
Probability and Computation: Problem sheet 4 Solutions

You are encouraged to submit your solutions by emailing them to
luca.zanetti@cl.cam.ac.uk by Wednesday 20th of February.

Question 1. Let (Xi)i≥1 be independent random variables with P[Xi = 1 ] = P[Xi = −1 ] = 1/2. Let
Sn =

∑n
i=0Xn, with X0 = K > 0. For N > K define

T = T0,N = min{n ≥ 0 : Sn = 0 or Sn = N}.

1. Prove that E[T ] <∞ (you cannot use the OST).

2. Find a deterministic sequence of values an ∈ R such that Zn = S3
n + anSn is a martingale w.r.t.

X0, X1, . . .

3. Find deterministic sequences bn, cn ∈ R such that Wn = S4
n + bnS

2
n + cn is a martingale w.r.t.

X0, X1, . . .

Solution: 1. Let T ′ be the first time we win N times in a row. When T ′ happens we either have that
ST ′ ≥ N or not. If ST ′ ≥ N it means that at some time t < T ′ we had St = N . If ST ′ < N then
ST ′−N < 0 then at some time t < T ′ −N we had St = 0. In both cases it exist some t < T ′ such that
St = 0 or St = N , therefore T < T ′. The expectation of T ′ was computed in Question 6 of the previous
problem sheet.

2. Clearly Zn is a function of X0, . . . , Xn and |Zn| ≤ n3 + |an|n, which check the first two parts of
the definition of a martingale. We need to find an such that

E[Zn+1|X0, . . . , Xn ] = Zn.

note that

S3
n+1 = (Sn +Xn+1)3 + an(Sn +Xn+1) = S3

n + 3S2
nXn+1 + 3SnX

2
n+1 +X3

n+1

Note that X2
n+1 = 1 and X3

n+1 = Xn+1, then

E[Zn+1|X0, . . . , Xn ] = S3
n + 3Sn + an+1Sn (1)

we want to force Zn = S3
n + 3Sn + an+1Sn, which implies that an = 3 + an+1. The solutions of the

recursion for an is an = −3n+ a0. We just set the initial value a0 = 0. Therefore Zn = S3
n − 3nSn is a

martingale
3. Wn is a function of X0, . . . , Xn and |Wn| ≤ n4 + |bn|n2 + |cn|, which check the first two parts of

the definition of a martingale.
We proceed to check that E[Wn+1|X0, . . . , Xn ] = Wn for some values of bn and cn.
Using that X2k

n = 1 and X2k+1
n = Xn for k ≥ 0, then

S4
n+1 = (Sn +Xn+1)4 = S4

n + 4S3
nXn+1 + 6S2

n + 4SnXn+1 + 1,

and
S2
n+1 = S2

n + 2SnXn+1 + 1.

Hence

E[Wn+1|X0, . . . , Xn ] = S4
n + (6 + bn+1)S2

n + (1 + bn+1 + cn+1) = S4
n + bnS

2
n + cn
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This suggest that bn = 6 + bn+1 and cn = 1 + cn+1 + bn+1. Clearly bn = −6n + b0, so we choose
b0 = 0. Then cn = 1− 6n+ cn+1, hence

cn − c0 =

n∑
i=1

ci − ci−1 =

n∑
i=1

[6(i− 1)− 1] = 3n2 − 4n

Again, we choose c0 = 0 and we conclude that

Wn = S4
n − 6nS2

n + (3n2 − 4n)

is a martingale

Question 2.

1. Consider out path on vertices {0, . . . , N}, and suppose X0 = K. Compute hK,N

2. Compute the cover time of a path on {0, . . . , N} when N is even. What about when N is odd?

3. Consider a cycle on vertices {0, 1, . . . , N} where vertex i is adjacent to i+ 1, and 0 is adjacent to
N . Compute the cover time.

4. Consider a cycle on vertices {0, 1, . . . , N}. Define T by

T = min{m : ∪mi=0Xi = {0, . . . , N}}

T is the first time all vertices has been covered. Compute P[XT = i|X0 = 0 ] for i ∈ {1, . . . , N}.

