
Probability and Computation: Problem sheet 3 Solutions

Question 1. We are going to prove part of nicer version of the Chernoff Bounds. Prove the following
inequalities

i) For 0 < δ < 1,
eδ

(1 + δ)(1+δ)
≤ e−δ

2/3.

ii) For 0 < δ < 1,
e−δ

(1− δ)(1−δ)
≤ e−δ

2/2.

iii) Using the Chernoff-Bounds (Slides 8 and 22, Lecture 5) deduce the second part of the Nicer Chernoff
Bounds in Slide 23 of Lecture 5.

Solution: i) By taking logarithm the problem is equivalent to prove that

δ − (1 + δ) log(1 + δ) + δ2/3 ≤ 0

write f(δ) = 2δ/3− log(1 + δ). We will check that f(δ) ≥ 0 for δ ∈ [0, 1].
A straightforward computation shows that

• f(0) = 0,

• f ′(δ) = 2δ/3− log(1 + δ).

• f ′(0) = 0 and f ′(1) = 2/3− log(2) < 0

We deduce that f ′(δ) ≤ 0 for δ ∈ [0, 1]. This holds because the function log(1 + δ) only intersects with
the line 2x/3 in exactly two points, one of them is 0 and the other has to be after 1 (otherwise f ′(1) ≥ 0).
Finally,

f(δ) =

∫ δ

0

f ′(x)dx− f(0) ≤
∫ δ

0

0dx− 0 = 0

ii) it is done the same way. Alternatively, use the Taylor expansion of log(1− δ),

log(1− δ) = −δ − δ2/2− δ3/3− . . . ≤ −δ − δ2/2.

Question 2. Chernoff Bounds for other random variables.

i) Let X be a Poisson random variable of mean µ. Prove that

E
[
eλX

]
= eµ(e

λ−1)

and deduce that for t ≥ µ and for δ ∈ (0, 1)

P[X ≥ t ] ≤ e−µ
(eµ
t

)t
and P[X ≥ (1 + δ)µ ] ≤ e−δ

2µ/3,

and the corresponding lower tails.
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ii) Let X be a Normal random variable of mean µ and variance σ2. Prove that

E
[
eλX

]
= eµλ+σ

2λ2/2,

and deduce that for t > µ

P[X ≥ t ] ≤ exp

[
−(t− µ)2

2σ2

]
.

Find the corresponding lower tail.

Solution: i) Recall that P[X = k ] = µke−µ

k! . Then

E
[
eλX

]
=

∞∑
i=0

eλk
µke−µ

k!
=

∞∑
i=0

(eλµ)ke−µ

k!
=

e−µ

e−µeλ

∞∑
i=0

(eλµ)ke−µe
λ

k!
(1)

Note that (eλµ)ke−µe
λ

k! is the probability that a Poisson random variable of mean µeλ takes value k,
therefore the summation on the RHS of (1) is 1. We conclude

E
[
eλX

]
=

e−µ

e−µeλ
= eµ(e

λ−1)

The computation of P[X ≥ t ] is exactly as in Lecture 5 slide 20.
ii) The density function of a normal random variable with mean µ and variance σ is given by

1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
. Then

E
[
eλX

]
=

1√
2πσ2

∫
R

exp(λx) exp

(
− (x− µ)2

2σ2

)
dx =

1√
2πσ2

∫
R

exp

(
− (x− µ)2 − 2σ2λx

2σ2

)
dx

We analyse the expression inside the exponential

(x− µ)2 − 2σ2λx = x2 − 2(µ+ λσ2)x+ µ2 = (x− (µ+ λσ2))2 + µ2 − (µ+ λσ2)2

Therefore

E
[
eλX

]
= exp

(
−µ

2 − (µ+ λσ2)2

2σ2

)
1√

2πσ2

∫
R

exp

(
− (x− (µ+ λσ2))2

2σ2

)
dx

Note that exp
(
− (x−(µ+λσ2))2

2σ2

)
is the density function of a normal random variable with mean µ+ λσ2

and variance σ2. Therefore we have

E
[
eλX

]
= exp

(
−µ

2 − (µ+ λσ2)2

2σ2

)
= exp

(
µλ+

σ2λ2

2

)
To compute P[X ≥ t ] use the recipe (Lecture 5, Slide 21).

Question 3. Show properties 2-6 of slide 19 of Lecture 6.

Solution: Property 4: Let a be a possible value of X. Since X is independent of Y we have
P[Y = y|X = a ] = P[Y = y ] then

E[Y |X = a ] =
∑
y

yP[Y = y|X = a ]
indep

=
∑
y

yP[Y = y ] = E[Y ] ,

deducing that E[Y |X ] = E[Y ].
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Property 5: Let a be a possible value of X, then

E[Y Z|X = a ] = E[F (X)Z|X = a ] =
∑
x

∑
z

F (x)zP[X = x, Z = z|X = a ]

= F (a)
∑
z

zP[Z = z|X = a ] = F (a)E[Z|X = a ] ,

deducing that E[Y Z|X ] = YE[Z|X ].

