Probability and Computation: Problem sheet 3 Solutions

Question 1. We are going to prove part of nicer version of the Chernoff Bounds. Prove the following

inequalities

i) For 0 < 4§ <1,
66 —62/3.

Lo =

ii) For 0 <¢d <1,
e’ < ¢—0/2
(1—46)0=0) = '

i11) Using the Chernoff-Bounds (Slides 8 and 22, Lecture 5) deduce the second part of the Nicer Chernoff
Bounds in Slide 23 of Lecture 5.

Solution: 1) By taking logarithm the problem is equivalent to prove that
§—(1+0)log(1+6)+6%/3<0

write f(8) = 26/3 —log(1 + §). We will check that f(§) > 0 for § € [0,1].
A straightforward computation shows that

e f(0)=0,
o f/(8) =26/3 —log(1+9).
e f/(0)=0and f'(1) =2/3 —log(2) <0

We deduce that f/(4) < 0 for § € [0,1]. This holds because the function log(1 + §) only intersects with
the line 22/3 in exactly two points, one of them is 0 and the other has to be after 1 (otherwise f'(1) > 0).

Finally,
5 5
16)= [ F@ar- 50 < [ o —0=0
0 0
ii) it is done the same way. Alternatively, use the Taylor expansion of log(1 — ¢),

log(1—0)=—6—062/2-8%/3—...< -5 —6%/2.

Question 2. Chernoff Bounds for other random variables.

i) Let X be a Poisson random variable of mean u. Prove that

El:e)\X] _ eu(e)‘—l)
and deduce that for t > p and for 6 € (0,1)
t
P X>t]<e™ (%) and P[X >(1+0)pu] < e n/3,

and the corresponding lower tails.



ii) Let X be a Normal random variable of mean p and variance o®. Prove that
E[e)\X} _ euk+02)\2/27

and deduce that fort >

P[X >t] <exp [W} :
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Find the corresponding lower tail.

Solution: 1) Recall that P[X = k| = ’Lszu. Then

e} k,—pu o) k — _ 00 A A
phe (P ()
B[] :E :ekk = E o = = § o (1)
=0

=0 : =0

X \k—pe
Note that % is the probability that a Poisson random variable of mean pe* takes value k,

therefore the summation on the RHS of (1) is 1. We conclude
by 67“ A
E[e X] = efﬂek = eﬂ(e Y
The computation of P[ X > ¢] is exactly as in Lecture 5 slide 20.

ii) The density function of a normal random variable with mean p and variance o is given by

\/2;? exp (f (‘T;U‘;F ) Then

1 x — )2 1 x—p)? — 202z
E[e)‘X] = W/Rexp(/\x) exp <_(202u)> dr = \/ﬁ /Rexp (—( H)202 ) dx

We analyse the expression inside the exponential
(x—p)* = 20°e = 2° = 2(u+ Ao®)x + p? = (x — (p+10?))> + 4 = (n+ Ao®)?

Therefore

B[] = exp (_ p - (g; /\02)2) \/2;7 /ReXp (_ (x — (A;:Q/\UQ))2> s
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and variance o2. Therefore we have

2 212 212
E[exx]:exp<_”(“+)‘0))Zexp(u)\+a/\)

2\\2
Note that exp <7M) is the density function of a normal random variable with mean p + Ao?
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To compute P[X > ¢] use the recipe (Lecture 5, Slide 21).

Question 3. Show properties 2-6 of slide 19 of Lecture 6.

Solution:  Property 4: Let a be a possible value of X. Since X is independent of Y we have
PlY =y|X =a] =P[Y =y] then

E[Y|X=a]=Y yP[Y =y|X =a] "= Y yP[Y = y] = E[Y],

deducing that E[Y|X ]| =E[Y].



Property 5: Let a be a possible value of X, then

E[YZ|X =a] =E[F(X)Z|X =a] = ZZF X=2,7=2X=ad]
aZzP =2|X =a] = F(a)E[ Z|X = a],

deducing that E[YZ|X | =YE[Z|X].