Solution: 1. A random walk on the path can be seen as a folded version of a random walk on Z where
we associate point −k with point k. Let Sn =

∑n
i=1Xi be a random walk on Z starting from K (recall

that Xi are independent, P[Xi = 1 ] = P[Xi = −1 ] = 1/2, and X0 = 0.)
Therefore, the problem of computing hK,N is equivalent to the problem to finding E[TN−,N |S0 = K ].

It was shown in class that this is equivalent to E[T0,2N |Sn = N +K ] = (N + K)(2N − (N + K)) =
(N +K)(N −K)

2. Starting from K we need to hit either 0 or N which takes K(N −K) times in expectation. Later
from one of the extremes we need to hit the other extreme which takes N2 times. Then, the total time
to cover the graph is N2 +K(N −K). Recall the cover time is considered over the worst starting point,
so maximizing K we get that the cover time is N2 + bN/2cdN/2e

3. First of all, note that the set of covered vertices is a path in the cycle. Second, note when we just
discover a new vertex this is one of the extreme points of the path. Third, we can always relabel the
vertices of the cycle, so the set of cover vertices is {0, 1, . . . ,K} and the last discovered vertex is K. The
expected time to discover a new vertex is equivalent the expected time to move outside this path. As a
random walk problem this is equivalent to E[T−1,K+1|S0 = K ] = K + 1. Now we just need to sum from
K = 0 to n− 1 which equals n(n− 1)/2.

4. We will prove that P[XT = i|X0 = 0 ] = 1/N . For that, note that before hitting vertex i we
are either in vertex i − 1 or vertex i + 1 ( mod N). Without lost of generality, suppose we hit vertex
i − 1 before vertex i + 1 (otherwise just rename all the vertices). Then if i is the last vertex we hit,
we have to hit i + 1 before vertex i starting from vertex i − 1. Note this is equivalent to start a path
in 1, and we want to hit N − 1 before vertex 0. In lectures we analysed that problem and deduced
that such a probability is 1/(N − 1). Therefore P[XT = i|X0 = 0 ] ≥ 1/(N − 1). Since there are N − 1
other vertices besides 0 and for all of them P[XT = i|X0 = 0 ] ≥ 1/(N − 1), then the only possibility is
thatP[XT = i|X0 = 0 ] = 1/(N − 1)

Question 3. Wald’s Equation: Let X1, . . . , i.i.d. non-negative random variables with finite expec-
tation. Let T be a stopping time with respect to this sequence and suppose that E[T ] < ∞ and that
E[ |X1| ] <∞. Prove that

E

[
T∑
i=1

Xi

]
= E[T ]E[X1 ] .
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Solution: Define Zn =
∑n
i=1Xi − nE[X1 ] and Z0 = 0. Then Zn is a martingale w.r.t X1, . . . , Xn.

Clearly, Zn is a function of X1, . . . , Xn. Also

E[ |Zn| ] ≤ 2nE[ |X1| ] <∞.

Finally,

E[Zn+1|X1, . . . , Xn ] = Zn + E[Xn+1 −E[X1 ] |X1, . . . , Xn ] = Zn,

where in the last equality we use that the Xi’s are independent and they have the same distribution and
thus E[X1 ] = E[Xn+1 ].

Finally, as T is a stopping time, we can use condition iii) of the OST and then

E[ZT ] = E[Z0 ] = 0,

but

ZT =

T∑
i=1

Xi − TE[X1 ] ,

from which we conclude the result.

Question 4. A weighted undirected graph G = (V,E,w) is defined by a set vertices V , a collection of
edges E ⊆ V ×V , and a weight function w : V ×V → R≥0 such that, for any u, v ∈ V , w(u, v) = w(v, u)
and w(u, v) > 0 if and only if (u, v) ∈ E. Self-loops of the kind (u, u) are allowed. A random walk
on G = (V,E,w) is a Markov chain with transition matrix P such that, for any u, v ∈ V , P (u, v) =
w(u, v)/d(u), where d(u) =

∑
z∈V w(u, z).

1. What is the stationary distribution of this Markov chain?

2. What does being aperiodic amounts to?

3. Prove that a Markov chain is reversible if and only if it can be represented by a random walk on a
weighted undirected graph.

