Probability and Computation: Problem sheet 3 Solutions

Question 1. We are going to prove part of nicer version of the Chernoff Bounds. Prove the following inequalities
i) For $0<\delta<1$,

$$
\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \leq e^{-\delta^{2} / 3}
$$

ii) For $0<\delta<1$,

$$
\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \leq e^{-\delta^{2} / 2}
$$

iii) Using the Chernoff-Bounds (Slides 8 and 22, Lecture 5) deduce the second part of the Nicer Chernoff Bounds in Slide 23 of Lecture 5.

Solution: i) By taking logarithm the problem is equivalent to prove that

$$
\delta-(1+\delta) \log (1+\delta)+\delta^{2} / 3 \leq 0
$$

write $f(\delta)=2 \delta / 3-\log (1+\delta)$. We will check that $f(\delta) \geq 0$ for $\delta \in[0,1]$.
A straightforward computation shows that

- $f(0)=0$,
- $f^{\prime}(\delta)=2 \delta / 3-\log (1+\delta)$.
- $f^{\prime}(0)=0$ and $f^{\prime}(1)=2 / 3-\log (2)<0$

We deduce that $f^{\prime}(\delta) \leq 0$ for $\delta \in[0,1]$. This holds because the function $\log (1+\delta)$ only intersects with the line $2 x / 3$ in exactly two points, one of them is 0 and the other has to be after 1 (otherwise $f^{\prime}(1) \geq 0$). Finally,

$$
f(\delta)=\int_{0}^{\delta} f^{\prime}(x) d x-f(0) \leq \int_{0}^{\delta} 0 d x-0=0
$$

ii) it is done the same way. Alternatively, use the Taylor expansion of $\log (1-\delta)$,

$$
\log (1-\delta)=-\delta-\delta^{2} / 2-\delta^{3} / 3-\ldots \leq-\delta-\delta^{2} / 2
$$

Question 2. Chernoff Bounds for other random variables.
i) Let X be a Poisson random variable of mean μ. Prove that

$$
\mathbf{E}\left[e^{\lambda X}\right]=e^{\mu\left(e^{\lambda}-1\right)}
$$

and deduce that for $t \geq \mu$ and for $\delta \in(0,1)$

$$
\mathbf{P}[X \geq t] \leq e^{-\mu}\left(\frac{e \mu}{t}\right)^{t} \quad \text { and } \quad \mathbf{P}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}
$$

and the corresponding lower tails.
ii) Let X be a Normal random variable of mean μ and variance σ^{2}. Prove that

$$
\mathbf{E}\left[e^{\lambda X}\right]=e^{\mu \lambda+\sigma^{2} \lambda^{2} / 2}
$$

and deduce that for $t>\mu$

$$
\mathbf{P}[X \geq t] \leq \exp \left[\frac{-(t-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Find the corresponding lower tail.

Solution: i) Recall that $\mathbf{P}[X=k]=\frac{\mu^{k} e^{-\mu}}{k!}$. Then

$$
\begin{equation*}
\mathbf{E}\left[e^{\lambda X}\right]=\sum_{i=0}^{\infty} e^{\lambda k} \frac{\mu^{k} e^{-\mu}}{k!}=\sum_{i=0}^{\infty} \frac{\left(e^{\lambda} \mu\right)^{k} e^{-\mu}}{k!}=\frac{e^{-\mu}}{e^{-\mu e^{\lambda}}} \sum_{i=0}^{\infty} \frac{\left(e^{\lambda} \mu\right)^{k} e^{-\mu e^{\lambda}}}{k!} \tag{1}
\end{equation*}
$$

Note that $\frac{\left(e^{\lambda} \mu\right)^{k} e^{-\mu e^{\lambda}}}{k!}$ is the probability that a Poisson random variable of mean μe^{λ} takes value k, therefore the summation on the RHS of (1) is 1 . We conclude

$$
\mathbf{E}\left[e^{\lambda X}\right]=\frac{e^{-\mu}}{e^{-\mu e^{\lambda}}}=e^{\mu\left(e^{\lambda}-1\right)}
$$

