
Quantum Computing

Lecture 1

Bits and Qubits

Anuj Dawar

001

What is Quantum Computing?

Aim to use quantum mechanical phenomena that have no classical

counterpart for computational purposes.

Central research tasks include:

• Building devices � with a speci�ed behaviour.

• Designing algorithms � to use the behaviour.

Mediating these two are models of computation.

002

Bird's eye view

A computer scientist looks at Quantum Computing:

Algorithmic Languages

Theory/complexity

System Architecture
Speci�ed Behaviour

Physics

Dragons

003

Why look at Quantum Computing?

• The world is quantum

• classical models of computation provide a level of abstraction
• discrete state systems

• Devices are getting smaller

• Moore's law
• the only descriptions that work on the very small scale are quantum

• Exploit quantum phenomena

• using quantum phenomena may allow us to perform computational
tasks that are not otherwise possible/e�cient

• understand capabilities/resources

004

Course Outline

A total of eight lecturers.

1. Bits and Qubits (this lecture).

2. Linear Algebra

3. Quantum Mechanics

4. Models of Computation

5. Some Applications

6. Search Algorithms

7. Factorisation

8. Complexity

005

Useful Information

Some useful books:

• Nielsen, M.A. and Chuang, I.L. (2010). Quantum Computation and

Quantum Information. 2nd ed. Cambridge University Press.

• Mermin, N.D. (2007). Quantum Computer Science. CUP.

• Kitaev, A.Y., Shen, A.H. and Vyalyi, M.N. (2002). Classical and
Quantum Computation. AMS.

Course website:
http://www.cl.cam.ac.uk/teaching/1819/QuantComp/

006

Bits

A building block of classical computational devices is a two-state system.

0 ←→ 1

Indeed, any system with a �nite set of discrete, stable states, with
controlled transitions between them will do.

007

Qubits

Quantum mechanics tells us that any such system can exist in a
superposition of states.

In general, the state of a quantum bit (or qubit for short) is described by:

α|0〉+ β|1〉

where, α and β are complex numbers, satisfying

|α|2 + |β|2 = 1

008

Qubits

PSfrag repla
ements

|0〉

|1〉

α

β α|0〉+ β|1〉

A qubit may be visu-
alised as a unit vector
on the plane.

In general, however, α
and β are complex num-
bers.

009

Measurement

Any attempt to measure the state

α|0〉+ β|1〉

results in |0〉 with probability |α|2, and |1〉 with probability |β|2.

After the measurement, the system is in the measured state!

That is, further measurements will always yield the same value.

We can only extract one bit of information from the state of a qubit.

010

Measurement

α|0〉 + β|1〉 and α|0〉 − β|1〉 have
the same probabilities for their
measurement

However, they are distinct states
which behave di�erently in terms
of how they evolve.

PSfrag repla
ements

|0〉

|1〉

α

β α|0〉+ β|1〉

α|0〉 − β|1〉

011

Vectors

Formally, the state of a qubit is a unit vector in C2�the 2-dimensional
complex vector space.

The vector

[
α
β

]
can be written as

α|0〉+ β|1〉

where, |0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
.

|φ〉� a ket, Dirac notation for vectors.

012

Basis

Any pair of vectors |φ〉, |ψ〉 ∈ C2 that are linearly independent could
serve as a basis.

α|0〉+ β|1〉 = α′|φ〉+ β′|ψ〉

The basis is determined by the measurement process or device.

Most of the time, we assume a standard (orthonormal) basis |0〉 and |1〉
is given.

This will be called the computational basis

013

Example

The vector

[
1√
2
1√
2

]
measured in the computational basis gives either

outcome with probability 1/2.

Measured in the basis [
1√
2
1√
2

]
,

[
1√
2
−1√
2

]
it gives the �rst outcome with probability 1.

014

Entanglement

An n-qubit system can exist in any superposition of the 2n basis states.

α0|000000〉+ α1|000001〉+ · · ·+ α2n−1|111111〉

with
∑

2
n−1

i=0
|αi |2 = 1

Sometimes such a state can be decomposed into the states of individual
bits

1

2
(|00〉+ |01〉+ |10〉+ |11〉) = 1√

2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

015

Entanglement

Compare the two (2-qubit) states:

1√
2
(|00〉+ |01〉) and

1√
2
(|00〉+ |11〉)

If we measure the �rst qubit in the �rst case, we see |0〉 with probability
1 and the state remains unchanged.

In the second case (an EPR pair), measuring the �rst bit gives |0〉 or |1〉
with equal probability. After this, the second qubit is also determined.

016

Quantum Computing
Lecture 2

Review of Linear Algebra

Anuj Dawar

017

Linear Algebra

The state space of a quantum system is described in terms of a vector
space.

Vector spaces are the object of study in Linear Algebra.

In this lecture we review definitions from linear algebra that we need in
the rest of the course.

We are mainly interested in vector spaces over the complex number field
– C.

We use the Dirac notation—|v〉, |φ〉 (read as ket) for vectors.

018

Vector Spaces

A vector space over C is a set V with
• a commutative, associative addition operation + that has

• an identity 0: |v〉+ 0 = |v〉
• inverses: |v〉+ (−|v〉) = 0

• an operation of multiplication by a scalar α ∈ C such that:
• α(β|v〉) = (αβ)|v〉
• (α+ β)|v〉 = α|v〉+ β|v〉 and α(|u〉+ |v〉) = α|u〉+ α|v〉
• 1|v〉 = |v〉.

019

Cn

Cn is the vector space of n-tuples of complex numbers:

 α1
...
αn

.
with addition

 α1
...
αn

+

 β1
...
βn

 =

 α1 + β1
...
αn + βn


and scalar multiplication z

 α1
...
αn

 =

 zα1
...
zαn



020

Basis

A basis of a vector space V is a minimal collection of vectors
|v1〉, . . . , |vn〉 such that every vector |v〉 ∈ V can be expressed as a linear
combination of these:

|v〉 = α1|v1〉+ · · ·+ αn|vn〉.

n—the size of the basis—is uniquely determined by V and is called the
dimension of V.

Given a basis, every vector |v〉 can be represented as an n-tuple of scalars.

021

Bases for Cn

The standard basis for Cn is


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


(written |0〉, . . . , |n − 1〉).

But other bases are possible:
[

3
2

]
,

[
4
−i

]
is a basis for C2.

