Probability and Computation: Problem sheet 4 Solutions

You are encouraged to submit your solutions by emailing them to
luca.zanetti@cl.cam.ac.uk by Wednesday 20th of February.

Question 1. Let (X;);>1 be independent random variables with P[ X, =1] = P[X; = —1] = 1/2. Let
Sp =1 o Xp, with Xo =K >0. For N > K define
T=Tyny=min{n>0:S5,=0o0rS, =N}
1. Prove that E[T] < oo (you cannot use the OST).

2. Find a deterministic sequence of values a, € R such that Z, = S2 + a, S, is a martingale w.r.t.
Xo, X4, ...

3. Find deterministic sequences by,c, € R such that W, = St + b,5% + ¢, is a martingale w.r.t.
Xo, X4, ...

Solution: 1. Let T” be the first time we win N times in a row. When T” happens we either have that
St > N or not. If Spr > N it means that at some time ¢t < 7" we had S; = N. If Sp» < N then
St/_n < 0 then at some time t < 7" — N we had S; = 0. In both cases it exist some ¢ < T" such that
S =0or S; = N, therefore T < T'. The expectation of 7" was computed in Question 6 of the previous
problem sheet.

2. Clearly Z, is a function of Xy,..., X, and |Z,| < n3 + |a,|n, which check the first two parts of
the definition of a martingale. We need to find a,, such that

E[Zni1|Xo, ..., Xn] = Zy.
note that
S3 1= (S + Xnt1)* + an(Sn + Xpi1) = S5 + 382X, 41 + 38, X2, 1 + X3,

Note that X2, ; =1 and X2, = X,,41, then

E[Zn,1|Xo0,..., X, ] =52 +3S5, + any1Sn (1)
we want to force Z, = SS’L + 35, + ap+1Sn, which implies that a,, = 3 + a,4+1. The solutions of the
recursion for a,, is a, = —3n + ag. We just set the initial value ag = 0. Therefore Z,, = S3 — 3nS,, is a
martingale

3. W, is a function of Xy,..., X, and |W,| < n* + |b,|n? + |c,|, which check the first two parts of
the definition of a martingale.

We proceed to check that E[W,,11|Xo,. .., X, ] = W, for some values of b,, and ¢,,.

Using that X2 =1 and X2**! = X,, for k > 0, then

Sii1=(Sn+ Xns1)* = Sp +4S3 X, 1 + 652 + 48, X1 + 1,

and
S2 =52 425,Xpi1 + 1.

Hence

E[Wn+1|X07 R ;Xn] = S;’lb + (6 + bn+1)S1?L + (1 + bn+1 + cn+1) = Si + bnS?I + cn
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This suggest that b, = 6 4+ b,41 and ¢, = 1 + ¢41 + bpg1. Clearly b, = —6n + by, so we choose
bp = 0. Then ¢,, =1 — 6n + ¢,41, hence

n

Cn —Co = Zci —Ci_1 = Z[G(i— 1) —1] =3n* —4n
i=1

i=1
Again, we choose ¢y = 0 and we conclude that
W, = St —6nS? + (3n? — 4n)

is a martingale

Question 2.
1. Consider out path on vertices {0,..., N}, and suppose Xo = K. Compute hi N
2. Compute the cover time of a path on {0,..., N} when N is even. What about when N is odd?

3. Consider a cycle on vertices {0,1,..., N} where vertez i is adjacent to i + 1, and 0 is adjacent to
N. Compute the cover time.

4. Consider a cycle on vertices {0,1,...,N}. Define T by
T = min{m : U2, X; ={0,...,N}}

T is the first time all vertices has been covered. Compute P| Xp =i|Xo=0] forie {l,...,N}.

Solution: 1. A random walk on the path can be seen as a folded version of a random walk on Z where
we associate point —k with point k. Let S, = >_" | X; be a random walk on Z starting from K (recall
that X; are independent, P[X; = 1] =P[X; =—-1] =1/2, and X, =0.)

Therefore, the problem of computing h g, n is equivalent to the problem to finding E[Ty_ n|So = K |.
It was shown in class that this is equivalent to E[Tpon|S, = N+ K] = (N + K)2N — (N + K)) =
(N+K)(N-K)

2. Starting from K we need to hit either 0 or N which takes K(N — K) times in expectation. Later
from one of the extremes we need to hit the other extreme which takes N2 times. Then, the total time
to cover the graph is N2 + K(N — K). Recall the cover time is considered over the worst starting point,
so maximizing K we get that the cover time is N? + [ N/2|[N/2]

3. First of all, note that the set of covered vertices is a path in the cycle. Second, note when we just
discover a new vertex this is one of the extreme points of the path. Third, we can always relabel the
vertices of the cycle, so the set of cover vertices is {0,1,..., K} and the last discovered vertex is K. The
expected time to discover a new vertex is equivalent the expected time to move outside this path. As a
random walk problem this is equivalent to E[T_1 g+1|So = K] = K +1. Now we just need to sum from
K =0 to n — 1 which equals n(n —1)/2.