The computation of $\mathbf{P}[X \geq t]$ is exactly as in Lecture 5 slide 20 .
ii) The density function of a normal random variable with mean μ and variance σ is given by $\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$. Then

$$
\mathbf{E}\left[e^{\lambda X}\right]=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{\mathbb{R}} \exp (\lambda x) \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{\mathbb{R}} \exp \left(-\frac{(x-\mu)^{2}-2 \sigma^{2} \lambda x}{2 \sigma^{2}}\right) d x
$$

We analyse the expression inside the exponential

$$
(x-\mu)^{2}-2 \sigma^{2} \lambda x=x^{2}-2\left(\mu+\lambda \sigma^{2}\right) x+\mu^{2}=\left(x-\left(\mu+\lambda \sigma^{2}\right)\right)^{2}+\mu^{2}-\left(\mu+\lambda \sigma^{2}\right)^{2}
$$

Therefore

$$
\mathbf{E}\left[e^{\lambda X}\right]=\exp \left(-\frac{\mu^{2}-\left(\mu+\lambda \sigma^{2}\right)^{2}}{2 \sigma^{2}}\right) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{\mathbb{R}} \exp \left(-\frac{\left(x-\left(\mu+\lambda \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}\right) d x
$$

Note that $\exp \left(-\frac{\left(x-\left(\mu+\lambda \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}\right)$ is the density function of a normal random variable with mean $\mu+\lambda \sigma^{2}$ and variance σ^{2}. Therefore we have

$$
\mathbf{E}\left[e^{\lambda X}\right]=\exp \left(-\frac{\mu^{2}-\left(\mu+\lambda \sigma^{2}\right)^{2}}{2 \sigma^{2}}\right)=\exp \left(\mu \lambda+\frac{\sigma^{2} \lambda^{2}}{2}\right)
$$

To compute $\mathbf{P}[X \geq t]$ use the recipe (Lecture 5, Slide 21).

Question 3. Show properties 2-6 of slide 19 of Lecture 6 .

Solution: Property 4: Let a be a possible value of X. Since X is independent of Y we have $\mathbf{P}[Y=y \mid X=a]=\mathbf{P}[Y=y]$ then

$$
\mathbf{E}[Y \mid X=a]=\sum_{y} y \mathbf{P}[Y=y \mid X=a] \stackrel{i n d e p}{=} \sum_{y} y \mathbf{P}[Y=y]=\mathbf{E}[Y]
$$

deducing that $\mathbf{E}[Y \mid X]=\mathbf{E}[Y]$.

Property 5: Let a be a possible value of X, then

$$
\begin{aligned}
\mathbf{E}[Y Z \mid X=a]=\mathbf{E}[F(X) Z \mid X=a] & =\sum_{x} \sum_{z} F(x) z \mathbf{P}[X=x, Z=z \mid X=a] \\
& =F(a) \sum_{z} z \mathbf{P}[Z=z \mid X=a]=F(a) \mathbf{E}[Z \mid X=a]
\end{aligned}
$$

deducing that $\mathbf{E}[Y Z \mid X]=Y \mathbf{E}[Z \mid X]$.

Question 4. Let X_{1}, \ldots, X_{n} be independent discrete random variables and let $Z=f\left(X_{1}, \ldots, X_{n}\right)$ for some function f. Prove that

$$
\mathbf{E}\left[Z \mid X_{1}, \ldots, X_{i}\right]=\sum_{x_{i}, x_{i+1}, \ldots, x_{n}} f\left(X_{1}, \ldots, X_{i}, x_{i}, \ldots, x_{n}\right) \mathbf{P}\left[X_{i}=x_{i}, \ldots, X_{n}=x_{n}\right]
$$

