Question 1. We are going to prove part of nicer version of the Chernoff Bounds. Prove the following inequalities

i) For $0 < \delta < 1$,
\[
\frac{e^\delta}{(1 + \delta)(1 + \delta)} \leq e^{-\delta^2/3}.
\]

ii) For $0 < \delta < 1$,
\[
\frac{e^{-\delta}}{(1 - \delta)(1 - \delta)} \leq e^{-\delta^2/2}.
\]

iii) Using the Chernoff-Bounds (Slides 8 and 22, Lecture 5) deduce the second part of the Nicer Chernoff Bounds in Slide 23 of Lecture 5.

Solution: i) By taking logarithm the problem is equivalent to prove that
\[
\delta - (1 + \delta) \log(1 + \delta) + \delta^2/3 \leq 0
\]
write $f(\delta) = 2\delta/3 - \log(1 + \delta)$. We will check that $f(\delta) \geq 0$ for $\delta \in [0, 1]$.

A straightforward computation shows that
- $f(0) = 0$,
- $f'(\delta) = 2\delta/3 - \log(1 + \delta)$.
- $f'(0) = 0$ and $f'(1) = 2/3 - \log(2) < 0$

We deduce that $f'(\delta) \leq 0$ for $\delta \in [0, 1]$. This holds because the function $\log(1 + \delta)$ only intersects with the line $2x/3$ in exactly two points, one of them is 0 and the other has to be after 1 (otherwise $f'(1) \geq 0$). Finally,
\[
f(\delta) = \int_0^\delta f'(x)dx - f(0) \leq \int_0^\delta 0dx - 0 = 0
\]
ii) it is done the same way. Alternatively, use the Taylor expansion of $\log(1 - \delta)$,
\[
\log(1 - \delta) = -\delta - \delta^2/2 - \delta^3/3 - \ldots \leq -\delta - \delta^2/2.
\]

Question 2. Chernoff Bounds for other random variables.

i) Let X be a Poisson random variable of mean μ. Prove that
\[
E[e^{\lambda X}] = e^{\lambda(\mu - 1)}
\]
and deduce that for $t \geq \mu$ and for $\delta \in (0, 1)$
\[
P[X \geq t] \leq e^{-\mu} \left(\frac{\mu e^t}{t} \right)^t
\]
and
\[
P[X \geq (1 + \delta)\mu] \leq e^{-\delta^2 \mu/3},
\]
and the corresponding lower tails.
ii) Let \(X\) be a Normal random variable of mean \(\mu\) and variance \(\sigma^2\). Prove that
\[
E[e^{\lambda X}] = e^{\mu \lambda + \sigma^2 \lambda^2 / 2},
\]
and deduce that for \(t > \mu\)
\[
P[X \geq t] \leq \exp \left[-\frac{(t - \mu)^2}{2\sigma^2} \right].
\]
Find the corresponding lower tail.

Solution: i) Recall that \(P[X = k] = \frac{\mu^k e^{-\mu}}{k!}\). Then
\[
E[e^{\lambda X}] = \sum_{k=0}^{\infty} e^{\lambda k} \frac{\mu^k e^{-\mu}}{k!} = \sum_{k=0}^{\infty} \frac{(e^\lambda \mu)^k e^{-\mu}}{k!} = \frac{e^{-\mu}}{e^{-\mu e^\lambda}} \sum_{k=0}^{\infty} \frac{(e^\lambda \mu)^k}{k!} = (1)
\]
Note that \(\frac{(e^\lambda \mu)^k}{k!}\) is the probability that a Poisson random variable of mean \(\mu e^\lambda\) takes value \(k\), therefore the summation on the RHS of (1) is 1. We conclude
\[
E[e^{\lambda X}] = \frac{e^{-\mu}}{e^{-\mu e^\lambda}} = e^{\mu (e^\lambda - 1)}
\]
The computation of \(P[X \geq t]\) is exactly as in Lecture 5 slide 20.

