Probability and Computation: Problem sheet 3

Question 1. We are going to prove part of nicer version of the Chernoff Bounds. Prove the following inequalities

i) For $0 < \delta < 1$,

$$\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \le e^{-\delta^2/3}.$$

ii) For $0 < \delta < 1$,

$$\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \le e^{-\delta^2/2}.$$

 iii) Using the Chernoff-Bounds (Slides 8 and 22, Lecture 5) deduce the second part of the Nicer Chernoff Bounds in Slide 23 of Lecture 5.

Question 2. Chernoff Bounds for other random variables.

i) Let X be a Poisson random variable of mean μ . Prove that

$$\mathbf{E}\left[e^{\lambda X}\right] = e^{\mu(e^{\lambda} - 1)}$$

and deduce that for $t \ge \mu$ and for $\delta \in (0, 1)$

$$\mathbf{P}[X \ge t] \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t \quad and \quad \mathbf{P}[X \ge (1+\delta)\mu] \le e^{-\delta^2\mu/3},$$

 $and \ the \ corresponding \ lower \ tails.$

ii) Let X be a Normal random variable of mean μ and variance σ^2 . Prove that

$$\mathbf{E}\left[e^{\lambda X}\right] = e^{\mu\lambda + \sigma^2\lambda^2/2},$$

and deduce that for $t > \mu$

$$\mathbf{P}[X \ge t] \le \exp\left[\frac{-(t-\mu)^2}{2\sigma^2}\right].$$

Find the corresponding lower tail.

Question 3. Show properties 2-6 of slide 19 of Lecture 6.

Question 4. Let X_1, \ldots, X_n be independent discrete random variables and let $Z = f(X_1, \ldots, X_n)$ for some function f. Prove that

$$\mathbf{E}[Z|X_1, \dots, X_i] = \sum_{x_i, x_{i+1}, \dots, x_n} f(X_1, \dots, X_i, x_i, \dots, x_n) \mathbf{P}[X_i = x_i, \dots, X_n = x_n]$$

Question 5. Conditional Variance. Define the conditional variance of Y given X as

$$\operatorname{Var}[Y|X] = \operatorname{\mathbf{E}}\left[(Y - \operatorname{\mathbf{E}}[Y|X])^2|X\right].$$

- 1. Prove that $\operatorname{Var}[Y] = \mathbf{E}[\operatorname{Var}[Y|X]] + \operatorname{Var}[\mathbf{E}[Y|X]]$
- 2. Consider n bins and a random number M of balls, where $\mathbf{E}[M] = \mu$ and $\mathbf{Var}[M] = \sigma^2$. Compute the variance of the number of balls that are assigned to the first bin.

Question 6. Consider a coin that shows head with probability p. What is the expected number of flips required to observe a run of n consecutive heads?

Question 7. Let X_1, \ldots, X_n i.i.d. samples from a distribution of interest. We know that $\mathbf{E}[X_i] = \mu$ and $\mathbf{Var}[X_i] = \sigma^2$ for all *i*, but we do not know the exact values of μ nor σ^2 . We are given the mission to find an estimate $\hat{\mu}$ of the actual mean μ . We want the estimate $\hat{\mu}$ to satisfy the (δ, ε) condition: given ε , we want that $\hat{\mu} \in [\mu - \varepsilon \sigma, \mu + \varepsilon \sigma]$ with probability at least $1 - \delta$. How many data points X_i do we need to build an estimator satisfying the (δ, ε) condition?

- In a first attempt we can just deliver $\hat{\mu} = \frac{\sum_{i=1}^{n} X_i}{n}$, nevertheless, we cannot guarantee a good behaviour of such estimator, as we do not have enough information to compute a Chernoff Bound for it.
- 1. Prove that with $m = \lceil \frac{10}{\varepsilon^2} \rceil$ data points, we have that $\hat{\mu}_m = \left(\sum_{i=1}^m X_i\right)/m$ satisfies the $(1/10, \varepsilon)$ condition.
- 2. Write an algorithm that uses at most $O\left(\frac{\log(\delta^{-1})}{\varepsilon^2}\right)$ data points to build an estimate of μ satisfying the (δ, ε) condition.

Hint.

Q6: Recall how we deduce the expectation of a geometric in class.

Q7: For 2. consider batches of size $m = \lfloor \frac{10}{\epsilon^2} \rfloor$. What can you say about more than half of them?