We’ll be interested in orthonormal bases. That is bases of vectors of unit
length that are mutually orthogonal. Examples are |0〉, |1〉 and
1√
2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉).

022

Linear Operators

A linear operator A from one vector space V to another W is a function
such that:

A(α|u〉+ β|v〉) = α(A|u〉) + β(A|v〉)

If V is of dimension n and W is of dimension m, then the operator A can
be represented as an m × n-matrix.

The matrix representation depends on the choice of bases for V and W.

023

Matrices

Given a choice of bases |v1〉, . . . , |vn〉 and |w1〉, . . . , |wm〉, let

A|vj〉 =
m∑

i=1

αij |wi 〉

Then, the matrix representation of A is given by the entries αij .

Multiplying this matrix by the representation of a vector |v〉 in the basis
|v1〉, . . . , |vn〉 gives the representation of A|v〉 in the basis |w1〉, . . . , |wm〉.

024

Examples

A 45◦ rotation of the real plane that takes
[

1
0

]
to
[1√

2
1√
2

]
and

[
0
1

]
to
[
− 1√

2
1√
2

]
is represented, in the standard basis by the matrix

[
1√
2
− 1√

2
1√
2

1√
2

]

The operator
[

0 −i
i 0

]
does not correspond to a transformation of the

real plane.

025

Inner Products

An inner product on V is an operation that associates to each pair
|u〉, |v〉 of vectors a complex number

〈u|v〉.

The operation satisfies
• 〈u|αv + βw〉 = α〈u|v〉+ β〈u|w〉
• 〈u|v〉 = 〈v |u〉∗ where the ∗ denotes the complex conjugate.
• 〈v |v〉 ≥ 0 (note: 〈v |v〉 is a real number) and 〈v |v〉 = 0 iff |v〉 = 0.

026

Inner Product on Cn

The standard inner product on Cn is obtained by taking, for

|u〉 =
∑

i

ui |i〉 and |v〉 =
∑

i

vi |i〉

〈u|v〉 =
∑

i

u∗i vi

Note: 〈u| is a bra, which together with |v〉 forms the bra-ket 〈u|v〉.

027

Norms

The norm of a vector |v〉 (written || |v〉||) is the non-negative, real
number:

|| |v〉|| =
√
〈v |v〉.

A unit vector is a vector with norm 1.

Two vectors |u〉 and |v〉 are orthogonal if 〈u|v〉 = 0.

An orthonormal basis for an inner product space V is a basis made up of
pairwise orthogonal, unit vectors.

the term Hilbert space is also used for an inner product space

028

Outer Product

With a pair of vectors |u〉 ∈ U, |v〉 ∈ V we associate a linear operator
|u〉〈v | : V→ U, known as the outer product of |u〉 and |v〉.

(|u〉〈v |)|v ′〉 = 〈v |v ′〉|u〉

|v〉〈v | is the projection on the one-dimensional space generated by |v〉.

Any linear operator can be expressed as a linear combination of outer
products:

A =
∑
ij

Aij |i〉〈j |.

029

Eigenvalues

An eigenvector of a linear operator A : V→ V is a non-zero vector |v〉
such that

A|v〉 = λ|v〉

for some complex number λ
λ is the eigenvalue corresponding to the eigenvector v .

The eigenvalues of A are obtained as solutions of the characteristic
equation:

det(A− λI) = 0

Each operator has at least one eigenvalue.

030

Diagonal Representation

A linear operator (over an inner product space) A is said to be
diagonalisable if

A =
∑

i

λi |vi 〉〈vi |

where the |vi 〉 are an orthonormal set of eigenvectors of A with
corresponding eigenvalues λi .

Equivalently, A can be written as a matrix λ1
. . .

λn


in the basis |v1〉, . . . , |vn〉 of its eigenvectors.

031

Adjoints

Associated with any linear operator A is its adjoint A† which satisfies

〈v |Aw〉 = 〈A†v |w〉

In terms of matrices, A† = (A∗)T

where ∗ denotes complex conjugation and T denotes transposition.[
1+ i 1− i
−1 1

]†
=

[
1− i −1
1+ i 1

]

032

Normal and Hermitian Operators

An operator A is said to be normal if

AA† = A†A

Fact: An operator is diagonalisable if, and only if, it is normal.

A is said to be Hermitian if A = A†

A normal operator is Hermitian if, and only if, it has real eigenvalues.

033

Unitary Operators

A linear operator A is unitary if

AA† = A†A = I

Unitary operators are normal and therefore diagonalisable.

Unitary operators are norm-preserving and invertible.

〈Au|Av〉 = 〈u|v〉

All eigenvalues of a unitary operator have modulus 1.

034

Tensor Products

If U is a vector space of dimension m and V one of dimension n then
U⊗ V is a space of dimension mn.
Writing |uv〉 for the vectors in U⊗ V:
• |(u + u′)v〉 = |uv〉+ |u′v〉
• |u(v + v ′)〉 = |uv〉+ |uv ′〉
• z |uv〉 = |(zu)v〉 = |u(zv)〉

Given linear operators A : U→ U and B : V→ V, we can define an
operator A⊗ B on U⊗ V by

(A⊗ B)|uv〉 = |(Au), (Bv)〉

035

Tensor Products

In matrix terms,

A⊗ B =


A11B A12B · · · A1mB
A21B A22B · · · A2mB
...

...
...

Am1B Am2B · · · AmmB



036

Quantum Computing
Lecture 3

Principles of Quantum Mechanics

Anuj Dawar

037

What is Quantum Mechanics?

Quantum Mechanics is a framework for the development of physical
theories.

It is not itself a physical theory.

It states four mathematical postulates that a physical theory must satisfy.

Actual physical theories, such as Quantum Electrodynamics are built
upon a foundation of quantum mechanics.

038

What are the Postulates About

The four postulates specify a general framework for describing the
behaviour of a physical system.

1. How to describe the state of a closed system.—Statics or state space
2. How to describe the evolution of a closed system.—Dynamics
3. How to describe the interactions of a system with external

systems.—Measurement
4. How to describe the state of a composite system in terms of its

component parts.

039

First Postulate

Associated to any physical system is a complex inner product space (or
Hilbert space) known as the state space of the system.
The system is completely described at any given point in time by its state
vector, which is a unit vector in its state space.

