Probability and Computation: Problem sheet 4

You are encouraged to submit your solutions by emailing them to luca.zanetti@cl.cam.ac.uk by Wednesday 20th of February.

Question 1. Let $(X_i)_{i\geq 1}$ be independent random variables with $\mathbf{P}[X_i = 1] = \mathbf{P}[X_i = -1] = 1/2$. Let $S_n = \sum_{i=0}^n X_n$, with $X_0 = K > 0$. For N > K define

$$T = T_{0,N} = \min\{n \ge 0 : S_n = 0 \text{ or } S_n = N\}.$$

- 1. Prove that $\mathbf{E}[T] < \infty$ (you cannot use the OST).
- 2. Find a deterministic sequence of values $a_n \in \mathbb{R}$ such that $Z_n = S_n^3 + a_n S_n$ is a martingale w.r.t. X_0, X_1, \ldots
- 3. Find deterministic sequences $b_n, c_n \in \mathbb{R}$ such that $W_n = S_n^4 + b_n S_n^2 + c_n$ is a martingale w.r.t. X_0, X_1, \ldots

Question 2.

- 1. Consider out path on vertices $\{0, \ldots, N\}$, and suppose $X_0 = K$. Compute $h_{K,N}$
- 2. Compute the cover time of a path on $\{0, \ldots, N\}$ when N is even. What about when N is odd?
- Consider a cycle on vertices {0,1,...,N} where vertex i is adjacent to i + 1, and 0 is adjacent to N. Compute the cover time.
- 4. Consider a cycle on vertices $\{0, 1, \ldots, N\}$. Define T by

$$T = \min\{m : \bigcup_{i=0}^{m} X_i = \{0, \dots, N\}\}$$

T is the first time all vertices has been covered. Compute $\mathbf{P}[X_T = i | X_0 = 0]$ for $i \in \{1, \dots, N\}$.

Question 3. Wald's Equation: Let $X_1, \ldots, i.i.d.$ non-negative random variables with finite expectation. Let T be a stopping time with respect to this sequence and suppose that $\mathbf{E}[T] < \infty$ and that $\mathbf{E}[|X_1|] < \infty$. Prove that

$$\mathbf{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbf{E}[T] \mathbf{E}[X_1]$$

Question 4. A weighted undirected graph G = (V, E, w) is defined by a set vertices V, a collection of edges $E \subseteq V \times V$, and a weight function $w: V \times V \to \mathbb{R}_{\geq 0}$ such that, for any $u, v \in V$, w(u, v) = w(v, u) and w(u, v) > 0 if and only if $(u, v) \in E$. Self-loops of the kind (u, u) are allowed. A random walk on G = (V, E, w) is a Markov chain with transition matrix P such that, for any $u, v \in V$, P(u, v) = w(u, v)/d(u), where $d(u) = \sum_{z \in V} w(u, z)$.

- 1. What is the stationary distribution of this Markov chain?
- 2. What does being aperiodic amounts to?
- 3. Prove that a Markov chain is reversible if and only if it can be represented by a random walk on a weighted undirected graph.
- 4. Prove that if P is reversible, then P^t is also reversible for any $t \in \mathbb{N}$.

Question 5. Let P be the transition matrix of a (simple) random walk on an undirected graph G = (V, E). Let $\lambda_1 \geq \cdots \geq \lambda_n$. Prove the following.

- 1. $\lambda_1 = 1$.
- 2. $\lambda_2 = 1$ if and only if the graph is disconnected.
- 3. $\lambda_n = -1$ if and only if there exists a bipartite connected component.
- 4. Suppose now that the random walk is lazy (i.e., $P(u, u) \ge 1/2$ for any $u \in V$). Prove that all the eigenvalues of P are non-negative.