Question 4. Let Xi,...,X, be independent discrete random variables and let Z = f(X1,...,X,) for
some function f. Prove that

E(Z|Xy,. ... Xi]= > (X, X, 2n)P[X =i, X, = 2]

Solution: Let (a1,...,a,) be a possible value of (X1,...,X,), then

E[Z|X1:a1,...,Xn:an ZZ Zf.’l}l,..., [X1—xl,...,Xn:xn|X1:al,...,Xi:ai]
xrq )
= Z Zf ala"-7ai7xi+17"-7xn)P[Xi+1 =Zif1,--,Xn an]~
Ti4+1

Question 5. Conditional Variance. Define the conditional variance of Y given X as
Var[Y|X]=E[(Y - E[Y|X])?X].
1. Prove that Var [Y ] =E[Var [Y|X]]+ Var [E[Y|X]]

2. Consider n bins and a random number M of balls, where E[ M| = pu and Var [ M | = 02. Compute
the variance of the number of balls that are assigned to the first bin.

Solution: Remember that Var [Y ] = E[ (Y — E[Y'])?], and, equivalently, Var [Y ] = E[Y?] - E[Y ]?
By definition we have that

B[ Var[Y|X]] = E[E[(Y - B[Y|X)?|X]] 2 B[(Y - B[V|X])*)] = B[ ¥? - 2¥E[Y|X] + E[¥|X ]
(p1 refers to the properties of Lecture 6, slide 19). By pl we get
E[YE[Y|X]] 2 E[E[YE[Y|X]|X]] 1’:5E[E[Y|X}2]

by linearity of conditional expectation (p3) we get

E[Var[Y|X]]:E[Y2]—E{E[Y|X]2} (2)
Also, note that E[E[Y|X ]] = E[Y] then
Var[E[Y\X]]:E{E[Y|X]2} —E[Y]? (3)
By adding equations (2) and (3) we get the result.
For the second part, let X be the number of balls that are assigned to the first bin. We com-

pute Var[X] = E[Var[X|M]] + Var [E[X|M]]. In lecture 6 slide 24 we computed E[ X|M ]| =
> ooy 1i<ary = M/n. Moreover, by definition of conditional variance, we get

Var [ X|M] = E[(X - M/n)Q‘M} PR B[ XM | — 2(M/n)E[X|M] + (M/n)?
— B[ X|M] - (M /n)?



We just need to compute E[X2|M]. Let X; be 1 if ball number i is assigned to the first bin, otherwise
X;is 0. Then X = >°7°, X;1{,<y and therefore

X2 =3 "N XXl <
i=1 j=1
Note that X? = X;, then
E[X?M] = E[X;M]+2 Y E[X;X;|M]|1;<u
i=1 1=i<j<oo

Finally, use that the location of a ball is independent of how many balls we assigned in total. Therefore
E[X;|M]=1/n and E[ X;X;|M | = 1/n? for i # j. We conclude that

Var [X|M | = M/n+ M(M —1)/n? — (M/n)? = M/n — M/n?

and E[Var [ X|M]] = (u/n) (1 - 1)
On the other hand, remember that E[ X|M | = M /n. Then

Var [E[X|M]] = Var[M/n] = %Var[M] =% /n%

By adding Var [E[ X|M ]] and E[ Var [ X|M ]| we get the result.

Question 6. Consider a coin that shows head with probability p. What is the expected number of flips
required to observe a run of n consecutive heads?

Solution: Done in exercise class.

Question 7. Let Xq,...,X,, i.id. samples from a distribution of interest. We know that E[X;] =
and Var [ X;] = o2 for all i, but we do not know the ezact values of u nor o®. We are given the mission
to find an estimate i of the actual mean p. We want the estimate [i to satisfy the (J,¢) condition: given
e, we want that i € [pu — o, p+ o] with probability at least 1 — §. How many data points X; do we need
to build an estimator satisfying the (d,¢) condition?

e In a first attempt we can just deliver i = Z?:nl Xi, nevertheless, we cannot guarantee a good
behaviour of such estimator, as we do not have enough information to compute a Chernoff Bound
for it.

1. Prove that with m = [1}] data points, we have that fi, = (3 i"; X;) /m satisfies the (1/10,¢)
condition.

2. Write an algorithm that uses at most O (log(e%l» data points to build an estimate of p satisfying
the (6,¢) condition.

Hint.
Q6: Recall how we deduce the expectation of a geometric in class.

Q7: For 2. consider batches of size m = [;—91 What can you say about more than half of them?

Solution: Done in exercise class.