Note: Quantum Mechanics does not prescribe what the state space is
for any given physical system. That is specified by individual physical
theories.

040

Example: A Qubit

Any system whose state space can be described by C2—the
two-dimensional complex vector space—can serve as an implementation
of a qubit.

Example: An electron spin.

Some systems may require an infinite-dimensional state space.
We always assume, for the purposes of this course, that our systems have
a finite dimensional state space.

041

Second Postulate

The time evolution of closed quantum system is described by the
Schrödinger equation:

i~
d |ψ〉
dt

= H|ψ〉

where
• ~ is Planck’s constant; and
• H is a fixed Hermitian operator known as the Hamiltonian of the
system.

042

Second Postulate—Simpler Form

The state |ψ〉 of a closed quantum system at time t1 is related to the
state |ψ′〉 at time t2 by a unitary operator U that depends only on t1 and
t2.

|ψ′〉 = U|ψ〉

U is obtained from the Hamiltonian H by the equation:

U(t1, t2) = exp[
−iH(t2 − t1)

~
]

This allows us to consider time as discrete and speak of computational
steps
Exercise: Check that if H is Hermitian, U is unitary.

043

Why Unitary?

Unitary operations are the only linear maps that preserve norm.

|ψ′〉 = U|ψ〉

implies

|| |ψ′〉|| = ||U|ψ〉|| = || |ψ〉|| = 1

Exercise: Verify that unitary operations are norm-preserving.

044

Gates, Operators, Matrices

In this course, most linear operators we will be interested in are unitary.
They can be represented as matrices where each column is a unit vector
and columns are pairwise orthogonal.

Another useful representation of unitary operators we will use is as gates:

G

A 2-qubit gate is a unitary operator on C4.

045

Pauli Gates

A particularly useful set of 1-qubit gates are the Pauli Gates.
The X gate

X

X |0〉 = |1〉 X |1〉 = |0〉 X =

[
0 1
1 0

]
The Y gate

Y

Y |0〉 = i |1〉 Y |1〉 = −i |0〉 Y =

[
0 −i
i 0

]
046

Pauli Gates–contd.

The Z gate

Z

Z |0〉 = |0〉 Z |1〉 = −|1〉 Z =

[
1 0
0 −1

]

Sometimes we include the identity I =
[

1 0
0 1

]
as a fourth Pauli gate.

047

Third Postulate

A measurement on a quantum system has some set M of outcomes.
Quantum measurements are described by a collection {Pm : m ∈ M} of
measurement operators. These are linear (not unitary) operators acting
on the state space of the system.
If the state of the system is |ψ〉 before the measurement, then the
probability of outcome m is:

p(m) = 〈ψ|P†mPm|ψ〉

The state of the system after measurement is

Pm|ψ〉√
〈ψ|P†mPm|ψ〉

048

Third Postulate—contd.

The measurement operators satisfy the completeness equation.∑
m∈M

P†mPm = I

This guarantees that the sum of the probabilities of all outcomes adds up
to 1. ∑

m

p(m) =
∑
m

〈ψ|P†mPm|ψ〉 = 〈ψ|I |ψ〉 = 1

049

Measurement in the Computational Basis

We are generally interested in the special case where the measurement
operators are projections onto a particular orthonormal basis of the state
space (which we call the computational basis).

So, for a single qubit, we take measurement operators P0 = |0〉〈0| and
P1 = |1〉〈1|

This gives, for a qubit in state α|0〉+ β|1〉:

p(0) = |α|2 p(1) = |β|2

Exercise: Verify!

050

Global Phase

For any state |ψ〉, and any θ, we can form the vector e iθ|ψ〉.

Then, for any unitary operator U,

Ue iθ|ψ〉 = e iθU|ψ〉

Moreover, for any measurement operator Pm

〈ψ|e−iθP†mPme iθ|ψ〉 = 〈ψ|P†mPm|ψ〉

Thus, such a global phase is unobservable and the states are physically
indistinguishable.

051

Relative Phase

In contrast, consider the two states |ψ1〉 = 1√
2
(|0〉+ |1〉) and

|ψ2〉 = 1√
2
(|0〉 − |1〉).

Measured in the computational basis, they yield the same outcome
probabilities.

However, measured in a different orthonormal basis (say 1√
2
(|0〉+ |1〉)

and 1√
2
(|0〉 − |1〉)), the results are different.

Also, if H = 1√
2

[
1 1
1 −1

]
, then

H|ψ1〉 = |0〉 H|ψ2〉 = |1〉

052

Fourth Postulate

The state space of a composite physical system is the tensor product of
the state spaces of the individual component physical systems.

If one component is in state |ψ1〉 and a second component is in state
|ψ2〉, the state of the combined system is

|ψ1〉 ⊗ |ψ2〉

Not all states of a combined system can be separated into the tensor
product of states of the individual components.

053

Separable States

A state of a combined system is separable if it can be expressed as the
tensor product of states of the components.
E.g.

1
2
(|00〉+ |01〉+ |10〉+ |11〉) = 1√

2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

If Alice has a system in state |ψ1〉 and Bob has a system in
state |ψ2〉, the state of their combined system is |ψ1〉 ⊗ |ψ2〉.

If Alice applies U to her state, this is equivalent to applying the
operator U ⊗ I to the combined state.

054

Entangled States

The following states of a 2-qubit system cannot be separated into
component parts.

1√
2
(|10〉+ |01〉) and

1√
2
(|00〉+ |11〉)

Note: Physical separation does not imply separability. Two particles that
are physically separated could still be entangled.

055

Summary

Postulate 1: A closed system is described by a unit vector in a complex
inner product space.
Postulate 2: The evolution of a closed system in a fixed time interval is
described by a unitary transform.
Postulate 3: If we measure the state |ψ〉 of a system in an orthonormal
basis |0〉 · · · |n − 1〉, we get the result |j〉 with probability |〈j |ψ〉|2. After
the measurement, the state of the system is the result of the
measurement.
Postulate 4: The state space of a composite system is the tensor product
of the state spaces of the components.

056

Quantum Computing
Lecture 4

Models of Quantum Computation

Anuj Dawar

057

Quantum Circuits

A quantum circuit is a sequence of unitary operations and measurements
on an n-qubit state.

U1 U2 U3

M

Input State



















Note: each Ui is described by a 2n × 2n matrix.