4. Prove that if P is reversible, then P t is also reversible for any t ∈ N.

Solution:

1. Let π : V → R such that π(u) = d(u)∑
z∈V d(z) . Then, π is stationary for P . To prove this, we just

need to check that πP = π. Let u be an arbitrary vertex. Then,

(πP )(u) =
∑
v∈V

π(v)P (v, u) =
∑
v∈V

d(v)P (v, u)∑
z∈V d(z)

∑
v∈V

w(v, u)∑
z∈V d(z)

=
d(v)∑
z∈V d(z)

= π(v).

where the third equality follows from P (v, u) = w(v, u)/d(v).

2. Being aperiodic for a random walk on an undirected graphs simply means the graph does not
contain bipartite connected components.

3. We start showing that a random walk on an undirected graph is always reversible, i.e., it satisfies
the detailed balance condition: π(u)P (u, v) = π(v)P (v, u) for any u, v ∈ V . Let u, v be arbitrary
vertices. Then,

π(u)P (u, v) =
d(u)∑
z∈V d(z)

· w(u, v)

d(u)
=

d(v)∑
z∈V d(z)

· w(v, v)

d(v)
= π(v)P (v, u)

where the second equation follows from the fact that, since G is undirected, w(u, v) = w(v, u).
We now show the reverse implication: we are given a transition matrix P on Ω with stationary
distribution π such that π(u)P (u, v) = π(v)P (v, u) for any u, v ∈ Ω, and we want to show we
can construct an undirected weighted graph G = (V,E,w) such that P is the transition matrix
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of a random walk on G. First of all, we choose Ω = V . Then, we construct the weight function
w : V → R≥0 as w(u, v) = π(u)P (u, v), and we set E = {{u, v} : w(u, v) > 0}. We need to show
that w is a proper weight function. Clearly, w is nonnegative and strictly positive exactly on E.
Moreover, w(u, v) = π(u)P (u, v) = π(v)P (v, u) = w(v, u) since P is reversible. Finally,

w(u)∑
z∈V w(u, z)

=
π(u)P (u, v)∑
z∈V π(u)P (u, z)

=
P (u, v)∑
z∈V P (u, z)

= P (u, v),

where the last equality follows from the fact that each row of P sum up to 1 (by definition of
transition matrix). Hence, we have shown that a random walk on G has transition matrix P .

4. There are several ways to show this fact. The easiest way is probably to use the fact that P is
reversible if and only if 〈Pf, g〉π = 〈f, Pg〉π for any f, g ∈ V → R. Hence, we need to show that,
for arbitrary f, g ∈ V → R, 〈P tf, g〉π = 〈f, P tg〉π:

〈P tf, g〉π = 〈P t−1f, Pg〉π = 〈P t−2f, P 2g〉π = · · · = 〈f, P tg〉π

where at each step we have applied the reversibility of P .

Question 5. Let P be the transition matrix of a (simple) random walk on an undirected graph G =
(V,E). Let λ1 ≥ · · · ≥ λn. Prove the following.

1. λ1 = 1.

2. λ2 = 1 if and only if the graph is disconnected.

3. λn = −1 if and only if there exists a bipartite connected component.

4. Suppose now that the random walk is lazy (i.e., P (u, u) ≥ 1/2 for any u ∈ V ). Prove that all the
eigenvalues of P are non-negative.

Solution:

1. Since the all-one vector is an eigenvector of P with eigenvalue 1, λ1 ≥ 1. We just have to show that
we cannot have an eigenvalue strictly greater than 1. Actually, we will show something stronger:
P doesn’t have eigenvalues strictly greater than 1 in absolute value.
Let f be an eigenvector of eigenvalue λ for P , i.e., Pf = λf . Take x maximising |f(x)|. Since f is
an eigenvector of eigenvalue λ,

|λ||f(x)| = |(Pf)(x)| =

∣∣∣∣∣∑
y

P (x, y)f(y)

∣∣∣∣∣ ≤ |f(x)|

∣∣∣∣∣∑
y

P (x, y)

∣∣∣∣∣ = |f(x)|.

Clearly, f(x) 6= 0. Therefore, |λ| ≤ 1.

