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Lecture 5: Quantum Information Applications

1. Verify that the four states on slide 83 form an orthonormal basis for C4.

Let |h0〉 = 1√
2
(|0〉 + |1〉) and |h1〉 = 1√

2
(|0〉 − |1〉). Write the four Bell

states in the basis |h0h0〉, |h0h1〉, |h1h0〉, |h1h1〉.

2. Write the unitary operator depicted in the circuit on slide 84 in matrix
form. Do the same for the circuit on slide 87. Verify that the two matrices
are inverses of each other.

3. Suppose that Eve intercepts the qubit transmitted by Alice in the su-
perdense coding protocol. Can she infer which of the four pairs of bits
00, 01, 10, or 11 Alice was trying to transmit? If so, how? If not, why
not?

4. Verify the four identities on slide 90 for an arbitrary |θ〉 = α|0〉+ β|1〉.

Lecture 6: Quantum Search

5. The purpose of this exercise is to verify the claim on slide 99, that the
cZ⊗n operator can be implemented using the cZ gate and Toffoli gates.
Show that you can implement such a circuit which takes n input bits,
along with n− 2 work bits, which may be assumed to be all in the state
|0〉 and the result of which is to apply cZ⊗n to the n input bits and restore
the work bits to the state |0〉. (Hint: Use Toffoli gates to form the And of
n− 1 of the bits on the workbits and use this as a control for a cZ gate.)

6. Suppose a search problem has M solutions out of N possibilities. We refer
to the solutions as “marked states”. Let |α〉 be an equal superposition of
all unmarked states, and let |β〉 be an equal superposition of all marked
states. Let sin θ =

√
M/N .

(a) Show that the superposition of all computational basis states, |Ψ〉
can be written as

|Ψ〉 = cos θ|α〉+ sin θ|β〉.

(b) Show that in the |α〉, |β〉 basis, we can write the Grover iterate as

G =

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)
.
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(c) Hence, determine the eigenvalues of G in terms of θ.

7. Suppose we apply Grover’s algorithm to a 4 qubit register, assuming ex-
actly one of the states is marked. What is the probability of measuring
the marked state after applying the Grover iterate 0,1,2,3 times? Note, 4
is too small a value for the approximation θ ∼ sin θ to work.

Lecture 7: Quantum Factoring

8. Find the period of the function f(x) = 10x (mod 21). Use this to factor
21.

9. Discrete Fourier Transform

(a) Verify that the matrix on slide 115 correctly implements the discrete
Fourier transform as described on slide 114.

(b) (The exercise on slide 116). Verify that the D as given on slide 115
is unitary, and the matrix on slide 116 is the inverse of D.

(c) What is the matrix representation of the quantum Fourier transform
acting on one qubit?

10. (The exercise on slide 118). Verify the formula given on slide 118 for the
quantum Fourier transform of a basis state described by a binary string
x1 · · ·xn.

11. Verify that the circuit described on slide 119 implements the transform
as described on slide 118.

12. Consider the probability of measuring a state |y〉 calculated on slide 124.

• Taking n = 5 and r = 6, calculate the probability of measuring the
states y = 1 and y = 5.

• Show that if 2n/r is an integer, there are r distinct states |y〉 for which
yr/2n is an integer. Show that the probability that a measurement
will yield one of these states is 1.

Lecture 8: Automata and Complexity

13. The matrices defining probabilistic automata, as defined on slide 133,
have the property that the entries in each column add up to 1. Prove
that this property is preserved under matrix multiplication.

14. Prove that there is no two-state probabilistic automaton with the be-
haviour described at the bottom of slide 138: i.e. it accepts odd length
strings with probability 0.5, strings of length 2(mod4) with probability 1
and strings of length 0(mod4) with probability 0. Describe a probabilis-
tic automaton that exhibits this behaviour.

15. Consider a quantum finite automaton with two basis states, |0〉 being the
start state and |1〉 the only accepting state. The automaton operates
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on a two letter alphabet, with matrices Ma =

[
1√
2

1√
2

1√
2
−1√
2

]
and Mb =[

1 0
0 1

]
. Give a complete description of the probabilities of acceptance

associated with various possible input strings.

16. Probability amplification Suppose M is a quantum Turing machine
that accepts a language L in the bounded probability sense: for each
string w ∈ L, there is a probability > 2

3 that M is observed in an accepting
state after reading w and for each string w 6∈ L, there is a probability < 1

3
that M is observed in an accepting state after reading w. We define a
new machine M ′ that, on input w makes three independent runs of M
on input w and decides acceptance by majority. What is the probability
that M ′ accepts w ∈ L? What about w 6∈ L?
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