058

Algorithms

A quantum algorithm specifies, for each n, a sequence

On = O1 . . .Ok

of n-qubit operations.

The map n→ On must be computable.
i.e. the individual circuits must be generated from a common
pattern.

All measurements can be deferred to the end (possibly, at the expense of
increasing the number of qubits).

059

Model of Computation

As a model of computation, this is parasitic on classical models.
what is computable is not independently determined

Purely quantum models can be defined. We will see more on this in
Lecture 8.

What computations can be performed in the model as defined?
What functions can be computed?
What decision problems are decidable?

Can all such computations be performed with some fixed set of unitary
operations?

060

Simulating Boolean Gates

Could we find a quantum circuit to simulate a classical And gate?

a

b

a ∧ b

And

This would require And : |00〉 7→ |0x〉, |01〉 7→ |0y〉
|10〉 7→ |0z〉, |11〉 7→ |1w〉

There is no unitary operation of this form.
Unitary operations are reversible. No information can be lost in the
process.

061

Computing a Function

If f : {0, 1}n → {0, 1}m is a Boolean function, the map

|x〉 7→ |f (x)〉

may not be unitary.

We will, instead seek to implement

|x〉 ⊗ |0〉 7→ |x〉 ⊗ |f (x)〉

Exercise: Describe a unitary operation that implements the Boolean And
in this sense.

062

One-Qubit Gates

We have already seen the Pauli Gates:

X =

[
0 1
1 0

]
,Y =

[
0 −i
i 0

]
,Z =

[
1 0
0 −1

]
Another useful one-qubit gate is the Hadamard gate:

H =
1√
2

[
1 1
1 −1

]

H

063

Gates on a Multi-Qubit State

When we draw a circuit with a one-qubit gate, this must be read as a
unitary operation on the entire state.

U

U ⊗ I

This does not change measurement outcomes on the second qubit.

064

Controlled Not

The Controlled Not is a 2-qubit gate:

|a〉|a〉

|b〉 |a ⊕ b〉

The controlled not flips the second
qubit if the first qubit is |1〉 and
leaves it unchanged if it’s |0〉

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



065

Controlled U

More generally, we can define, for any single qubit operation U, the
Controlled U gate:

U |0x〉 7→ |0x〉
|1x〉 7→ |1,Ux〉

Particularly useful is the controlled-Z gate:

Z

Z

066

Toffoli Gate

|a2〉|a2〉

|a1〉|a1〉

|b〉 |(a1 · a2)⊕ b〉

The Toffoli Gate is a 3-qubit
gate.
It has a classical counterpart
which can be used to simulate
standard Boolean operations

A permutation matrix is a unitary matrix where all entries are
0 or 1.

Any 2n × 2n permutation matrix can be implemented using only Toffoli
gates.

067

Classical Reversible Computation

A Boolean function f : {0, 1}n → {0, 1}n is reversible if it’s described by
a 2n × 2n permutation matrix.

For any function g : {0, 1}n → {0, 1}m, there is a reversible function
g ′ : {0, 1}m+n → {0, 1}m+n with

g ′(x , 0) = (x , g(x)).

Toffoli gates are universal for reversible computation.

The Toffoli gate cannot be implemented using 2-bit reversible classical
gates.

068

Quantum Toffoli Gate

The Toffoli gate can be implemented using 2-qubit quantum gates.

P

Q

QQ

Q†Q†

Q†Q† HH

where, P =

[
1 0
0 i

]
,Q =

[
1 0
0 e iπ/4

]
.

069

Universal Set of Gates

Fact: Any unitary operation on n qubits can be implemented by a
sequence of 2-qubit operations.

Fact: Any unitary operation can be implemented by a combination of
C-NOTs and single qubit operations.

Fact: Any unitary operation can be approximated to any required degree
of accuracy using only C-NOTs, H, P and Q.

These can serve as our finite set of gates for quantum computation.

070

Deutsch-Jozsa Problem

Given a function f : {0, 1} → {0, 1}, determine whether f is constant or
balanced.

Classically, this requires two calls to the function f .

But, if we are given the quantum black box:

|a〉

|b〉

|a〉
Uf

|b ⊕ f (a)〉

One use of the box suffices

071

Deutsch-Jozsa Algorithm

|0〉

1√
2
(|0〉 − |1〉)

Uf

HH

Uf with input |x〉 and |0〉 − |1〉 is just a phase shift.
It changes phase by (−1)f (x).
When |x〉 = H|0〉, this gives (−1)f (0)|0〉+ (−1)f (1)|1〉.

Final result is [(−1)f (0) + (−1)f (1)]|0〉+ [(−1)f (0) − (−1)f (1)]|1〉
which is |0〉 if f is constant and |1〉 if f is balanced.

072

Quantum Computing
Lecture 5

Applications of Quantum Information

Anuj Dawar

073

Some Applications

We look at some applications of the encoding of information in quantum
states.

• Quantum Cryptography, or more accurately Quantum Key
Distribution.

• Superdense Coding.
• Quantum Teleportation

These do not rely on quantum computation as such, but the properties of
information encoded in quantum states: superposition and entanglement.

074

Quantum Key Distribution

A protocol for quantum key distribution was described by Bennett and
Brassard in 1984 (and is known as BB84).

Alice Bob

Eve

qubit channel

classical channel

The protocol does not provide
the means of transmitting an
arbitrary message.

At the end of the protocol, there is a random sequence of bits that is
shared between Alice and Bob but unknown to any third party.

075

Assumptions

The BB84 protocol relies on the following assumptions:

• Alice has a source of random (classical) bits.
• Alice can produce qubits in states |0〉 and |1〉.
• Alice can apply a Hadamard operator H to the qubits.
• Bob can measure incoming qubits

• either in the basis |0〉, |1〉;
• or in the basis 1√

2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉).

These conditions are satisfied, for instance, by a system based on
polarised photons.

076

The Protocol

Alice sends Bob a stream of qubits.

For each qubit, before sending it, she
• randomly chooses a bit |0〉 or |1〉;
• randomly either applies H to the qubit or not; and
• sends it to Bob.

So, Bob receives a random sequence of qubits, each of which is in one of
the four states:

|0〉, |1〉,H|0〉,H|1〉

077

The Protocol–contd.

• For each qubit, Bob randomly chooses either the basis |0〉, |1〉 or the
basis H|0〉, H|1〉 and measures the qubit in the chosen basis.