Question 4. Let X1, . . . , Xn be independent discrete random variables and let Z = f(X1, . . . , Xn) for
some function f . Prove that

E[Z|X1, . . . , Xi ] =
∑

xi,xi+1,...,xn

f(X1, . . . , Xi, xi, . . . , xn)P[Xi = xi, . . . , Xn = xn ]

Solution: Let (a1, . . . , an) be a possible value of (X1, . . . , Xn), then

E[Z|X1 = a1, . . . , Xn = an ] =
∑
x1

∑
x2

· · ·
∑
xn

f(x1, . . . , xn)P[X1 = x1, . . . , Xn = xn|X1 = a1, . . . , Xi = ai ]

=
∑
xi+1

· · ·
∑
xn

f(a1, . . . , ai, xi+1, . . . , xn)P[Xi+1 = xi+1, . . . , Xn = xn ] .

Question 5. Conditional Variance. Define the conditional variance of Y given X as

Var [Y |X ] = E
[

(Y −E[Y |X ])2|X
]
.

1. Prove that Var [Y ] = E[Var [Y |X ] ] + Var [E[Y |X ] ]

2. Consider n bins and a random number M of balls, where E[M ] = µ and Var [M ] = σ2. Compute
the variance of the number of balls that are assigned to the first bin.

Solution: Remember that Var [Y ] = E
[

(Y −E[Y ])2
]
, and, equivalently, Var [Y ] = E

[
Y 2
]
−E[Y ]

2

By definition we have that

E[Var [Y |X ] ] = E
[
E
[

(Y −E[Y |X ])2|X
] ] p1

= E
[

(Y −E[Y |X ])2)
]

= E
[
Y 2 − 2YE[Y |X ] + E[Y |X ]

2
]

(p1 refers to the properties of Lecture 6, slide 19). By p1 we get

E[YE[Y |X ] ]
p1
= E[E[YE[Y |X ] |X ] ]

p5
= E

[
E[Y |X ]

2
]

by linearity of conditional expectation (p3) we get

E[Var [Y |X ] ] = E
[
Y 2
]
−E

[
E[Y |X ]

2
]

(2)

Also, note that E[E[Y |X ] ] = E[Y ] then

Var [E[Y |X ] ] = E
[
E[Y |X ]

2
]
−E[Y ]

2
(3)

By adding equations (2) and (3) we get the result.
For the second part, let X be the number of balls that are assigned to the first bin. We com-

pute Var [X ] = E[Var [X|M ] ] + Var [E[X|M ] ]. In lecture 6 slide 24 we computed E[X|M ] =∑∞
i=1 1{i≤M} = M/n. Moreover, by definition of conditional variance, we get

Var [X|M ] = E
[

(X −M/n)2
∣∣∣M ]

p3,p5
= E

[
X2|M

]
− 2(M/n)E[X|M ] + (M/n)2

= E
[
X2|M

]
− (M/n)2
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We just need to compute E
[
X2|M

]
. Let Xi be 1 if ball number i is assigned to the first bin, otherwise

Xi is 0. Then X =
∑∞
i=1Xi1{i≤M} and therefore

X2 =

∞∑
i=1

∞∑
j=1

XiXj1{i,j≤M}

Note that X2
i = Xi, then

E
[
X2|M

]
=

∞∑
i=1

E[Xi|M ] + 2
∑

1=i<j<∞
E[XiXj |M ]1{i,j≤M}

Finally, use that the location of a ball is independent of how many balls we assigned in total. Therefore
E[Xi|M ] = 1/n and E[XiXj |M ] = 1/n2 for i 6= j. We conclude that

Var [X|M ] = M/n+M(M − 1)/n2 − (M/n)2 = M/n−M/n2

and E[Var [X|M ] ] = (µ/n)
(
1− 1

n

)
On the other hand, remember that E[X|M ] = M/n. Then

Var [E[X|M ] ] = Var [M/n ] =
1

n2
Var [M ] = σ2/n2.

By adding Var [E[X|M ] ] and E[Var [X|M ] ] we get the result.

Question 6. Consider a coin that shows head with probability p. What is the expected number of flips
required to observe a run of n consecutive heads?

Solution: Done in exercise class.

Question 7. Let X1, . . . , Xn i.i.d. samples from a distribution of interest. We know that E[Xi ] = µ
and Var [Xi ] = σ2 for all i, but we do not know the exact values of µ nor σ2. We are given the mission
to find an estimate µ̂ of the actual mean µ. We want the estimate µ̂ to satisfy the (δ, ε) condition: given
ε, we want that µ̂ ∈ [µ− εσ, µ+ εσ] with probability at least 1− δ. How many data points Xi do we need
to build an estimator satisfying the (δ, ε) condition?

• In a first attempt we can just deliver µ̂ =
∑n
i=1Xi
n , nevertheless, we cannot guarantee a good

behaviour of such estimator, as we do not have enough information to compute a Chernoff Bound
for it.

1. Prove that with m = d 10ε2 e data points, we have that µ̂m = (
∑m
i=1Xi) /m satisfies the (1/10, ε)

condition.

2. Write an algorithm that uses at most O
(

log(δ−1)
ε2

)
data points to build an estimate of µ satisfying

the (δ, ε) condition.

Hint.

Q6: Recall how we deduce the expectation of a geometric in class.

Q7: For 2. consider batches of size m = d 10ε2 e. What can you say about more than half of them?

Solution: Done in exercise class.
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