Solution: Let $\left(a_{1}, \ldots, a_{n}\right)$ be a possible value of $\left(X_{1}, \ldots, X_{n}\right)$, then

$$
\begin{aligned}
\mathbf{E}\left[Z \mid X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right] & =\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{n}} f\left(x_{1}, \ldots, x_{n}\right) \mathbf{P}\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid X_{1}=a_{1}, \ldots, X_{i}=a_{i}\right] \\
& =\sum_{x_{i+1}} \cdots \sum_{x_{n}} f\left(a_{1}, \ldots, a_{i}, x_{i+1}, \ldots, x_{n}\right) \mathbf{P}\left[X_{i+1}=x_{i+1}, \ldots, X_{n}=x_{n}\right] .
\end{aligned}
$$

Question 5. Conditional Variance. Define the conditional variance of Y given X as

$$
\operatorname{Var}[Y \mid X]=\mathbf{E}\left[(Y-\mathbf{E}[Y \mid X])^{2} \mid X\right]
$$

1. Prove that $\operatorname{Var}[Y]=\mathbf{E}[\operatorname{Var}[Y \mid X]]+\operatorname{Var}[\mathbf{E}[Y \mid X]]$
2. Consider n bins and a random number M of balls, where $\mathbf{E}[M]=\mu$ and $\operatorname{Var}[M]=\sigma^{2}$. Compute the variance of the number of balls that are assigned to the first bin.

Solution: Remember that $\operatorname{Var}[Y]=\mathbf{E}\left[(Y-\mathbf{E}[Y])^{2}\right]$, and, equivalently, $\operatorname{Var}[Y]=\mathbf{E}\left[Y^{2}\right]-\mathbf{E}[Y]^{2}$
By definition we have that

$$
\left.\mathbf{E}[\operatorname{Var}[Y \mid X]]=\mathbf{E}\left[\mathbf{E}\left[(Y-\mathbf{E}[Y \mid X])^{2} \mid X\right]\right] \stackrel{p 1}{=} \mathbf{E}\left[(Y-\mathbf{E}[Y \mid X])^{2}\right)\right]=\mathbf{E}\left[Y^{2}-2 Y \mathbf{E}[Y \mid X]+\mathbf{E}[Y \mid X]^{2}\right]
$$

($p 1$ refers to the properties of Lecture 6 , slide 19). By $p 1$ we get

$$
\mathbf{E}[Y \mathbf{E}[Y \mid X]] \stackrel{p 1}{=} \mathbf{E}[\mathbf{E}[Y \mathbf{E}[Y \mid X] \mid X]] \stackrel{p 5}{=} \mathbf{E}\left[\mathbf{E}[Y \mid X]^{2}\right]
$$

by linearity of conditional expectation (p 3) we get

$$
\begin{equation*}
\mathbf{E}[\operatorname{Var}[Y \mid X]]=\mathbf{E}\left[Y^{2}\right]-\mathbf{E}\left[\mathbf{E}[Y \mid X]^{2}\right] \tag{2}
\end{equation*}
$$

Also, note that $\mathbf{E}[\mathbf{E}[Y \mid X]]=\mathbf{E}[Y]$ then

$$
\begin{equation*}
\operatorname{Var}[\mathbf{E}[Y \mid X]]=\mathbf{E}\left[\mathbf{E}[Y \mid X]^{2}\right]-\mathbf{E}[Y]^{2} \tag{3}
\end{equation*}
$$

By adding equations (2) and (3) we get the result.
For the second part, let X be the number of balls that are assigned to the first bin. We compute $\operatorname{Var}[X]=\mathbf{E}[\operatorname{Var}[X \mid M]]+\operatorname{Var}[\mathbf{E}[X \mid M]]$. In lecture 6 slide 24 we computed $\mathbf{E}[X \mid M]=$ $\sum_{i=1}^{\infty} \mathbf{1}_{\{i \leq M\}}=M / n$. Moreover, by definition of conditional variance, we get

$$
\begin{gathered}
\operatorname{Var}[X \mid M]=\mathbf{E}\left[(X-M / n)^{2} \mid M\right] \stackrel{p 3, p 5}{=} \mathbf{E}\left[X^{2} \mid M\right]-2(M / n) \mathbf{E}[X \mid M]+(M / n)^{2} \\
=\mathbf{E}\left[X^{2} \mid M\right]-(M / n)^{2}
\end{gathered}
$$