• Bob announces (over the classical channel) which basis he used for
each measurement.

• Alice tells Bob which measurements were made in the correct basis.
• The qubits which were measured in the wrong basis are discarded,
while the rest form a shared key.

078

Attacks

Why not announce the bases for all qubits before transmission, thus
avoiding the loss of half the bits?

This allows Eve to intercept, measure and re-transmit the bits.

Why not wait until Bob has received all the qubits, then have Alice
announce the basis for each one before Bob measures them?
• Requires Bob to store the qubits—currently technically difficult.
• If Bob can store the qubits, then Eve can too and then she can
retransmit after measurement.

If we could fix the basis before hand, this could be used to transmit a
fixed (rather than random) message.

079

Attack 2

What happens if Eve intercepts the qubits, measures each one randomly
in either the basis |0〉, |1〉 or the basis H|0〉,H|1〉 and then retransmits it?

For half of the bits that are shared between Alice and Bob, Eve will have
measured them in the wrong basis.
Moreover, these bits will have changed state, and so for approx. 1

4 of the
shared bits, the value measured by Bob will be different to the one
encoded by Alice.
Alice and Bob can choose a random sample of their shared bits and
publically check their values against each other and detect the presence
of an eavesdropper.

080

Attack 3

Could Eve intercept the qubits, make a copy without measuring them
and re-transmit to Bob and then wait for the basis to be announced?

No Cloning Theorem:
There is no unitary operation U which for an arbitrary state ψ
gives

U|ψ0〉 = |ψψ〉.

Exercise: Prove the no-cloning theorem.

081

Key Distribution

Quantum key distribution relies on nothing more than
• linear superposition of states; and
• change of basis.

In particular, it does not rely on entanglement.
We next look at some applications of entanglement.

082

Bell States

Entanglement based protocols generally rely on using the following four
states of a two-qubit system, known as the Bell states.

1√
2
(|00〉+ |11〉), 1√

2
(|01〉+ |10〉)

1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)

These form an orthonormal basis for C4, known as the Bell basis.

Note that, in each of the states, measuring either qubit in the
computational basis yields |0〉 or |1〉 with equal probability, but after the
measurement, the other bit is determined.

083

Generating Bell States

We can generate the Bell states from the computational basis
|00〉, |01〉, |10〉, |11〉 using the following circuit:

H

|00〉

1√
2
(|00〉+ |10〉)

1√
2
(|00〉+ |11〉)

084

Superdense Coding

In general, it is impossible to extract more than one classical bit of
information from a single qubit.

However, if Alice and Bob is each in possession of one qubit of a pair in a
known Bell state

1√
2
(|00〉+ |11〉)

Then Alice can perform an operation solely on her own qubit, and then
send it to Bob to convey two bits of information.

085

Superdense Coding 2

Generating Bell states from 1√
2
(|00〉+ |11〉) with only operations on the

first qubit.

(X ⊗ I)
1√
2
(|00〉+ |11〉) = 1√

2
(|01〉+ |10〉)

(Z ⊗ I)
1√
2
(|00〉+ |11〉) = 1√

2
(|00〉 − |11〉)

((ZX)⊗ I)
1√
2
(|00〉+ |11〉) = 1√

2
(|01〉 − |10〉)

086

Superdense Coding 3

Once he has both qubits, Bob can convert back to the computational
basis using the circuit.

H

After this, a measurement in the computational basis yields the two bits
that Alice intended to convey.

087

Quantum Teleportation

The superdense coding protocol allows Alice to send Bob two classical
bits by transmitting a single qubit, provided they already share an
entangled pair.

Conversely, the quantum teleportation protocol allows Alice to send Bob
a qubit, by sending just two classical bits along a classical channel,
provided they already share an entangled pair.

Contrast this with the no-cloning theorem, which tells us that we cannot
make a copy of a qubit.

088

Quantum Teleportation 2

Alice has a state |φ〉 that she wishes to transmit to Bob. The two already
share a pair of qubits in state 1√

2
(|00〉+ |11〉).

H

M

|φ〉

Entangled Pair







089

Quantum Teleportation 3

Alice conveys to Bob the result of her measurement. Say the qubit in
Bob’s possession is in state |θ〉, then:
• If Alice measures |00〉, then |φ〉 = |θ〉.
• If Alice measures |01〉, then |φ〉 = X |θ〉.
• If Alice measures |10〉, then |φ〉 = Z |θ〉.
• If Alice measures |11〉, then |φ〉 = XZ |θ〉.

Thus, Bob performs the appropriate operation and now has a qubit
whose state is exactly |φ〉.

090

Quantum Computing
Lecture 6

Quantum Searching

Anuj Dawar

091

Search Problems

One of the two most important algorithms in quantum computing is
Grover’s search algorithm—first presented by Lov Grover in 1996.

This provides a means of searching for a particular value in an
unstructured search space.
Compare

• searching for a name in a telephone directory
• searching for a phone number in a telephone directory

Given a black box which can take any of N inputs, and for each of them
gives a yes/no answer, Grover’s algorithm allows us to find the unique
value for which the answer is yes in O(

√
N) steps (with high probability).

092

Deutsch-Jozsa Algorithm revisited

|0〉

1√
2
(|0〉 − |1〉)

Uf

HH

When the lower input to Uf is |0〉 − |1〉, we can regard this as unchanged,
and instead see Uf as shifting the phase of the upper qubit by (−1)f (x).

093

Oracle

Suppose we have f : N → {0, 1}, and that N = 2n, so we can think of f
as operating on n bits.

We assume that we are provided a black box or oracle Uf for computing
f , in the following sense:

|x〉







|b〉

Uf

|b ⊕ f (x)〉

094

Grover’s Algorithm

Suppose further that there is exactly one n-bit value a such that

f (a) = 1

and for all other values x ,
f (x) = 0.

Grover’s algorithm gives us a way of using the black box Uf to determine
the value a with O(

√
N) = O(2n/2) calls to Uf .

095

Grover’s Algorithm Schematic

H

H

H

H

UfUf
· · ·

O(
√

N)
︷ ︸︸ ︷

WW M

|0〉

|0〉

|0〉

|0〉

|0〉−|1〉

The operator G = (W ⊗ I)Uf is known as the Grover Iterate (we will see
soon what W is).

The input to the last bit is 1√
2

(|0〉 − |1〉).

