Probability and Computation: Problem sheet 4 Solutions

You are encouraged to submit your solutions by emailing them to luca.zanetti@cl.cam.ac.uk by Wednesday 20th of February.

Question 1. Let $\left(X_{i}\right)_{i \geq 1}$ be independent random variables with $\mathbf{P}\left[X_{i}=1\right]=\mathbf{P}\left[X_{i}=-1\right]=1 / 2$. Let $S_{n}=\sum_{i=0}^{n} X_{n}$, with $X_{0}=K>0$. For $N>K$ define

$$
T=T_{0, N}=\min \left\{n \geq 0: S_{n}=0 \text { or } S_{n}=N\right\}
$$

1. Prove that $\mathbf{E}[T]<\infty$ (you cannot use the $O S T$).
2. Find a deterministic sequence of values $a_{n} \in \mathbb{R}$ such that $Z_{n}=S_{n}^{3}+a_{n} S_{n}$ is a martingale w.r.t. X_{0}, X_{1}, \ldots
3. Find deterministic sequences $b_{n}, c_{n} \in \mathbb{R}$ such that $W_{n}=S_{n}^{4}+b_{n} S_{n}^{2}+c_{n}$ is a martingale w.r.t. X_{0}, X_{1}, \ldots

Solution: 1. Let T^{\prime} be the first time we win N times in a row. When T^{\prime} happens we either have that $S_{T^{\prime}} \geq N$ or not. If $S_{T^{\prime}} \geq N$ it means that at some time $t<T^{\prime}$ we had $S_{t}=N$. If $S_{T^{\prime}}<N$ then $S_{T^{\prime}-N}<0$ then at some time $t<T^{\prime}-N$ we had $S_{t}=0$. In both cases it exist some $t<T^{\prime}$ such that $S_{t}=0$ or $S_{t}=N$, therefore $T<T^{\prime}$. The expectation of T^{\prime} was computed in Question 6 of the previous problem sheet.
2. Clearly Z_{n} is a function of X_{0}, \ldots, X_{n} and $\left|Z_{n}\right| \leq n^{3}+\left|a_{n}\right| n$, which check the first two parts of the definition of a martingale. We need to find a_{n} such that

$$
\mathbf{E}\left[Z_{n+1} \mid X_{0}, \ldots, X_{n}\right]=Z_{n}
$$

note that

$$
S_{n+1}^{3}=\left(S_{n}+X_{n+1}\right)^{3}+a_{n}\left(S_{n}+X_{n+1}\right)=S_{n}^{3}+3 S_{n}^{2} X_{n+1}+3 S_{n} X_{n+1}^{2}+X_{n+1}^{3}
$$

Note that $X_{n+1}^{2}=1$ and $X_{n+1}^{3}=X_{n+1}$, then

$$
\begin{equation*}
\mathbf{E}\left[Z_{n+1} \mid X_{0}, \ldots, X_{n}\right]=S_{n}^{3}+3 S_{n}+a_{n+1} S_{n} \tag{1}
\end{equation*}
$$

we want to force $Z_{n}=S_{n}^{3}+3 S_{n}+a_{n+1} S_{n}$, which implies that $a_{n}=3+a_{n+1}$. The solutions of the recursion for a_{n} is $a_{n}=-3 n+a_{0}$. We just set the initial value $a_{0}=0$. Therefore $Z_{n}=S_{n}^{3}-3 n S_{n}$ is a martingale
3. W_{n} is a function of X_{0}, \ldots, X_{n} and $\left|W_{n}\right| \leq n^{4}+\left|b_{n}\right| n^{2}+\left|c_{n}\right|$, which check the first two parts of the definition of a martingale.

We proceed to check that $\mathbf{E}\left[W_{n+1} \mid X_{0}, \ldots, X_{n}\right]=W_{n}$ for some values of b_{n} and c_{n}.
Using that $X_{n}^{2 k}=1$ and $X_{n}^{2 k+1}=X_{n}$ for $k \geq 0$, then

$$
S_{n+1}^{4}=\left(S_{n}+X_{n+1}\right)^{4}=S_{n}^{4}+4 S_{n}^{3} X_{n+1}+6 S_{n}^{2}+4 S_{n} X_{n+1}+1
$$

and

$$
S_{n+1}^{2}=S_{n}^{2}+2 S_{n} X_{n+1}+1
$$

Hence

$$
\mathbf{E}\left[W_{n+1} \mid X_{0}, \ldots, X_{n}\right]=S_{n}^{4}+\left(6+b_{n+1}\right) S_{n}^{2}+\left(1+b_{n+1}+c_{n+1}\right)=S_{n}^{4}+b_{n} S_{n}^{2}+c_{n}
$$