2. We will first show that if G is disconnected, then λ2 = 1. Recall the variational characterisation of
λ2:

1− λ2 = min
06=f⊥1

∑
x,y(f(x)− f(y))2P (x, y)π(x)

‖f‖22,π
(2)

This expression is clearly nonnegative. Hence, we just need to find a nonzero f ⊥ 1 such that the
numerator is 0. Since G is disconnected, we can partition V in two sets, S and V \ S, such that
there are no edges between the two . Then, as long as f is constant on S and V \S, the numerator
is 0 (P (x, y) is nonnegative only if there exists an edge between x and y). We just need to be
careful to construct f so that 〈f, 1〉π = 0. The following is a good choice (check!):

f(u) =

{
1/ vol(S) if u ∈ S
−1/ vol(V \ S) if u 6∈ S
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where vol(S) =
∑
u∈S d(u) = 2|E|

∑
u∈S π(u).

We now show that, if G is connected, λ2 < 1. Suppose by contradiction 0 6= f ⊥ 1 is an eigenvector
of eigenvalue λ2 = 1. Again, by (2),∑

x,y

(f(x)− f(y))2P (x, y)π(x) =
∑

{x,y}∈E

(f(x)− f(y))2P (x, y)π(x) = 0.

Therefore, for any {x, y} ∈ E, f(x) = f(y). But notice that 0 = 〈f, 1〉π =
∑
z f(z)π(z) implies

that f must have strictly positive and strictly negative entries. Take u, v ∈ V such that f(u) > 0
and f(v) < 0. Since G is connected, there exists a path u = x0, x1, . . . , x` = v from u to v. But
then, since for any {x, y} ∈ E f(x) = f(y), we have that 0 > f(u) = f(x0) = f(x1) = · · · f(x`) =
f(v) < 0, reaching a contradiction.

3. Without loss of generality, we assume G is connected and prove that P has eigenvalue −1 if and only
if G is bipartite. This is without loss of generality because if G were disconnected, the eigenvalues
of P would simply be the union of the eigenvalues of the transition matrices of the simple random
walks in each one of the connected component of G. First we assume that G is bipartite and prove
it has eigenvalue −1. Recall that a graph is bipartite if it can be partitioned in two sets S and V \S
such that no edge connect two vertices in S or two vertices in V \ S (i.e., it has a cut containing
all the edges in the graph). Assuming such S and V \ S exist, we construct a function f : V → R
as follows:

f(u) =

{
1 if u ∈ S
−1 if u 6∈ S

We claim this function is an eigenvector of eigenvalue −1 for P . Let u ∈ S. then,

(Pf)(u) =
∑
v∈V

P (u, v)f(v) =
∑
v∈S

P (u, v)−
∑
v 6∈S

P (u, v) = −
∑

v : {u,v}∈E

1

d(u)
= −1 = −f(u),

where the third equality follows from the fact that all the neighbours of u are in V \ S and the
fourth follows from u having d(u) neighbours. Analogously, we can prove that (Pf)(u) = −f(u)
for any u ∈ V \ S. This proves that Pf = −f , which completes one direction of the proof.
For the reverse direction, we assume that P has eigenvalue −1 and prove that G must be bipartite.
Let f (nonzero) such that Pf = −f . We define S = {u ∈ V : f(u) ≥ 0} and we claim that (S, V \S)
is a bipartition of the graph such that no edge connects two vertices in S or in V \ S. To this end,
pick any u ∈ V such that |f(u)| = maxv∈V |f(v)|. Then,

− f(u) = (Pf)(u) =
∑
v∈V

P (u, v)f(v) =
∑

v : {u,v}∈E

f(v)

d(u)
. (3)

But since u has only d(u) neighbours and |f(u)| achieves the maximum of f in absolute value,
f(v) = −f(u) for any v such that {u, v} ∈ E. Therefore, since G is connected, we have proved
that |f(u)| = |f(v)| 6= 0 for any v ∈ V . Hence, (3) must hold for any u ∈ V . This implies that, for
any {u, v} ∈ E, f(u) = −f(v). Therefore, u ∈ S and v 6∈ S, or vice versa. In other words, we have
proved we can partition V in two sets such that no edge connects two vertices in the same set, i.e.,
G is bipartite.

4. Since P is lazy, P = 1
2 (I + P ′) where I is the identity matrix and P ′ is the transition matrix of a

lazy random walk on G. We proved above that the eigenvalues of P ′ are between 1 and −1. Hence,
λn(P ) = 1

2 + 1
2λn(P ′) ≥ 0.
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