096

The Action of Uf

As the “output qubit” is |0〉 − |1〉, it remains unaffected by the action of
Uf , which we can think of instead as a conditional phase change on the n
input qubits.

|a〉 7→ −|a〉
|x〉 7→ |x〉 for any x 6= a

We will ignore the output bit completely and instead talk of the n-bit
operator V above.
Note: V = I − 2|a〉〈a|.

We now analyse the Grover iterate WV .

097

Components of W

We write H⊗n for the follow-
ing operation:

H

H

H

H

n inputs



























And X⊗n for the following op-
eration:

X

X

X

X

n inputs



























Each of these can, of course, be implemented by a series of n 1-qubit
operations.

098

More Components of W

We write cZ⊗n for the n-bit controlled-Z gate:

Z

n inputs



























cZ⊗n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · −1



cZ⊗n can be implemented using O(n) cZ and Toffoli gates, using some
workspace qubits (Exercise).

099

Defining W

Now, we can define W by:

W = (−1)H⊗n(X⊗ncZ⊗nX⊗n)H⊗n.
= (−1)H⊗n(I − 2|0n〉〈0n|)H⊗n

Write |Ψ〉 for the state

H⊗n|0n〉 =
1√
N

N−1∑
i=0

|i〉.

So, W = (−1)(I − 2|Ψ〉〈Ψ|), i.e.

W = 2|Ψ〉〈Ψ| − I .

100

The Grover Iterate

Since G = WV , we have

G = (2|Ψ〉〈Ψ| − I)(I − 2|a〉〈a|).

Consider the actions of W and V on the two states |Ψ〉 and |a〉.

W |Ψ〉 = |Ψ〉 W |a〉 = 2√
N
|Ψ〉 − |a〉.

V |Ψ〉 = |Ψ〉 − 2√
N
|a〉 V |a〉 = −|a〉

Thus, as we start the algorithm in state |Ψ〉, the result of repeated
applications of V and W will always give a real linear combination of |a〉
and |Ψ〉.

101

Geometric View

We can picture the action of W and V in the two-dimensional real plane
spanned by the vectors |a〉 and |Ψ〉.

θ

2θ

|a〉

|Ψ〉

V |Ψ〉

WV |Ψ〉
V is a reflection about
the line perpendicular
to |a〉.
W is a reflection
about |Ψ〉.
The composition of
two reflections of the
plane is always a rota-
tion.

102

The Rotation

It is clear from the picture that WV (the Grover iterate) is a rotation
through an angle 2θ in the direction from |Ψ〉 to |a〉, where the angle
between |Ψ〉 and |a〉 is π

2 − θ.

|Ψ〉 and |a〉 are nearly orthogonal, so θ is small (if N is large).

sin θ = cos(
π

2
− θ) = 〈a|Ψ〉 =

1√
N

=
1

2n/2 .

So,

θ ∼ 1√
N

=
1

2n/2

for large enough values of N.

103

Number of Iterations

After t ∼ π/2
2θ ∼

π
4

√
N iterations of the Grover iterate G = WV , the

state of the system
G t |Ψ〉

is within an angle θ of |a〉.

A measurement at this stage yields the state |a〉 with probability

|〈G tΨ|a〉|2 ≥ (cos θ)2 = 1− (sin θ)2 =
N − 1
N

.

Note: Further iterations beyond t will reduce the probability of finding
|a〉.

104

Multiple Solutions

Grover’s algorithm works even if the solution |a〉 is not unique.

Suppose there is a set of solutions S ⊆ {0, . . . ,N − 1} and let M = |S |
be the number of solutions.
The Grover iterate is then a rotation in the space spanned by the two
vectors

|Ψ〉 =
1√
N

N−1∑
i=0

|i〉 |S〉 =
1√
M

∑
j∈S

|j〉

As the angle between these is smaller, the number of iterations drops,
but so does the probability of success.

105

Lower Bound

For classical algorithms, searching an unstructured space of solutions
(such as given by a black box for f), it is easy to show a Ω(N) lower
bound on the number of calls to the black box required to identify the
unique solution.

Grover’s algorithm demonstrates that a quantum algorithm can beat any
classical algorithm for the problem.

It is possible to show a Ω(
√
N) lower bound for the number of calls to Uf

by any quantum algorithm that identifies a unique solution.

Grover’s algorithm does not allow quantum computers to solve
NP-complete problems in polynomial time.

106

Quantum Computing
Lecture 7

Quantum Factoring

Anuj Dawar

107

Quantum Factoring

A polynomial time quantum algorithm for factoring numbers was
published by Peter Shor in 1994.

polynomial time here means that the number of gates is
bounded by a polynomial in the number of bits n of the number
being factored.

The best known classical algorithms are exponential (in n1/3).

Fast factoring would undermine public-key cryptographic systems such as
RSA.

108

Period Finding

Suppose we are given a function f : N→ {0, . . . ,N − 1} which we know
is periodic, i.e.

f (x + r) = f (x) for some fixed r and all x .

Can we find the least value of r?

If we can find the period of a function efficiently, we can factor integers
quickly.

109

Order Finding

Suppose we are given an integer N and an a with a < N and

gcd(a,N) = 1.

Consider the function fa : N→ {0, . . . ,N − 1} given by

fa(x) ≡ ax (mod N)

Then, fa is periodic, and if we can find the period r , we can factor N.

110

Factoring

Suppose (for simplicity) N = pq, where p and q are prime. And, for
some a < N, we know the period r of the function fa.
Then, ar+1 ≡ a (mod N), so ar ≡ 1 (mod N).

If r is even and ar/2 + 1 6≡ 0 (mod N), then take x2 = ar .

x2 − 1 ≡ 0 (mod N)
(x − 1)(x + 1) ≡ 0 (mod N)

But,
x − 1 6≡ 0 (mod N) (by minimality of r)
x + 1 6≡ 0 (mod N) (by assumption)

111

Factoring–contd.

So, (x − 1)(x + 1) = kpq for some k.
Now, finding gcd(N, x − 1) and gcd(N, x + 1) will find p and q.

If we randomly choose a < N

(and check that gcd(a,N) = 1—if not, we’ve already found a
factor of N)

then, there is a probability > 1
2 that

• the period of fa is even; and
• ar/2 + 1 6≡ 0 (mod N).

112

Using a Fourier Transform

A fast period-finding algorithm allows us to factor numbers quickly.

