Probability and Computation: Problem sheet 5

You are encouraged to submit your solutions by emailing them to luca.zanetti@cl.cam.ac.uk by Wednesday 27th of February.

Question 1. Recall that $\tau(\epsilon)$ refers to the mixing time in total variation distance, while $\tau_2(\epsilon)$ refers to the mixing time in ℓ_2 -norm. Prove that,

$$\tau(2\epsilon) \le \tau_2(\epsilon).$$

To prove it you might need Jensen's inequality: $\psi(\mathbf{E}[X]) \leq \mathbf{E}[\psi(X)]$ for any convex function ψ .

We have also mentioned in class that $\tau_2(\epsilon) = O(\tau(2\epsilon)\log(1/\pi_*))$, where $\pi_* = \min_x \pi(x)$. Can you find an example where this logarithmic factor is needed?

Question 2. The d-dimensional hypercube is an undirected graph G = (V, E) such that V can be represented as the set of binary strings of length d, i.e., $V = \{0,1\}^d$, and $\{x,y\} \in E$ if and only if x and y differ by exactly one bit.

- 1. Compute |V| and |E|.
- 2. Prove that G has conductance $O(1/\log(|V|))$.

Question 3. Let G be a graph of 2n vertices that consists in two complete graphs of n vertices, connected by a perfect matching (see picture below). Notice this is a regular graph of degree n and its edge-set can be described as follows:

$$E = \{\{u, v\} : u, v \in \{1, \dots, n\} \ s.t. \ u \neq v\} \bigcup \{\{u, v\} : u, v \in \{n+1, \dots, 2n\} \ s.t. \ u \neq v\} \bigcup \{\{u, v\} : v = u + n, \ for \ u = 1, \dots, n\}.$$

1. What is the conductance of G?

2. Prove that $1 - \lambda_2 = O(1/n)$, which implies that the mixing time of G is at least $\Omega(n)$.

Question 4. Use the variational characterisation to show that a cycle on n vertices has spectral gap $1 - \lambda = O(n^{-2})$. To obtain such a result, we suggest you look at the proof for the lower bound of the spectral gap in regular graphs and understand why such a proof gives us an asymptotically tight result for the cycle.

Question 5. Prove the claim made in Lecture 10: for a regular undirected graph with degree d and diameter δ ,

$$d \cdot \delta = O(n).$$

Question 6. (Bonus) In this exercise you are asked to prove the variational characterisation of the spectral gap. Let P be a self-adjoint transition matrix with stationary distribution π and eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$.

1. The first step consists mainly in a few algebraic manipulations. Prove that, for any nonzero $f: \Omega \to \mathbb{R}$,

$$\langle f, (I-P)f \rangle_{\pi} = \frac{1}{2} \sum_{x,y \in \Omega} (f(x) - f(y))^2 P(x,y)\pi(x)$$

2. Now use the spectral theorem to prove that, for any f such that $f \perp 1$,

$$\langle f, (I-P)f \rangle_{\pi} \ge (1-\lambda_2) \|f\|_{2,\pi}^2$$

3. Finally, prove that for an eigenvector f_2 with eigenvalue λ_2 and unit norm,

$$\langle f_2, (I-P)f_2 \rangle_{\pi} = 1 - \lambda_2$$

and argue that this proves the variational characterisation.

4. Modify the proof above to show a variational characterisation for λ_n :

$$1 - \lambda_n = \max_{f \neq 0} \frac{\sum_{x,y \in \Omega} (f(x) - f(y))^2 P(x,y) \pi(x)}{2 \|f\|_{2,\pi}^2}$$

Question 7. Use the variational characterisations proved in the previous exercise to solve Question 5 of Problem Sheet 4.

Hints

- **Q2.2:** Look at the "dimension cut" $S = \{x \in V : x_1 = 0\}.$
- **Q3.2:** Construct a function f which is constant on each complete subgraph, but has opposite sign on the two. Use this f to obtain an upper bond on the spectral gap using the variational characterisation.
- **Q6.2:** First deduce from the spectral theorem (more precisely from the corollaries seen in the lecture), that for any $f \perp 1$, $||f||_{2,\pi}^2 = \sum_{i=2}^n \langle f, f_i \rangle_{\pi}^2 f_i$, where $\{1, f_2, \ldots, f_n\}$ is an orthonormal set of eigenvectors for P. You also need to use the linearity of the inner product.