Probability and Computation: Problem sheet 4

You are encouraged to submit your solutions by emailing them to luca.zanetti@cl.cam.ac.uk by Wednesday 20th of February.

Question 1. Let $\left(X_{i}\right)_{i \geq 1}$ be independent random variables with $\mathbf{P}\left[X_{i}=1\right]=\mathbf{P}\left[X_{i}=-1\right]=1 / 2$. Let $S_{n}=\sum_{i=0}^{n} X_{n}$, with $X_{0}=K>0$. For $N>K$ define

$$
T=T_{0, N}=\min \left\{n \geq 0: S_{n}=0 \text { or } S_{n}=N\right\}
$$

1. Prove that $\mathbf{E}[T]<\infty$ (you cannot use the $O S T$).
2. Find a deterministic sequence of values $a_{n} \in \mathbb{R}$ such that $Z_{n}=S_{n}^{3}+a_{n} S_{n}$ is a martingale w.r.t. X_{0}, X_{1}, \ldots
3. Find deterministic sequences $b_{n}, c_{n} \in \mathbb{R}$ such that $W_{n}=S_{n}^{4}+b_{n} S_{n}^{2}+c_{n}$ is a martingale w.r.t. X_{0}, X_{1}, \ldots

Question 2.

1. Consider out path on vertices $\{0, \ldots, N\}$, and suppose $X_{0}=K$. Compute $h_{K, N}$
2. Compute the cover time of a path on $\{0, \ldots, N\}$ when N is even. What about when N is odd?
3. Consider a cycle on vertices $\{0,1, \ldots, N\}$ where vertex i is adjacent to $i+1$, and 0 is adjacent to N. Compute the cover time.
4. Consider a cycle on vertices $\{0,1, \ldots, N\}$. Define T by

$$
T=\min \left\{m: \cup_{i=0}^{m} X_{i}=\{0, \ldots, N\}\right\}
$$

T is the first time all vertices has been covered. Compute $\mathbf{P}\left[X_{T}=i \mid X_{0}=0\right]$ for $i \in\{1, \ldots, N\}$.
Question 3. Wald's Equation: Let X_{1}, \ldots, i.i.d. non-negative random variables with finite expectation. Let T be a stopping time with respect to this sequence and suppose that $\mathbf{E}[T]<\infty$ and that $\mathbf{E}\left[\left|X_{1}\right|\right]<\infty$. Prove that

$$
\mathbf{E}\left[\sum_{i=1}^{T} X_{i}\right]=\mathbf{E}[T] \mathbf{E}\left[X_{1}\right]
$$

Question 4. A weighted undirected graph $G=(V, E, w)$ is defined by a set vertices V, a collection of edges $E \subseteq V \times V$, and a weight function $w: V \times V \rightarrow \mathbb{R}_{\geq 0}$ such that, for any $u, v \in V, w(u, v)=w(v, u)$ and $w(u, v)>0$ if and only if $(u, v) \in E$. Self-loops of the kind (u, u) are allowed. A random walk on $G=(V, E, w)$ is a Markov chain with transition matrix P such that, for any $u, v \in V, P(u, v)=$ $w(u, v) / d(u)$, where $d(u)=\sum_{z \in V} w(u, z)$.

1. What is the stationary distribution of this Markov chain?
2. What does being aperiodic amounts to?
3. Prove that a Markov chain is reversible if and only if it can be represented by a random walk on a weighted undirected graph.
4. Prove that if P is reversible, then P^{t} is also reversible for any $t \in \mathbb{N}$.

Question 5. Let P be the transition matrix of a (simple) random walk on an undirected graph $G=$ (V, E). Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Prove the following.

1. $\lambda_{1}=1$.
2. $\lambda_{2}=1$ if and only if the graph is disconnected.
3. $\lambda_{n}=-1$ if and only if there exists a bipartite connected component.
4. Suppose now that the random walk is lazy (i.e., $P(u, u) \geq 1 / 2$ for any $u \in V$). Prove that all the eigenvalues of P are non-negative.
