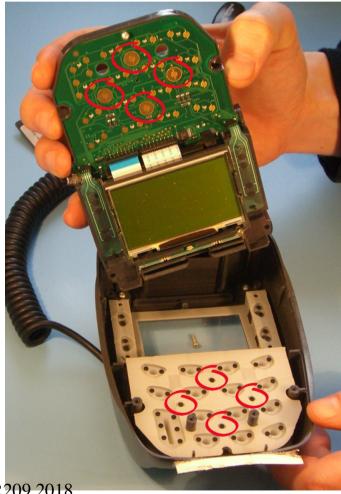
Identify Friend or Foe (IFF)

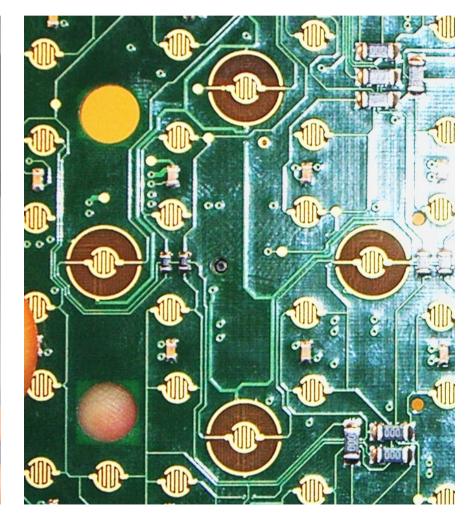
- Basic idea: fighter challenges bomber
 F → B: N
 - $B \rightarrow F: \{N\}_{K}$
- What if the bomber reflects the challenge back at the fighter's wingman?
 - $F \rightarrow B: N$ $B \rightarrow F: N$ $F \rightarrow B: \{N\}_{K}$ $B \rightarrow F: \{N\}_{K}$

A normal EMV transaction

2. PIN entered by customer

What about a false terminal?

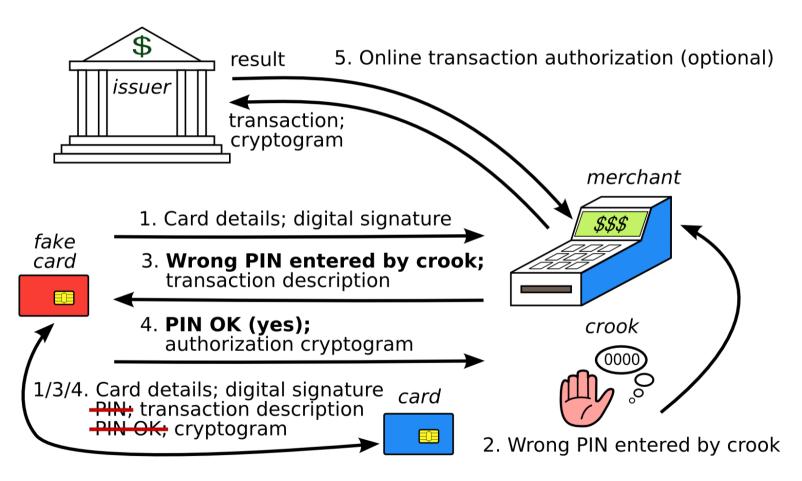



- Replace a terminal's insides with your own electronics
- Capture cards and PINs from victims
- Use them to do a manin-the-middle attack in real time on a remote terminal in a merchant selling expensive goods

Attacks in the real world

- The relay attack is almost unstoppable, and we showed it in TV in February 2007
- But it seems never to have happened!
- So far, mag-strip fallback fraud has been easy
- PEDs tampered at Shell garages by 'service engineers' (PED supplier was blamed)
- Then 'Tamil Tigers'
- After fraud at BP Girton: we investigate

Tamper switches (Ingenico i3300)


R209 2018

TV demo: Feb 26 2008

- PEDs 'evaluated under the Common Criteria' were trivial to tap
- Acquirers, issuers have different incentives
- GCHQ wouldn't defend the CC brand
- APACS said (Feb 08) it wasn't a problem...
- Khan case (July 2008)