4. We will prove that P[ Xy =i|Xo=0] = 1/N. For that, note that before hitting vertex i we
are either in vertex ¢ — 1 or vertex ¢ + 1 ( mod N). Without lost of generality, suppose we hit vertex
i — 1 before vertex i + 1 (otherwise just rename all the vertices). Then if 7 is the last vertex we hit,
we have to hit ¢ + 1 before vertex ¢ starting from vertex ¢ — 1. Note this is equivalent to start a path
in 1, and we want to hit NV — 1 before vertex 0. In lectures we analysed that problem and deduced
that such a probability is 1/(IN — 1). Therefore P[ X1 = i|Xo =0] > 1/(N — 1). Since there are N — 1
other vertices besides 0 and for all of them P[Xp =i|Xy =0] > 1/(N — 1), then the only possibility is
thatP[XT = Z|X0 = 0] = 1/(N — 1)

Question 3. Wald’s Equation: Let Xq,..., i.i.d. mon-negative random variables with finite expec-
tation. Let T be a stopping time with respect to this sequence and suppose that E[T] < oo and that

E[|X1]] < 0co. Prove that
T

>,

i=1

E =E[T|E[X,].




Solution: Define Z,, = > | X; —nE[X;] and Zy = 0. Then Z, is a martingale w.r.t Xq,...,X,,.
Clearly, Z,, is a function of X;,...,X,,. Also

E[|Z,]] < 2nE[|X1]] < cc.

Finally,

E[Z71+1|X17---7Xn] = Zn +E[Xn+1 _E[Xl] |X17---7Xn} = va

where in the last equality we use that the X;’s are independent and they have the same distribution and
thus E[Xl] = E[Xn+1 }
Finally, as T is a stopping time, we can use condition iii) of the OST and then

E[Zr]=E[Z)] =0,
but
T
Zr =Y X;-TE[X],

i=1

from which we conclude the result.

Question 4. A weighted undirected graph G = (V, E,w) is defined by a set vertices V', a collection of
edges E CV xV, and a weight function w: V xV — Rxq such that, for any u,v € V, w(u,v) = w(v, u)
and w(u,v) > 0 if and only if (u,v) € E. Self-loops of the kind (u,u) are allowed. A random walk
on G = (V,E,w) is a Markov chain with transition matriz P such that, for any u,v € V, P(u,v) =

w(u,v)/d(w), where d(u) =3 o, w(u, z).
1. What is the stationary distribution of this Markov chain?

2. What does being aperiodic amounts to?

3. Prove that a Markov chain is reversible if and only if it can be represented by a random walk on a
weighted undirected graph.

4. Prove that if P is reversible, then P! is also reversible for any t € N.

Solution:

1. Let 7: V — R such that 7(u) = %. Then, 7 is stationary for P. To prove this, we just
zeV

need to check that 7P = 7. Let u be an arbitrary vertex. Then,

7P)(u) = m(v)P(v,u) = d)P(v,v) w(v,v) = d(v) =x(v
(P = 2 P00 = 2 T ) 2 S A S
where the third equality follows from P(v,u) = w(v,u)/d(v).

2. Being aperiodic for a random walk on an undirected graphs simply means the graph does not
contain bipartite connected components.

3. We start showing that a random walk on an undirected graph is always reversible, i.e., it satisfies
the detailed balance condition: 7(u)P(u,v) = w(v)P(v,u) for any u,v € V. Let u,v be arbitrary
vertices. Then,

d(u) . w(u,v) _ d(v) _ w(v,v)
doevdlz) dw) X cpd(z)  d(v)

where the second equation follows from the fact that, since G is undirected, w(u, v) = w(v, u).

We now show the reverse implication: we are given a transition matrix P on 2 with stationary
distribution 7 such that m(u)P(u,v) = 7(v)P(v,u) for any u,v € Q, and we want to show we
can construct an undirected weighted graph G = (V| E,w) such that P is the transition matrix

m(u)P(u,v) = =7(v)P(v,u)



of a random walk on G. First of all, we choose 2 = V. Then, we construct the weight function
w:V — Rxg as w(u,v) = 7(u)P(u,v), and we set E = {{u,v}: w(u,v) > 0}. We need to show
that w is a proper weight function. Clearly, w is nonnegative and strictly positive exactly on FE.
Moreover, w(u,v) = m(u)P(u,v) = m(v)P(v,u) = w(v,u) since P is reversible. Finally,

w(u) _ 7(u)P(u,v) _ P(u,v)
Zzevw(“vz) ZzEV W(U)P(ua Z) ZzEV P(u,z)

where the last equality follows from the fact that each row of P sum up to 1 (by definition of
transition matrix). Hence, we have shown that a random walk on G has transition matrix P.

= P(u,v),

There are several ways to show this fact. The easiest way is probably to use the fact that P is
reversible if and only if (Pf,g)r = (f, Pg)~ for any f,g € V — R. Hence, we need to show that,
for arbitrary f,g € V — R, (P'f,g)x = (f, Ptg)x:

<Ptfvg>7r: <Pt71f7pg>7r:<Pt72faP2.g>7r:"': <faPtg>7r

where at each step we have applied the reversibility of P.

