Probability and Computation: Problem sheet 3

Question 1. We are going to prove part of nicer version of the Chernoff Bounds. Prove the following inequalities
i) For $0<\delta<1$,

$$
\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \leq e^{-\delta^{2} / 3}
$$

ii) For $0<\delta<1$,

$$
\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \leq e^{-\delta^{2} / 2}
$$

iii) Using the Chernoff-Bounds (Slides 8 and 22, Lecture 5) deduce the second part of the Nicer Chernoff Bounds in Slide 23 of Lecture 5.

Question 2. Chernoff Bounds for other random variables.
i) Let X be a Poisson random variable of mean μ. Prove that

$$
\mathbf{E}\left[e^{\lambda X}\right]=e^{\mu\left(e^{\lambda}-1\right)}
$$

and deduce that for $t \geq \mu$ and for $\delta \in(0,1)$

$$
\mathbf{P}[X \geq t] \leq e^{-\mu}\left(\frac{e \mu}{t}\right)^{t} \quad \text { and } \quad \mathbf{P}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}
$$

and the corresponding lower tails.
ii) Let X be a Normal random variable of mean μ and variance σ^{2}. Prove that

$$
\mathbf{E}\left[e^{\lambda X}\right]=e^{\mu \lambda+\sigma^{2} \lambda^{2} / 2}
$$

and deduce that for $t>\mu$

$$
\mathbf{P}[X \geq t] \leq \exp \left[\frac{-(t-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Find the corresponding lower tail.
Question 3. Show properties 2-6 of slide 19 of Lecture 6.
Question 4. Let X_{1}, \ldots, X_{n} be independent discrete random variables and let $Z=f\left(X_{1}, \ldots, X_{n}\right)$ for some function f. Prove that

$$
\mathbf{E}\left[Z \mid X_{1}, \ldots, X_{i}\right]=\sum_{x_{i}, x_{i+1}, \ldots, x_{n}} f\left(X_{1}, \ldots, X_{i}, x_{i}, \ldots, x_{n}\right) \mathbf{P}\left[X_{i}=x_{i}, \ldots, X_{n}=x_{n}\right]
$$

Question 5. Conditional Variance. Define the conditional variance of Y given X as

$$
\operatorname{Var}[Y \mid X]=\mathbf{E}\left[(Y-\mathbf{E}[Y \mid X])^{2} \mid X\right]
$$

1. Prove that $\operatorname{Var}[Y]=\mathbf{E}[\operatorname{Var}[Y \mid X]]+\operatorname{Var}[\mathbf{E}[Y \mid X]]$
2. Consider n bins and a random number M of balls, where $\mathbf{E}[M]=\mu$ and $\operatorname{Var}[M]=\sigma^{2}$. Compute the variance of the number of balls that are assigned to the first bin.

Question 6. Consider a coin that shows head with probability p. What is the expected number of flips required to observe a run of n consecutive heads?

Question 7. Let X_{1}, \ldots, X_{n} i.i.d. samples from a distribution of interest. We know that $\mathbf{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}$ for all i, but we do not know the exact values of μ nor σ^{2}. We are given the mission to find an estimate $\hat{\mu}$ of the actual mean μ. We want the estimate $\hat{\mu}$ to satisfy the (δ, ε) condition: given ε, we want that $\hat{\mu} \in[\mu-\varepsilon \sigma, \mu+\varepsilon \sigma]$ with probability at least $1-\delta$. How many data points X_{i} do we need to build an estimator satisfying the (δ, ε) condition?

- In a first attempt we can just deliver $\hat{\mu}=\frac{\sum_{i=1}^{n} X_{i}}{n}$, nevertheless, we cannot guarantee a good behaviour of such estimator, as we do not have enough information to compute a Chernoff Bound for it.

1. Prove that with $m=\left\lceil\frac{10}{\varepsilon^{2}}\right\rceil$ data points, we have that $\hat{\mu}_{m}=\left(\sum_{i=1}^{m} X_{i}\right) / m$ satisfies the $(1 / 10, \varepsilon)$ condition.
2. Write an algorithm that uses at most $O\left(\frac{\log \left(\delta^{-1}\right)}{\varepsilon^{2}}\right)$ data points to build an estimate of μ satisfying the (δ, ε) condition.

Hint.

Q6: Recall how we deduce the expectation of a geometric in class.
Q7: For 2. consider batches of size $m=\left\lceil\frac{10}{\varepsilon^{2}}\right\rceil$. What can you say about more than half of them?