The idea is to use a Fourier Transform to find the period of a function f .

Note, classically, we can use the fast Fourier transform algorithm for this
purpose, but it can be shown that this would require time N logN, which
is exponential in the number of bits of N.

113

Discrete Fourier Transform

The discrete Fourier transform of a sequence of complex numbers

x0, . . . , xM−1

is another sequence of numbers

y0, . . . , yM−1

where

yk =
1√
M

M−1∑
j=0

xje2πijk/M

or

yk =
1√
M

M−1∑
j=0

xjω
jk .

where ω = e2πi/M . 114

DFT is Unitary

The discrete Fourier transform is a unitary operation on CM .
Writing ω for e2πi/M ,

ω, ω2, . . . , ωM−1, ωM = 1

are the Mth roots of 1.

D =
1√
M



1 1 1 · · · 1
1 ω ω2 · · · ω−1

1 ω2 ω4 · · · ω−2

1 ω3 ω6 · · · ω−3

...
...

...
. . .

...
1 ωM−1 ω2M−2 · · · ω


115

Inverse DFT

The inverse of the discrete Fourier Transform is given by:

D−1 =
1√
M



1 1 1 · · · 1
1 ω−1 ω−2 · · · ω
1 ω−2 ω−4 · · · ω2

1 ω−3 ω−6 · · · ω3

...
...

...
. . .

...
1 ω1−M ω2−2M · · · ωM−1



Exercise: Verify that D is unitary. Verify that D−1 as given above is the
inverse of D.

116

Quantum Fourier Transform

Computing the discrete Fourier transform classically takes time
polynomial in M.

Shor showed that D can be implemented using a number of one and
two-qubit gates that is only polynomial in the number of qubits

O((logM)2).

Note: This does not give a fast way to compute the DFT on a quantum
computer.
There is no way to extract all the complex components from the
transformed state.

117

Fourier Transform on Binary Strings

Suppose M = 2n, and let |x〉 be a computational basis state in CM with
binary representation b1 · · · bn.
Let

ηj = e2πi(0·bjbj+1···bn).

Then
D|x〉 = (|0〉+ ηn|1〉)(|0〉+ ηn−1|1〉) · · · (|0〉+ η1|1〉).

Exercise: Verify.

118

Quantum Fourier Transform Circuit

We can use this form to implement the quantum Fourier transform using
Hadamard gates and conditional phase-shift gates.

H

H

H

H

P

P

P

Q

Q R

In the input, the least significant bit is at the top, in the output, it is at
the bottom.

119

Conditional Phase Shifts

Here

P =

[
1 0
0 i

]
Q =

[
1 0
0 e iπ/4

]
R =

[
1 0
0 e iπ/8

]

Two-qubit conditional phase shift gates are actually symmetric between
the two bits, despite the asymmetry in the drawn circuit.

It seems that for large n, an n-bit quantum Fourier transform circuit
would require conditional phase shifts of arbitrary precision.
It can be shown that this can be avoided with some (but not significant)
loss in the probability of success for the factoring algorithm.

120

Preparing the State

We are given an implementation of the function f as a unitary operator
Uf

|x〉

|0〉

|x〉

|f (x)〉
Uf Where, now, each of the two input

wires represents n distinct qubits

Writing |Ψ〉 for the state

H⊗n|0n〉 =
1

2n/2

2n−1∑
x=0

|x〉.

We have,

Uf |Ψ〉|0n〉 =
1

2n/2

2n−1∑
x=0

|x〉|f (x)〉.

121

First Measurement

We measure the second n qubits of the state Uf |Ψ〉|0n〉 and get a value
f0. The state after measurement is:

(1√
m

m−1∑
k=0

|x0 + kr〉
)
|f0〉.

where:
x0 is the least value such that f (x0) = f0
r is the period of the function f
m = b 2

n

r c.

122

Applying the QFT

We apply the n-qubit quantum Fourier transform to the first n bits of the
transformed state.

D
(1√

m

m−1∑
k=0

|x0 + kr〉
)

= 1
2n/2

2n−1∑
y=0

1√
m

m−1∑
k=0

ω(x0+kr)y |y〉

=
2n−1∑
y=0

ωx0y 1
2n/2
√
m
(m−1∑

k=0

ωkry)|y〉.
where ω = e2πi/2n

.

123

Second Measurement

The probability of observing a given state |y〉 is:

1
2nm

∣∣∣∣∣
m−1∑
k=0

ωkry

∣∣∣∣∣
2

.

This probability function has peaks when ry/2n is close to an integer.
Indeed, if ry/2n is an integer, then with probability 1 we measure a y
that is a multiple of r/2n.

Given an integer multiple of 2n/r , it is not difficult to find r .

124

Exponentiation

To complete the factoring algorithm, we need to check that we can also
implement the unitary transform Uf for the particular function

fa(x) = ax mod N.

with a number of quantum gates that is polynomial in logN.

This is achieved through repeated squaring.

125

Some Points to Note

The two measurement steps can be combined at the end, with the
Fourier transform applied before the measurement of f (x).

The probability of successfully finding the period in any run of the
algorithm is only about 0.4.
However, this means a small number of repetitions will suffice to find the
period with high probability.

Putting a lower bound on the conditional phase shift we are allowed to
perform affects the probability of success, but not the rest of the
algorithm.

126

Quantum Computing
Lecture 8

Quantum Automata and Complexity

Anuj Dawar

127

Models of Computation

Shor’s algorithm solves, in polynomial time, a problem for which no
classical, deterministic polynomial time algorithm is known.

What class of problems are solvable by quantum machines in polynomial
time?

More generally, how does quantum parallelism compare with other forms
of parallelism and nondeterminism.

How does the quantum model of computation affect our understanding
of complexity classes?

128

Finite State Systems

aa

b

b This automaton accepts the set of
strings that contain at least one b.

Its operation can be described by a pair
of matrices.

Ma =

[
1 0
0 1

]
Mb =

[
0 0
1 1

]
MbMbMa describes the operation on states performed by reading the
string abb.

129

DFAs and Matrices

Each DFA is specified by a collection of n × n matrices, where n is the
number of states in the DFA, and there is one matrix for each letter.

Each column of each matrix is a unit vector with 0, 1 entries.

More generally, we can form a matrix Mw for each word w .
Multiplication of matrices corresponds to concatenation of
words.

