Probability and Computation: Problem sheet 5

You are encouraged to submit your solutions by emailing them to luca.zanetti@cl.cam.ac.uk by Wednesday 27th of February.

Question 1. Recall that $\tau(\epsilon)$ refers to the mixing time in total variation distance, while $\tau_{2}(\epsilon)$ refers to the mixing time in ℓ_{2}-norm. Prove that,

$$
\tau(2 \epsilon) \leq \tau_{2}(\epsilon)
$$

To prove it you might need Jensen's inequality: $\psi(\mathbf{E}[X]) \leq \mathbf{E}[\psi(X)]$ for any convex function ψ.
We have also mentioned in class that $\tau_{2}(\epsilon)=O\left(\tau(2 \epsilon) \log \left(1 / \pi_{*}\right)\right)$, where $\pi_{*}=\min _{x} \pi(x)$. Can you find an example where this logarithmic factor is needed?

Question 2. The d-dimensional hypercube is an undirected graph $G=(V, E)$ such that V can be represented as the set of binary strings of length d, i.e., $V=\{0,1\}^{d}$, and $\{x, y\} \in E$ if and only if x and y differ by exactly one bit.

1. Compute $|V|$ and $|E|$.
2. Prove that G has conductance $O(1 / \log (|V|))$.

Question 3. Let G be a graph of $2 n$ vertices that consists in two complete graphs of n vertices, connected by a perfect matching (see picture below). Notice this is a regular graph of degree n and its edge-set can be described as follows:

$$
\begin{aligned}
E= & \{\{u, v\}: u, v \in\{1, \ldots, n\} \text { s.t. } u \neq v\} \bigcup\{\{u, v\}: u, v \in\{n+1, \ldots, 2 n\} \text { s.t. } u \neq v\} \\
& \bigcup\{\{u, v\}: v=u+n, \text { for } u=1, \ldots, n\} .
\end{aligned}
$$

1. What is the conductance of G ?
2. Prove that $1-\lambda_{2}=O(1 / n)$, which implies that the mixing time of G is at least $\Omega(n)$.

Question 4. Use the variational characterisation to show that a cycle on n vertices has spectral gap $1-\lambda=O\left(n^{-2}\right)$. To obtain such a result, we suggest you look at the proof for the lower bound of the spectral gap in regular graphs and understand why such a proof gives us an asymptotically tight result for the cycle.

Question 5. Prove the claim made in Lecture 10: for a regular undirected graph with degree d and diameter δ,

$$
d \cdot \delta=O(n)
$$

Question 6. (Bonus) In this exercise you are asked to prove the variational characterisation of the spectral gap. Let P be a self-adjoint transition matrix with stationary distribution π and eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$.

1. The first step consists mainly in a few algebraic manipulations. Prove that, for any nonzero $f: \Omega \rightarrow \mathbb{R}$,

$$
\langle f,(I-P) f\rangle_{\pi}=\frac{1}{2} \sum_{x, y \in \Omega}(f(x)-f(y))^{2} P(x, y) \pi(x)
$$

2. Now use the spectral theorem to prove that, for any f such that $f \perp 1$,

$$
\langle f,(I-P) f\rangle_{\pi} \geq\left(1-\lambda_{2}\right)\|f\|_{2, \pi}^{2}
$$

3. Finally, prove that for an eigenvector f_{2} with eigenvalue λ_{2} and unit norm,

$$
\left\langle f_{2},(I-P) f_{2}\right\rangle_{\pi}=1-\lambda_{2}
$$

and argue that this proves the variational characterisation.
4. Modify the proof above to show a variational characterisation for λ_{n} :

$$
1-\lambda_{n}=\max _{f \neq 0} \frac{\sum_{x, y \in \Omega}(f(x)-f(y))^{2} P(x, y) \pi(x)}{2\|f\|_{2, \pi}^{2}}
$$

Question 7. Use the variational characterisations proved in the previous exercise to solve Question 5 of Problem Sheet 4.

Hints

Q2.2: Look at the "dimension cut" $S=\left\{x \in V: x_{1}=0\right\}$.
Q3.2: Construct a function f which is constant on each complete subgraph, but has opposite sign on the two. Use this f to obtain an upper bond on the spectral gap using the variational characterisation.

Q6.2: First deduce from the spectral theorem (more precisely from the corollaries seen in the lecture), that for any $f \perp 1,\|f\|_{2, \pi}^{2}=\sum_{i=2}^{n}\left\langle f, f_{i}\right\rangle_{\pi}^{2} f_{i}$, where $\left\{1, f_{2}, \ldots, f_{n}\right\}$ is an orthonormal set of eigenvectors for P. You also need to use the linearity of the inner product.