We just need to compute $\mathbf{E}\left[X^{2} \mid M\right]$. Let X_{i} be 1 if ball number i is assigned to the first bin, otherwise X_{i} is 0 . Then $X=\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{\{i \leq M\}}$ and therefore

$$
X^{2}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} X_{i} X_{j} \mathbf{1}_{\{i, j \leq M\}}
$$

Note that $X_{i}^{2}=X_{i}$, then

$$
\mathbf{E}\left[X^{2} \mid M\right]=\sum_{i=1}^{\infty} \mathbf{E}\left[X_{i} \mid M\right]+2 \sum_{1=i<j<\infty} \mathbf{E}\left[X_{i} X_{j} \mid M\right] \mathbf{1}_{\{i, j \leq M\}}
$$

Finally, use that the location of a ball is independent of how many balls we assigned in total. Therefore $\mathbf{E}\left[X_{i} \mid M\right]=1 / n$ and $\mathbf{E}\left[X_{i} X_{j} \mid M\right]=1 / n^{2}$ for $i \neq j$. We conclude that

$$
\operatorname{Var}[X \mid M]=M / n+M(M-1) / n^{2}-(M / n)^{2}=M / n-M / n^{2}
$$

and $\mathbf{E}[\operatorname{Var}[X \mid M]]=(\mu / n)\left(1-\frac{1}{n}\right)$
On the other hand, remember that $\mathbf{E}[X \mid M]=M / n$. Then

$$
\operatorname{Var}[\mathbf{E}[X \mid M]]=\operatorname{Var}[M / n]=\frac{1}{n^{2}} \operatorname{Var}[M]=\sigma^{2} / n^{2}
$$

By adding $\operatorname{Var}[\mathbf{E}[X \mid M]]$ and $\mathbf{E}[\operatorname{Var}[X \mid M]]$ we get the result.

Question 6. Consider a coin that shows head with probability p. What is the expected number of fips required to observe a run of n consecutive heads?

Solution: Done in exercise class.

Question 7. Let X_{1}, \ldots, X_{n} i.i.d. samples from a distribution of interest. We know that $\mathbf{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$ for all i, but we do not know the exact values of μ nor σ^{2}. We are given the mission to find an estimate $\hat{\mu}$ of the actual mean μ. We want the estimate $\hat{\mu}$ to satisfy the (δ, ε) condition: given ε, we want that $\hat{\mu} \in[\mu-\varepsilon \sigma, \mu+\varepsilon \sigma]$ with probability at least $1-\delta$. How many data points X_{i} do we need to build an estimator satisfying the (δ, ε) condition?

- In a first attempt we can just deliver $\hat{\mu}=\frac{\sum_{i=1}^{n} X_{i}}{n}$, nevertheless, we cannot guarantee a good behaviour of such estimator, as we do not have enough information to compute a Chernoff Bound for it.

1. Prove that with $m=\left\lceil\frac{10}{\varepsilon^{2}}\right\rceil$ data points, we have that $\hat{\mu}_{m}=\left(\sum_{i=1}^{m} X_{i}\right) / m$ satisfies the $(1 / 10, \varepsilon)$ condition.
2. Write an algorithm that uses at most $O\left(\frac{\log \left(\delta^{-1}\right)}{\varepsilon^{2}}\right)$ data points to build an estimate of μ satisfying the (δ, ε) condition.

Hint.

Q6: Recall how we deduce the expectation of a geometric in class.
Q7: For 2. consider batches of size $m=\left\lceil\frac{10}{\varepsilon^{2}}\right\rceil$. What can you say about more than half of them?

Solution: Done in exercise class.