Mw |i〉 = |j〉 if there is a path labelled w from state i to state j .

130

Nondeterministic Automata

aa

b b

b This automaton accepts the same set
of strings as the deterministic one.

The columns of the corresponding ma-
trices are no longer unit vectors.

Ma =

[
1 0
0 1

]
Mb =

[
1 0
1 1

]

131

NFAs and Matrices

Mbb =

[
1 0
2 1

]

Mw (i , j) gives the number of paths labeled w from state i to state j .

Mw |i〉 =
∑

j

Mw (i , j)|j〉

132

Probabilistic Automata

We obtain probabilistic automata if we allow fractional values in Mσ.
with the proviso that each column adds up to 1.

E.g. Ma =

[
0.5 0.0
0.5 1.0

]
Mb =

[
0.8 0.2
0.2 0.8

]

MaMb =

[
0.4 0.1
0.6 0.9

]
gives, in position (i , j) the proba-
bility that string ba takes you from
state i to state j .

133

Language Accepted

A probabilistic automaton A accepts a language L with certainty if

P(A accepts w) =

{
1 if w ∈ L
0 if w 6∈ L

A accepts a language L with bounded probability if there is an ε < 1/2
such that:

P(A accepts w) =

{
> 1− ε if w ∈ L
< ε if w 6∈ L

The class of languages accepted by probabilistic automata (under either
definition) is the regular languages.

134

Quantum Automata

Quantum finite automata are obtained by letting the matrices Mσ have
complex entries.

We also require each of the matrices to be unitary.

E.g. Mσ =

[
−1 0
0 i

] Mσ is unitary since the sum of the
squares of the norms in each col-
umn adds up to 1 and the dot prod-
uct of any two columns is 0.

NB: If all matrices only have 0 or 1 entries and the matrices are unitary
(i.e., the matrices are permutation matrices), then the automaton is
deterministic and reversible.

135

Acceptance Probabilities

If q is the starting state of the automaton,

Mw |q〉

is the state after reading w . If

αj = 〈j |Mw |q〉

then αj is the probability amplitude that the automaton reaches state j .

|αj |2 is the probability that a measurement will result in state
qj .∑

j∈F |αj |2 is the probability that the automaton accepts the
string w.

136

Language Accepted

We can define language acceptance exactly or by bounded probability.

Because of the reversibility requirement, quantum automata are quite a
weak model.

There are regular languages that cannot be accepted by a QFA.

However, QFAs may be much more succinct than their classical
counterparts.

137

Interference

Consider the automaton in a one letter alphabet defined as:

q0 q1

1√
2

1√
2

1√
2

− 1√
2

Ma =

[
1√
2

1√
2

−1√
2

1√
2

]

Maa =

[
0 1
−1 0

] While there are two distinct paths labelled
aa from q0 back to itself, and each has non-
zero probability, the net probability of end-
ing up in q0 is 0.

The automaton accepts a string of odd length with probability 0.5 and a
string of even length with probability 1 if its length is not a multiple of 4
and probability 0 otherwise. 138

Turing Machines

A Turing machine, in addition to the finite set of states in the automaton
has an infinite read-write tape.

A machine is determined by an alphabet Σ, a finite set of states Q and a
transition function δ which gives, for each state and symbol: a next state,
a replacement symbol and a direction in which to move the tape head.

A machine has infinitely many possible configurations (reserving the word
“state” for a member of Q).
Each configuration c is determined by a state, the contents of the tape
(a finite string) and the position of the head.

139

Configurations and Computations

If c0 is the configuration in the starting state, with w on the tape and the
tape head at the left end of the string, w is accepted if the computation

c0 → c1 → · · · → cf

eventually reaches an accepting state.
If the length of the computation is bounded by a polynomial in the length
of w , the language accepted by the machine is in P.

The action of the Turing machine can equivalently be described as a
linear operator M on an infinite-dimensional space.
The set of configurations form a basis for the space.

140

Nondeterministic Turing Machines

In a nondeterministic machine, δ determines, for each state and symbol,
a set of next moves.
This gives rise to a tree of configurations:

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

A configuration may occur in several places
in the tree.

The initial string w is accepted by the ma-
chine if there is some path through the tree
leading to an accepting state.

If the height of the tree is bounded by a polynomial in the length of w ,
then the language is in NP

141

Probabilistic Machines

With a probabilistic machine, δ defines, for each current state and
symbol, a probability distribution over the possible next moves.

The action of the machine can be defined as an infinite matrix, where the
rows and columns are configurations, and each column adds up to 1.

However, how much information can be encoded in a single entry?
We require the entries α to be feasibly computable. That is, there is a
feasibly computable f such that:

|f (n)− α| < 2−n

142

BPP

BPP is the collection of languages L for which there is a probabilistic
machine M, running in polynomial time with:

P(M accepts w) =

{
> 2

3 if w ∈ L
< 1

3 if w 6∈ L

The class of languages is unchanged if we replace 2
3 and 1

3 by 1− ε and
ε, for any ε < 1

2 , or indeed the set of all feasibly computable probabilities
with {0, 1

2 , 1}.

The only inclusion relations we know are P⊆NP and P⊆BPP.

Primality testing, long known to be in NP and in BPP was shown in 2002
to be in P.

143

Quantum Turing Machines

With a Quantum Turing machine, δ associates with each state and
symbol, and each possible next move, a complex probability amplitude
(which we require to be a feasible complex number).

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

α0

α1

α2

The machine can be seen as progressing
through a series of stages, each of which
is a superposition of configurations.

Note that the probability of c7 occurring at
time 2 may be less than the sum of the prob-
abilities along the two paths.

We also require that the linear transforma-
tion defined by the machine is unitary.

144

BQP

BQP is the collection of languages L recognised by a quantum Turing
machine, running in polynomial time, under the bounded probability rule.

The class BQP is not changed if we restrict the set of possible
amplitudes to {0,± 3

5 ,±
4
5 , 1}.

BPP ⊆ BQP

Shor’s algorithm shows that the factorisation problem is in BQP.
It is not known to be in BPP.

145

Complexity Classes

P

NP

NP − C

BPP

BQP

PSPACE
factorisation

Inclusion relations among the complexity classes as we know them.

146

	notes
	slides1

	slides1
	notes
	slides2
	slides3
	slides4
	slides5
	slides6
	slides7
	slides8