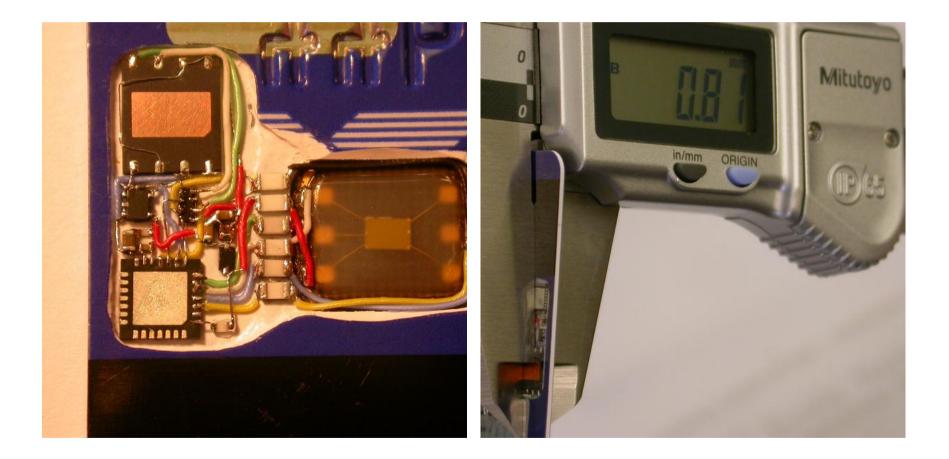
The 'No-PIN' attack (2010)

Fixing the 'No PIN' attack

- In theory: might block at terminal, acquirer, issuer
- In practice: may have to be the issuer (as with terminal tampering, acquirer incentives are poor)
- Barclays introduced a fix July 2010; removed Dec 2010 (too many false positives?); banks asked for student thesis to be taken down from web instead
- Real problem: EMV spec now far too complex
- With 100+ vendors, 20,000 banks, millions of merchants ... everyone passes the buck (or tries to sell ECC...)

EMV and Random Numbers

- In EMV, the terminal sends a random number N to the card along with the date d and the amount X
- The card computes an authentication request cryptogram (ARQC) on N, d, X
- What happens if I can predict N for d?
- Answer: if I have access to your card I can precompute an ARQC for amount X, date d


ATMs and Random Numbers (2)

• Log of disputed transactions at Majorca:

2011-06-28	10:37:24	F1246E04
2011-06-28	10:37:59	F1241354
2011-06-28	10:38:34	F1244328
2011-06-28	10:39:08	F1247348

- N is a 17 bit constant followed by a 15 bit counter cycling every 3 minutes
- We test, & find half of ATMs use counters!

ATMs and Random Numbers (3)

The preplay attack

- Collect ARQCs from a target card
- Use them in a wicked terminal at a collusive merchant, which fixes up nonces to match
- Since then, we won a live case...
- Sailor spent €33 on a drink in a Spanish bar. He got hit with ten transactions for €3300, an hour apart, from one terminal, through three different acquirers, with ATC collisions

Public Key Crypto Revision

- Digital signatures: computed using a private signing key on hashed data
- Can be verified with corresponding public verification key
- Can't work out signing key from verification key
- Typical algorithms: DSA, elliptic curve DSA
- We'll write sig_A{X} for the hashed data X signed using A' s private signing key

Public Key Crypto Revision (2)

- Public key encryption lets you encrypt data using a user's public encryption key
- She can decrypt it using her private decryption key
- Typical algorithms Diffie-Hellman, RSA
- We'll write $\{X\}_A$
- Big problem: knowing whose key it is!

PKC Revision – Diffie-Hellman

- Diffie-Hellman: underlying metaphor is that Anthony sends a box with a message to Brutus
- But the messenger's loyal to Caesar, so Anthony puts a padlock on it
- Brutus adds his own padlock and sends it back to Anthony
- Anthony removes his padlock and sends it to Brutus who can now unlock it
- Is this secure?

