
Probability and Computation: Problem sheet 5

You are encouraged to submit your solutions by emailing them to
luca.zanetti@cl.cam.ac.uk by Wednesday 27th of February.

Question 1. Recall that τ(ε) refers to the mixing time in total variation distance, while τ2(ε) refers to
the mixing time in `2-norm. Prove that,

τ(2ε) ≤ τ2(ε).

To prove it you might need Jensen’s inequality: ψ(E[X ]) ≤ E[ψ(X) ] for any convex function ψ.
We have also mentioned in class that τ2(ε) = O(τ(2ε) log(1/π∗)), where π∗ = minx π(x). Can you

find an example where this logarithmic factor is needed?

Question 2. The d-dimensional hypercube is an undirected graph G = (V,E) such that V can be repre-
sented as the set of binary strings of length d, i.e., V = {0, 1}d, and {x, y} ∈ E if and only if x and y
differ by exactly one bit.

1. Compute |V | and |E|.

2. Prove that G has conductance O(1/ log(|V |)).

Question 3. Let G be a graph of 2n vertices that consists in two complete graphs of n vertices, connected
by a perfect matching (see picture below). Notice this is a regular graph of degree n and its edge-set can
be described as follows:

E ={{u, v} : u, v ∈ {1, . . . , n} s.t. u 6= v}
⋃
{{u, v} : u, v ∈ {n+ 1, . . . , 2n} s.t. u 6= v}⋃

{{u, v} : v = u+ n, for u = 1, . . . , n}.

1. What is the conductance of G?

2. Prove that 1− λ2 = O(1/n), which implies that the mixing time of G is at least Ω(n).

Question 4. Use the variational characterisation to show that a cycle on n vertices has spectral gap
1 − λ = O(n−2). To obtain such a result, we suggest you look at the proof for the lower bound of the
spectral gap in regular graphs and understand why such a proof gives us an asymptotically tight result for
the cycle.
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Question 5. Prove the claim made in Lecture 10: for a regular undirected graph with degree d and
diameter δ,

d · δ = O(n).

Question 6. (Bonus) In this exercise you are asked to prove the variational characterisation of the
spectral gap. Let P be a self-adjoint transition matrix with stationary distribution π and eigenvalues
λ1 ≥ · · · ≥ λn .

1. The first step consists mainly in a few algebraic manipulations. Prove that, for any nonzero
f : Ω→ R,

〈f, (I − P )f〉π =
1

2

∑
x,y∈Ω

(f(x)− f(y))2P (x, y)π(x)

2. Now use the spectral theorem to prove that, for any f such that f ⊥ 1,

〈f, (I − P )f〉π ≥ (1− λ2)‖f‖22,π

3. Finally, prove that for an eigenvector f2 with eigenvalue λ2 and unit norm,

〈f2, (I − P )f2〉π = 1− λ2

and argue that this proves the variational characterisation.

4. Modify the proof above to show a variational characterisation for λn:

1− λn = max
f 6=0

∑
x,y∈Ω(f(x)− f(y))2P (x, y)π(x)

2‖f‖22,π

Question 7. Use the variational characterisations proved in the previous exercise to solve Question 5
of Problem Sheet 4.
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Hints

Q2.2: Look at the “dimension cut” S = {x ∈ V : x1 = 0}.

Q3.2: Construct a function f which is constant on each complete subgraph, but has opposite sign on the
two. Use this f to obtain an upper bond on the spectral gap using the variational characterisation.

Q6.2: First deduce from the spectral theorem (more precisely from the corollaries seen in the lecture), that
for any f ⊥ 1, ‖f‖22,π =

∑n
i=2〈f, fi〉2πfi, where {1, f2, . . . , fn} is an orthonormal set of eigenvectors

for P . You also need to use the linearity of the inner product.
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