ii) The density function of a normal random variable with mean \(\mu\) and variance \(\sigma\) is given by
\[
\frac{1}{\sqrt{2\pi\sigma^2}} \int_{\|} \exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\|} \exp \left(-\frac{(x-\mu)^2 - 2\sigma^2 \lambda x}{2\sigma^2}\right) dx
\]
We analyse the expression inside the exponential
\[
(x-\mu)^2 - 2\sigma^2 \lambda x = x^2 - 2(\mu + \sigma^2 x) + \mu^2 = (x-(\mu + \sigma^2))^2 + \mu^2 - (\mu + \sigma^2)^2
\]
Therefore
\[
E[e^{\lambda X}] = \exp \left(-\frac{\mu^2 - (\mu + \sigma^2)^2}{2\sigma^2}\right) \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\|} \exp \left(-\frac{(x-(\mu + \sigma^2))^2}{2\sigma^2}\right) dx
\]
Note that \(\exp \left(-\frac{(x-(\mu + \sigma^2))^2}{2\sigma^2}\right)\) is the density function of a normal random variable with mean \(\mu + \sigma^2\) and variance \(\sigma^2\). Therefore we have
\[
E[e^{\lambda X}] = \exp \left(-\frac{\mu^2 - (\mu + \sigma^2)^2}{2\sigma^2}\right) = \exp \left(\mu \lambda + \frac{\sigma^2 \lambda^2}{2}\right)
\]
To compute \(P[X \geq t]\) use the recipe (Lecture 5, Slide 21).

Question 3. Show properties 2-6 of slide 19 of Lecture 6.

Solution: Property 4: Let \(a\) be a possible value of \(X\). Since \(X\) is independent of \(Y\) we have \(P[Y = y|X = a] = P[Y = y]\) then
\[
E[Y|X = a] = \sum_y y P[Y = y|X = a] \overset{\text{indep}}{=} \sum_y y P[Y = y] = E[Y],
\]
deducing that \(E[Y|X] = E[Y]\).
Property 5: Let \(a \) be a possible value of \(X \), then

\[
\mathbb{E}[YZ|X = a] = \mathbb{E}[F(X)Z|X = a] = \sum_x \sum_z F(x)z \mathbb{P}[X = x, Z = z|X = a]
\]

\[
= F(a) \sum_z z \mathbb{P}[Z = z|X = a] = F(a) \mathbb{E}[Z|X = a],
\]

deducing that \(\mathbb{E}[YZ|X] = Y \mathbb{E}[Z|X] \).

Question 4. Let \(X_1, \ldots, X_n \) be independent discrete random variables and let \(Z = f(X_1, \ldots, X_n) \) for some function \(f \). Prove that

\[
\mathbb{E}[Z|X_1, \ldots, X_i] = \sum_{x_1, x_2, \ldots, x_n} f(x_1, \ldots, x_i, \ldots, x_n) \mathbb{P}[X_1 = x_1, \ldots, X_i = x_i | X_i = x_i, \ldots, X_n = x_n]
\]

Solution: Let \((a_1, \ldots, a_n)\) be a possible value of \((X_1, \ldots, X_n)\), then

\[
\mathbb{E}[Z|X_1 = a_1, \ldots, X_n = a_n] = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_n} f(x_1, \ldots, x_n) \mathbb{P}[X_1 = x_1, \ldots, X_i = x_i | X_i = a_i, \ldots, X_n = a_n]
\]

\[
= \sum_{x_1, x_2, \ldots, x_n} f(a_1, \ldots, a_i, x_i+1, \ldots, x_n) \mathbb{P}[X_i+1 = x_i+1, \ldots, X_n = x_n].
\]

Question 5. Conditional Variance. Define the conditional variance of \(Y \) given \(X \) as

\[
\text{Var}[Y|X] = \mathbb{E}[(Y - \mathbb{E}[Y|X])^2 | X].
\]

1. Prove that \(\text{Var}[Y] = \mathbb{E}[\text{Var}[Y|X]] + \text{Var}[\mathbb{E}[Y|X]] \)

2. Consider \(n \) bins and a random number \(M \) of balls, where \(\mathbb{E}[M] = \mu \) and \(\text{Var}[M] = \sigma^2 \). Compute the variance of the number of balls that are assigned to the first bin.

Solution: Remember that \(\text{Var}[Y] = \mathbb{E}[(Y - \mathbb{E}[Y])^2] \), and, equivalently, \(\text{Var}[Y] = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 \)

By definition we have that

\[
\mathbb{E}[\text{Var}[Y|X]] = \mathbb{E}[(Y - \mathbb{E}[Y|X])^2 | X] \]

\[
\overset{p1}{=} \mathbb{E}[(Y - \mathbb{E}[Y|X])^2] = \mathbb{E}[Y^2 - 2Y\mathbb{E}[Y|X] + \mathbb{E}[Y|X]^2]
\]

(\(p1\) refers to the properties of Lecture 6, slide 19). By \(p1\) we get

\[
\mathbb{E}[Y\mathbb{E}[Y|X]] \overset{p2}{=} \mathbb{E}[\mathbb{E}[Y|X] |X]] \overset{p3}{=} \mathbb{E}[\mathbb{E}[Y|X]^2]
\]

by linearity of conditional expectation (\(p3\)) we get

\[
\mathbb{E}[[\text{Var}[Y|X]] = \mathbb{E}[Y^2] - \mathbb{E}[\mathbb{E}[Y|X]^2]
\]

(2)

Also, note that \(\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[Y] \) then

\[\text{Var}[\mathbb{E}[Y|X]] = \mathbb{E}[\mathbb{E}[Y|X]^2] - \mathbb{E}[Y]^2 \]

(3)

By adding equations (2) and (3) we get the result.