This suggest that $b_{n}=6+b_{n+1}$ and $c_{n}=1+c_{n+1}+b_{n+1}$. Clearly $b_{n}=-6 n+b_{0}$, so we choose $b_{0}=0$. Then $c_{n}=1-6 n+c_{n+1}$, hence

$$
c_{n}-c_{0}=\sum_{i=1}^{n} c_{i}-c_{i-1}=\sum_{i=1}^{n}[6(i-1)-1]=3 n^{2}-4 n
$$

Again, we choose $c_{0}=0$ and we conclude that

$$
W_{n}=S_{n}^{4}-6 n S_{n}^{2}+\left(3 n^{2}-4 n\right)
$$

is a martingale

Question 2.

1. Consider out path on vertices $\{0, \ldots, N\}$, and suppose $X_{0}=K$. Compute $h_{K, N}$
2. Compute the cover time of a path on $\{0, \ldots, N\}$ when N is even. What about when N is odd?
3. Consider a cycle on vertices $\{0,1, \ldots, N\}$ where vertex i is adjacent to $i+1$, and 0 is adjacent to N. Compute the cover time.
4. Consider a cycle on vertices $\{0,1, \ldots, N\}$. Define T by

$$
T=\min \left\{m: \cup_{i=0}^{m} X_{i}=\{0, \ldots, N\}\right\}
$$

T is the first time all vertices has been covered. Compute $\mathbf{P}\left[X_{T}=i \mid X_{0}=0\right]$ for $i \in\{1, \ldots, N\}$.

Solution: 1. A random walk on the path can be seen as a folded version of a random walk on \mathbb{Z} where we associate point $-k$ with point k. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ be a random walk on \mathbb{Z} starting from K (recall that X_{i} are independent, $\mathbf{P}\left[X_{i}=1\right]=\mathbf{P}\left[X_{i}=-1\right]=1 / 2$, and $X_{0}=0$.)

Therefore, the problem of computing $h_{K, N}$ is equivalent to the problem to finding $\mathbf{E}\left[T_{N-, N} \mid S_{0}=K\right]$. It was shown in class that this is equivalent to $\mathbf{E}\left[T_{0,2 N} \mid S_{n}=N+K\right]=(N+K)(2 N-(N+K))=$ $(N+K)(N-K)$
2. Starting from K we need to hit either 0 or N which takes $K(N-K)$ times in expectation. Later from one of the extremes we need to hit the other extreme which takes N^{2} times. Then, the total time to cover the graph is $N^{2}+K(N-K)$. Recall the cover time is considered over the worst starting point, so maximizing K we get that the cover time is $N^{2}+\lfloor N / 2\rfloor\lceil N / 2\rceil$
3. First of all, note that the set of covered vertices is a path in the cycle. Second, note when we just discover a new vertex this is one of the extreme points of the path. Third, we can always relabel the vertices of the cycle, so the set of cover vertices is $\{0,1, \ldots, K\}$ and the last discovered vertex is K. The expected time to discover a new vertex is equivalent the expected time to move outside this path. As a random walk problem this is equivalent to $\mathbf{E}\left[T_{-1, K+1} \mid S_{0}=K\right]=K+1$. Now we just need to sum from $K=0$ to $n-1$ which equals $n(n-1) / 2$.
4. We will prove that $\mathbf{P}\left[X_{T}=i \mid X_{0}=0\right]=1 / N$. For that, note that before hitting vertex i we are either in vertex $i-1$ or vertex $i+1(\bmod N)$. Without lost of generality, suppose we hit vertex $i-1$ before vertex $i+1$ (otherwise just rename all the vertices). Then if i is the last vertex we hit, we have to hit $i+1$ before vertex i starting from vertex $i-1$. Note this is equivalent to start a path in 1 , and we want to hit $N-1$ before vertex 0 . In lectures we analysed that problem and deduced that such a probability is $1 /(N-1)$. Therefore $\mathbf{P}\left[X_{T}=i \mid X_{0}=0\right] \geq 1 /(N-1)$. Since there are $N-1$ other vertices besides 0 and for all of them $\mathbf{P}\left[X_{T}=i \mid X_{0}=0\right] \geq 1 /(N-1)$, then the only possibility is that $\mathbf{P}\left[X_{T}=i \mid X_{0}=0\right]=1 /(N-1)$