PKC Revision – Diffie-Hellman (2)

• Electronic implementation:

 $A \rightarrow B$: M^{rA}

 $B \rightarrow A$: M^{rArB}

 $A \rightarrow B$: M^{rB}

• But encoding messages as group elements can be tiresome so instead Diffie-Hellman goes:

$$A \rightarrow B: \qquad g^{rA}$$
$$B \rightarrow A: \qquad g^{rB}$$
$$A \rightarrow B: \qquad \{M\}g^{rArB}$$

Public-key Needham-Schroeder

- Proposed in 1978:
 - $A \rightarrow B: \{NA, A\}_{KB}$
 - B → A: {NA, NB}_{KA}
 - $A \rightarrow B: {NB}_{KB}$
- The idea is that they then use NA⊕NB as a shared key
- Is this OK?

Public-key Needham-Schroeder (2)

- Attack found eighteen years later, in 1996: $A \rightarrow C: \{NA, A\}_{KC}$ $C \rightarrow B:$ $\{NA, A\}_{KB}$ $B \rightarrow C:$ $\{NA, NB\}_{KA}$ $C \rightarrow A:$ $\{NA, NB\}_{KA}$ $A \rightarrow C: \{NB\}_{KC}$ $C \rightarrow B:$ $\{NB\}_{KB}$
- Fix: explicitness. Put all names in all messages

Public Key Certification

- One way of linking public keys to principals is for the sysadmin to physically install them on machines (common with SSH, IPSEC)
- Another is to set up keys, then exchange a short string out of band to check you're speaking to the right principal (STU-II, Bluetooth simple pairing)
- Another is certificates. Sam signs Alice's public key (and/or signature verification key) CA = sig_s{T_s,L,A,K_A,V_A}
- But this is still far from idiot-proof...

The Denning-Sacco Protocol

• In 1982, Denning and Sacco pointed out the revocation problem with Needham-Schroder and argued that public key crypto should be used instead

 $A \rightarrow S: A, B$

 $S \rightarrow A: CA, CB$

 $A \rightarrow B: CA, CB, \{sig_A \{T_A, K_{AB}\}\}_{KB}$

• What's wrong?

The Denning-Sacco Protocol (2)

• Twelve years later, Abadi and Needham noticed that Bob can now masquerade as Alice to anyone in the world!

$$A \rightarrow S: A, B$$

$$S \rightarrow A: CA, CB$$

$$A \rightarrow B: CA, CB, \{sig_A \{T_A, K_{AB}\}\}_{KB}$$

$$B \rightarrow S: B, C$$

$$S \rightarrow B: CB, CC$$

$$B \rightarrow C: CA, CC, \{sig_A \{T_A, K_{AB}\}\}_{KC}$$

Public Key Protocol Problems

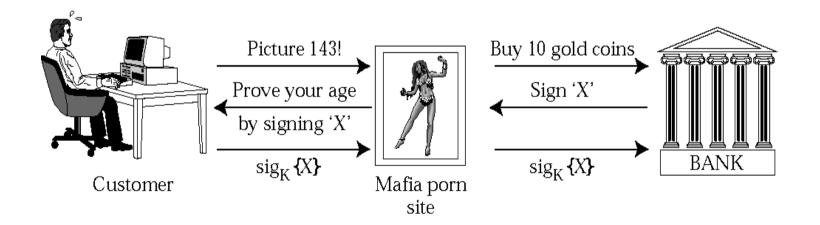
- It's very easy to set up keys with the wrong people

 man-in-the-middle attacks get more pervasive.

 Assumptions are slippery to pin down
- Technical stuff too if the math is exposed, an attacker may use it against you!
- So data being encrypted (or signed) must be suitably packaged
- Many other traps, some extremely obscure but some rather general...

Chosen protocol attack

• Suppose that we had a protocol for users to sign hashes of payment messages (such a protocol was proposed in 1990s):


 $C \rightarrow M$: order

 $M \rightarrow C: X \quad [= hash(order, amount, date, ...)]$ $C \rightarrow M: sig_K \{X\}$

• How might this be attacked?

Chosen protocol attack (2)

The Mafia demands you sign a random challenge to prove your age for porn sites!