For the second part, let \(X \) be the number of balls that are assigned to the first bin. We compute \(\text{Var}[X|X] = \mathbb{E}[\text{Var}[X|M]] + \text{Var}[\mathbb{E}[X|M]] \). In lecture 6 slide 24 we computed \(\mathbb{E}[X|M] = \sum_{i=1}^{\infty} 1_{(i \leq M)} = M/n \). Moreover, by definition of conditional variance, we get

\[
\text{Var}[X|M] = \mathbb{E}[(X - M/n)^2 | M] \overset{p3+p5}{=} \mathbb{E}[X^2|M] - 2(M/n)\mathbb{E}[X|M] + (M/n)^2
\]

\[
= \mathbb{E}[X^2|M] - (M/n)^2
\]

3
We just need to compute $E[X^2|M]$. Let X_i be 1 if ball number i is assigned to the first bin, otherwise X_i is 0. Then $X = \sum_{i=1}^{\infty} X_i 1_{\{i \leq M\}}$ and therefore

$$X^2 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} X_i X_j 1_{\{i,j \leq M\}}$$

Note that $X_i^2 = X_i$, then

$$E[X^2|M] = \sum_{i=1}^{\infty} E[X_i|M] + 2 \sum_{1<i<j<\infty} E[X_i X_j|M] 1_{\{i,j \leq M\}}$$

Finally, use that the location of a ball is independent of how many balls we assigned in total. Therefore $E[X_i|M] = 1/n$ and $E[X_i X_j|M] = 1/n^2$ for $i \neq j$. We conclude that

$$\text{Var}[X|M] = M/n + M(M-1)/n^2 - (M/n)^2 = M/n - M/n^2$$

and $E[\text{Var}[X|M]] = (\mu/n) (1 - \frac{1}{n})$

On the other hand, remember that $E[X|M] = M/n$. Then

$$\text{Var}[E[X|M]] = \text{Var}[M/n] = \frac{1}{n^2} \text{Var}[M] = \sigma^2/n^2.$$

By adding $\text{Var}[E[X|M]]$ and $E[\text{Var}[X|M]]$ we get the result.

Question 6. Consider a coin that shows head with probability p. What is the expected number of flips required to observe a run of n consecutive heads?

Solution: Done in exercise class.

Question 7. Let X_1, \ldots, X_n i.i.d. samples from a distribution of interest. We know that $E[X_i] = \mu$ and $\text{Var}[X_i] = \sigma^2$ for all i, but we do not know the exact values of μ nor σ^2. We are given the mission to find an estimate $\hat{\mu}$ of the actual mean μ. We want the estimate $\hat{\mu}$ to satisfy the (δ, ε) condition: given ε, we want that $\hat{\mu} \in [\mu - \varepsilon \sigma, \mu + \varepsilon \sigma]$ with probability at least $1 - \delta$. How many data points X_i do we need to build an estimator satisfying the (δ, ε) condition?

- In a first attempt we can just deliver $\hat{\mu} = \frac{\sum_{i=1}^{n} X_i}{n}$, nevertheless, we cannot guarantee a good behaviour of such estimator, as we do not have enough information to compute a Chernoff Bound for it.

1. Prove that with $m = \lceil \frac{10}{\varepsilon^2} \rceil$ data points, we have that $\hat{\mu}_m = (\sum_{i=1}^{m} X_i) / m$ satisfies the $(1/10, \varepsilon)$ condition.

2. Write an algorithm that uses at most $O\left(\frac{\log(\delta^{-1})}{\varepsilon^2}\right)$ data points to build an estimate of μ satisfying the (δ, ε) condition.

Hint.

Q6: Recall how we deduce the expectation of a geometric in class.

Q7: For 2, consider batches of size $m = \lceil \frac{10}{\varepsilon^2} \rceil$. What can you say about more than half of them?

Solution: Done in exercise class.