Question 3. Wald's Equation: Let X_{1}, \ldots, i.i.d. non-negative random variables with finite expectation. Let T be a stopping time with respect to this sequence and suppose that $\mathbf{E}[T]<\infty$ and that $\mathbf{E}\left[\left|X_{1}\right|\right]<\infty$. Prove that

$$
\mathbf{E}\left[\sum_{i=1}^{T} X_{i}\right]=\mathbf{E}[T] \mathbf{E}\left[X_{1}\right] .
$$

Solution: Define $Z_{n}=\sum_{i=1}^{n} X_{i}-n \mathbf{E}\left[X_{1}\right]$ and $Z_{0}=0$. Then Z_{n} is a martingale w.r.t X_{1}, \ldots, X_{n}. Clearly, Z_{n} is a function of X_{1}, \ldots, X_{n}. Also

$$
\mathbf{E}\left[\left|Z_{n}\right|\right] \leq 2 n \mathbf{E}\left[\left|X_{1}\right|\right]<\infty
$$

Finally,

$$
\mathbf{E}\left[Z_{n+1} \mid X_{1}, \ldots, X_{n}\right]=Z_{n}+\mathbf{E}\left[X_{n+1}-\mathbf{E}\left[X_{1}\right] \mid X_{1}, \ldots, X_{n}\right]=Z_{n},
$$

where in the last equality we use that the X_{i} 's are independent and they have the same distribution and thus $\mathbf{E}\left[X_{1}\right]=\mathbf{E}\left[X_{n+1}\right]$.

Finally, as T is a stopping time, we can use condition iii) of the OST and then

$$
\mathbf{E}\left[Z_{T}\right]=\mathbf{E}\left[Z_{0}\right]=0,
$$

but

$$
Z_{T}=\sum_{i=1}^{T} X_{i}-T \mathbf{E}\left[X_{1}\right]
$$

from which we conclude the result.

Question 4. A weighted undirected graph $G=(V, E, w)$ is defined by a set vertices V, a collection of edges $E \subseteq V \times V$, and a weight function $w: V \times V \rightarrow \mathbb{R}_{\geq 0}$ such that, for any $u, v \in V, w(u, v)=w(v, u)$ and $w(u, v)>0$ if and only if $(u, v) \in E$. Self-loops of the kind (u, u) are allowed. A random walk on $G=(V, E, w)$ is a Markov chain with transition matrix P such that, for any $u, v \in V, P(u, v)=$ $w(u, v) / d(u)$, where $d(u)=\sum_{z \in V} w(u, z)$.

1. What is the stationary distribution of this Markov chain?
2. What does being aperiodic amounts to?
3. Prove that a Markov chain is reversible if and only if it can be represented by a random walk on a weighted undirected graph.
4. Prove that if P is reversible, then P^{t} is also reversible for any $t \in \mathbb{N}$.

Solution:

1. Let $\pi: V \rightarrow \mathbb{R}$ such that $\pi(u)=\frac{d(u)}{\sum_{z \in V} d(z)}$. Then, π is stationary for P. To prove this, we just need to check that $\pi P=\pi$. Let u be an arbitrary vertex. Then,

$$
(\pi P)(u)=\sum_{v \in V} \pi(v) P(v, u)=\sum_{v \in V} \frac{d(v) P(v, u)}{\sum_{z \in V} d(z)} \sum_{v \in V} \frac{w(v, u)}{\sum_{z \in V} d(z)}=\frac{d(v)}{\sum_{z \in V} d(z)}=\pi(v)
$$

where the third equality follows from $P(v, u)=w(v, u) / d(v)$.
2. Being aperiodic for a random walk on an undirected graphs simply means the graph does not contain bipartite connected components.
3. We start showing that a random walk on an undirected graph is always reversible, i.e., it satisfies the detailed balance condition: $\pi(u) P(u, v)=\pi(v) P(v, u)$ for any $u, v \in V$. Let u, v be arbitrary vertices. Then,

$$
\pi(u) P(u, v)=\frac{d(u)}{\sum_{z \in V} d(z)} \cdot \frac{w(u, v)}{d(u)}=\frac{d(v)}{\sum_{z \in V} d(z)} \cdot \frac{w(v, v)}{d(v)}=\pi(v) P(v, u)
$$