Question 5. Let P be the transition matriz of a (simple) random walk on an undirected graph G =
(V,E). Let A\y > --- > \,,. Prove the following.

1.

e

A =1,

Ao =1 if and only if the graph is disconnected.

An = —1 if and only if there exists a bipartite connected component.

Suppose now that the random walk is lazy (i.e., P(u,u) > 1/2 for any uw € V). Prove that all the

etgenvalues of P are non-negative.

Solution:

1.

Since the all-one vector is an eigenvector of P with eigenvalue 1, A\; > 1. We just have to show that
we cannot have an eigenvalue strictly greater than 1. Actually, we will show something stronger:
P doesn’t have eigenvalues strictly greater than 1 in absolute value.

Let f be an eigenvector of eigenvalue A for P, i.e., Pf = Af. Take x maximising | f(z)|. Since f is
an eigenvector of eigenvalue A,

Al f ()] = )| < |f(z [f ().

Clearly, f(z) # 0. Therefore, |A| < 1.

We will first show that if G is disconnected, then Ay = 1. Recall the variational characterisation of

)\22
PV D C) b AV (G o
0£fL1

This expression is clearly nonnegative. Hence, we just need to find a nonzero f L 1 such that the
numerator is 0. Since G is disconnected, we can partition V in two sets, S and V' \ S, such that
there are no edges between the two . Then, as long as f is constant on S and V'\ S, the numerator
is 0 (P(z,y) is nonnegative only if there exists an edge between x and y). We just need to be
careful to construct f so that (f,1), = 0. The following is a good choice (check!):

~ ) 1/vol(S) ifuesS
f(u){—l/vol(V\S) ifugs



where vol(S) = > cgd(u) = 2|E| Y, g m(u).
We now show that, if G is connected, Ao < 1. Suppose by contradiction 0 # f L 1 is an eigenvector
of eigenvalue Ay = 1. Again, by ,

Y (@) = fW))PPlaym(z) = D (f(z) = f()*Plz,y)n(z) = 0.

z,Y {:C,y}EE

Therefore, for any {z,y} € E, f(z) = f(y). But notice that 0 = (f,1) = > f(2)7(z) implies
that f must have strictly positive and strictly negative entries. Take u,v € V such that f(u) > 0
and f(v) < 0. Since G is connected, there exists a path u = xg,x1,...,2¢ = v from u to v. But
then, since for any {z,y} € E f(z) = f(y), we have that 0 > f(u) = f(xg) = f(x1) = - f(ze) =
f(v) <0, reaching a contradiction.

. Without loss of generality, we assume G is connected and prove that P has eigenvalue —1 if and only
if G is bipartite. This is without loss of generality because if G were disconnected, the eigenvalues
of P would simply be the union of the eigenvalues of the transition matrices of the simple random
walks in each one of the connected component of G. First we assume that G is bipartite and prove
it has eigenvalue —1. Recall that a graph is bipartite if it can be partitioned in two sets S and V'\ S
such that no edge connect two vertices in S or two vertices in V' \ S (i.e., it has a cut containing
all the edges in the graph). Assuming such S and V' \ S exist, we construct a function f: V" — R

as follows:
1 fuels
flu) = .
-1 ifu¢gs

We claim this function is an eigenvector of eigenvalue —1 for P. Let u € S. then,

PHwW) =3 Plu,0)f@) =3 Plu,v) =Y Py =— 3 ﬁ — 1= f(u),

veV vES vgS v: {u,v}EE

where the third equality follows from the fact that all the neighbours of u are in V' \ S and the
fourth follows from w having d(u) neighbours. Analogously, we can prove that (Pf)(u) = —f(u)
for any w € V'\ S. This proves that Pf = —f, which completes one direction of the proof.

For the reverse direction, we assume that P has eigenvalue —1 and prove that G must be bipartite.
Let f (nonzero) such that Pf = —f. We define S = {u € V': f(u) > 0} and we claim that (S, V'\.5)
is a bipartition of the graph such that no edge connects two vertices in S or in V'\ S. To this end,
pick any u € V such that |f(u)| = max,ev |f(v)|. Then,

—fw) = (PHW =Y P = Y A Q

veV v: {u,v}EE

But since u has only d(u) neighbours and |f(u)| achieves the maximum of f in absolute value,
f(v) = —f(u) for any v such that {u,v} € E. Therefore, since G is connected, we have proved
that |f(u)| = |f(v)] # 0 for any v € V. Hence, (3) must hold for any v € V. This implies that, for
any {u,v} € E, f(u) = —f(v). Therefore, u € S and v € S, or vice versa. In other words, we have
proved we can partition V in two sets such that no edge connects two vertices in the same set, i.e.,
G is bipartite.

. Since P is lazy, P = (I + P’) where I is the identity matrix and P’ is the transition matrix of a
lazy random walk on G. We proved above that the eigenvalues of P’ are between 1 and —1. Hence,
A(P) =3+ 2N, (P)>0.