where the second equation follows from the fact that, since G is undirected, $w(u, v)=w(v, u)$.
We now show the reverse implication: we are given a transition matrix P on Ω with stationary distribution π such that $\pi(u) P(u, v)=\pi(v) P(v, u)$ for any $u, v \in \Omega$, and we want to show we can construct an undirected weighted graph $G=(V, E, w)$ such that P is the transition matrix
of a random walk on G. First of all, we choose $\Omega=V$. Then, we construct the weight function $w: V \rightarrow \mathbb{R}_{\geq 0}$ as $w(u, v)=\pi(u) P(u, v)$, and we set $E=\{\{u, v\}: w(u, v)>0\}$. We need to show that w is a proper weight function. Clearly, w is nonnegative and strictly positive exactly on E. Moreover, $w(u, v)=\pi(u) P(u, v)=\pi(v) P(v, u)=w(v, u)$ since P is reversible. Finally,

$$
\frac{w(u)}{\sum_{z \in V} w(u, z)}=\frac{\pi(u) P(u, v)}{\sum_{z \in V} \pi(u) P(u, z)}=\frac{P(u, v)}{\sum_{z \in V} P(u, z)}=P(u, v)
$$

where the last equality follows from the fact that each row of P sum up to 1 (by definition of transition matrix). Hence, we have shown that a random walk on G has transition matrix P.
4. There are several ways to show this fact. The easiest way is probably to use the fact that P is reversible if and only if $\langle P f, g\rangle_{\pi}=\langle f, P g\rangle_{\pi}$ for any $f, g \in V \rightarrow \mathbb{R}$. Hence, we need to show that, for arbitrary $f, g \in V \rightarrow \mathbb{R},\left\langle P^{t} f, g\right\rangle_{\pi}=\left\langle f, P^{t} g\right\rangle_{\pi}$:

$$
\left\langle P^{t} f, g\right\rangle_{\pi}=\left\langle P^{t-1} f, P g\right\rangle_{\pi}=\left\langle P^{t-2} f, P^{2} g\right\rangle_{\pi}=\cdots=\left\langle f, P^{t} g\right\rangle_{\pi}
$$

where at each step we have applied the reversibility of P.

Question 5. Let P be the transition matrix of a (simple) random walk on an undirected graph $G=$ (V, E). Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Prove the following.

1. $\lambda_{1}=1$.
2. $\lambda_{2}=1$ if and only if the graph is disconnected.
3. $\lambda_{n}=-1$ if and only if there exists a bipartite connected component.
4. Suppose now that the random walk is lazy (i.e., $P(u, u) \geq 1 / 2$ for any $u \in V$). Prove that all the eigenvalues of P are non-negative.

Solution:

1. Since the all-one vector is an eigenvector of P with eigenvalue $1, \lambda_{1} \geq 1$. We just have to show that we cannot have an eigenvalue strictly greater than 1 . Actually, we will show something stronger: P doesn't have eigenvalues strictly greater than 1 in absolute value.
Let f be an eigenvector of eigenvalue λ for P, i.e., $P f=\lambda f$. Take x maximising $|f(x)|$. Since f is an eigenvector of eigenvalue λ,

$$
|\lambda||f(x)|=|(P f)(x)|=\left|\sum_{y} P(x, y) f(y)\right| \leq|f(x)|\left|\sum_{y} P(x, y)\right|=|f(x)|
$$

Clearly, $f(x) \neq 0$. Therefore, $|\lambda| \leq 1$.
2. We will first show that if G is disconnected, then $\lambda_{2}=1$. Recall the variational characterisation of λ_{2} :

$$
\begin{equation*}
1-\lambda_{2}=\min _{0 \neq f \perp 1} \frac{\sum_{x, y}(f(x)-f(y))^{2} P(x, y) \pi(x)}{\|f\|_{2, \pi}^{2}} \tag{2}
\end{equation*}
$$

This expression is clearly nonnegative. Hence, we just need to find a nonzero $f \perp 1$ such that the numerator is 0 . Since G is disconnected, we can partition V in two sets, S and $V \backslash S$, such that there are no edges between the two. Then, as long as f is constant on S and $V \backslash S$, the numerator is $0(P(x, y)$ is nonnegative only if there exists an edge between x and $y)$. We just need to be careful to construct f so that $\langle f, 1\rangle_{\pi}=0$. The following is a good choice (check!):

$$
f(u)= \begin{cases}1 / \operatorname{vol}(S) & \text { if } u \in S \\ -1 / \operatorname{vol}(V \backslash S) & \text { if } u \notin S\end{cases}
$$

where $\operatorname{vol}(S)=\sum_{u \in S} d(u)=2|E| \sum_{u \in S} \pi(u)$.
We now show that, if G is connected, $\lambda_{2}<1$. Suppose by contradiction $0 \neq f \perp 1$ is an eigenvector of eigenvalue $\lambda_{2}=1$. Again, by (22),

$$
\sum_{x, y}(f(x)-f(y))^{2} P(x, y) \pi(x)=\sum_{\{x, y\} \in E}(f(x)-f(y))^{2} P(x, y) \pi(x)=0
$$

Therefore, for any $\{x, y\} \in E, f(x)=f(y)$. But notice that $0=\langle f, 1\rangle_{\pi}=\sum_{z} f(z) \pi(z)$ implies that f must have strictly positive and strictly negative entries. Take $u, v \in V$ such that $f(u)>0$ and $f(v)<0$. Since G is connected, there exists a path $u=x_{0}, x_{1}, \ldots, x_{\ell}=v$ from u to v. But then, since for any $\{x, y\} \in E f(x)=f(y)$, we have that $0>f(u)=f\left(x_{0}\right)=f\left(x_{1}\right)=\cdots f\left(x_{\ell}\right)=$ $f(v)<0$, reaching a contradiction.
3. Without loss of generality, we assume G is connected and prove that P has eigenvalue -1 if and only if G is bipartite. This is without loss of generality because if G were disconnected, the eigenvalues of P would simply be the union of the eigenvalues of the transition matrices of the simple random walks in each one of the connected component of G. First we assume that G is bipartite and prove it has eigenvalue -1 . Recall that a graph is bipartite if it can be partitioned in two sets S and $V \backslash S$ such that no edge connect two vertices in S or two vertices in $V \backslash S$ (i.e., it has a cut containing all the edges in the graph). Assuming such S and $V \backslash S$ exist, we construct a function $f: V \rightarrow \mathbb{R}$ as follows:

$$
f(u)= \begin{cases}1 & \text { if } u \in S \\ -1 & \text { if } u \notin S\end{cases}
$$

We claim this function is an eigenvector of eigenvalue -1 for P. Let $u \in S$. then,

$$
(P f)(u)=\sum_{v \in V} P(u, v) f(v)=\sum_{v \in S} P(u, v)-\sum_{v \notin S} P(u, v)=-\sum_{v:\{u, v\} \in E} \frac{1}{d(u)}=-1=-f(u)
$$

where the third equality follows from the fact that all the neighbours of u are in $V \backslash S$ and the fourth follows from u having $d(u)$ neighbours. Analogously, we can prove that $(P f)(u)=-f(u)$ for any $u \in V \backslash S$. This proves that $P f=-f$, which completes one direction of the proof.
For the reverse direction, we assume that P has eigenvalue -1 and prove that G must be bipartite. Let f (nonzero) such that $P f=-f$. We define $S=\{u \in V: f(u) \geq 0\}$ and we claim that ($S, V \backslash S$) is a bipartition of the graph such that no edge connects two vertices in S or in $V \backslash S$. To this end, pick any $u \in V$ such that $|f(u)|=\max _{v \in V}|f(v)|$. Then,

$$
\begin{equation*}
-f(u)=(P f)(u)=\sum_{v \in V} P(u, v) f(v)=\sum_{v:\{u, v\} \in E} \frac{f(v)}{d(u)} \tag{3}
\end{equation*}
$$

But since u has only $d(u)$ neighbours and $|f(u)|$ achieves the maximum of f in absolute value, $f(v)=-f(u)$ for any v such that $\{u, v\} \in E$. Therefore, since G is connected, we have proved that $|f(u)|=|f(v)| \neq 0$ for any $v \in V$. Hence, (3) must hold for any $u \in V$. This implies that, for any $\{u, v\} \in E, f(u)=-f(v)$. Therefore, $u \in S$ and $v \notin S$, or vice versa. In other words, we have proved we can partition V in two sets such that no edge connects two vertices in the same set, i.e., G is bipartite.
4. Since P is lazy, $P=\frac{1}{2}\left(I+P^{\prime}\right)$ where I is the identity matrix and P^{\prime} is the transition matrix of a lazy random walk on G. We proved above that the eigenvalues of P^{\prime} are between 1 and -1 . Hence, $\lambda_{n}(P)=\frac{1}{2}+\frac{1}{2} \lambda_{n}\left(P^{\prime}\right) \geq 0$.

