
Probability and Computation: Problem sheet 1 Solutions

Question 1. Recall that a permutation σ : [n] → [n] is a bijection from [n] to [n]. A cycle c =
(c1, c2, . . . , ck) is a sequence such that σ(ai) = ai+1 mod k . Example: if σ(1) = 3, σ(2) = 2, σ(3) = 4
and σ(4) = 1 (this is also denoted σ =

(
1 2 3 4
3 2 4 1

)
) then (1, 3, 4) is a cycle (as are (3, 4, 1) and (4, 1, 3)) .

(i) How many permutations on [n] are there?

(ii) Show that the number of permutations on [n] which contain a cycle of length ` > bn/2c+ 1 is n!/`
.

(iii) Let E be the event that a uniformly distributed random permutation contains no cycle longer than

bn/2c. Show that P[ E ] = 1−
(

1
bn/2c+1 + . . .+ 1

n

)
.

(iv) Approximate the expression for P[ E ] above by integrals to give P[ E ] = 1− ln 2 + o(1) ≈ 0.31183.

Solution: Part (i) there are n! permutations on [n].
For part (ii) each permutation on [n] can contain at most one cycle longer than bn/2c+1 and there are

exactly
(
n
`

)
ways to select the elements of such a cycle. Within this cycle, the elements can be arranged

in `!/` = (` − 1)! ways since two cycles are the same if one is a rotation of the other. The remaining
elements of the permutation can be arranged in (n − `)! ways. Therefore, the number of permutations
on [n] with a cycle of length ` is equal to(

n

`

)
· (`− 1)! · (n− `)! =

n!

`
.

For part (iii) a permutation of the numbers 1 to n can contain at most one cycle of length ` > bn/2c.
Since the event that a uniform permutation contains a cycle of length ` > bn/2c are disjoint their
probability follows by summing the result of part (ii) and dividing by the total number of permutations
(n!). Thus we have

P[ No cycle ≥ bn/2c ] = 1−
n∑

`=bn/2c

P[ longest cycle = ` ] = 1− 1

n!

(
n!

bn/2c+ 1
+ · · ·+ n!

n

)

= 1−
(

1

bn/2c+ 1
+ . . .+

1

n

)
.

For part (iv) the expression above is 1−Hn−Hbn/2c+1 where Hn is the n-th harmonic number. Observe
that for any n ≥ 2 ∫ n+1

bn/2c+1

1

x
dx ≤ 1

bn/2c+ 1
+ . . .+

1

n
≤
∫ n

bn/2c

1

x
dx,

where the two integrals above evaluate to ln 2± ln (1−O(1/n)). The result follows by Taylor’s approxi-
mation for the natural logarithm ln(·).

Question 2. Recall that a probability vector (distribution) is a non-negative real vector whose elements
sum to 1. A stochastic matrix is a real square matrix, where each row is a probability vector. Observe
every Stochastic matrix gives rise to a Markov chain and visa versa.

(i) Let ν ∈ Rn
+ be a probability vector and M ∈ Rn×n

+ be a stochastic matrix. Show that νM is a
probability vector.
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A doubly stochastic matrix is a real square matrix, where each row and column is a probability vector.

(ii) Prove that the uniform distribution is stationary for any Markov chain whose transition matrix is
doubly stochastic.

Question 3. In this question we shall consider two probability measures µ1, µ2 on the common state
space [12] = {1, . . . , 12}. The first measure is the uniform measure µ1(x) = 1/12 for all x ∈ [12], this
is a “12 sided fair die”. The second µ2 is the measure generated by the sum of two independent, fair,
6-sided die i.e. µ2(1) = 0, µ2(2) = 1/62, . . . . Calculate ‖µ1 − µ2‖.

Question 4. Recall Jerry’s Coupling Zt for two Simple Random walks Tt, Jt on the 3-cycle. This
coupling is given by Markov chain Zt = (Tt, Jt) on {0, 1, 2} × {0, 1, 2}:

• Run the Cat Tt as normal

• Mouse Jt moves according to the rule: Jt+1 =

{
Jt + 1 mod 3 if Tt+1 = Tt + 1 mod 3

Jt − 1 mod 3 if Tt+1 = Tt − 1 mod 3.

This coupling lets the “Mouse” Jt avoid the “Cat” Tt forever.

1. Write down the rule for “Tom’s Coupling” - the coupling where Tt and Jt meet as soon as possible
and show this is a valid coupling.

2. Draw a diagram of the Markov Chain Zt on {0, 1, 2} × {0, 1, 2} generated by Tom’s Coupling.

Solution: Clearly the Mouse’s marginal distribution is correct, what about Cat? Let P(x,y)[·] :=
P[ · | Zt = (x, y) ], then for x, y, z ∈ {0, 1, 2}

P(x,y)[Tt+1 = x] = P[Tt+1 = x, Jt = x ] + P[Tt+1 = x, Jt = z ] = 0 + 0 = 0

P(x,y)[Tt+1 = y] = P[Tt+1 = y, Jt = x ] + P[Tt+1 = y, Jt = z ] = 1/2 + 0 = 1/2

P(x,y)[Tt+1 = z] = P[Tt+1 = z, Jt = x ] + P[Tt+1 = z, Jt = z ] = 0 + 1/2 = 1/2

Thus the Tom has the right transition densities. Zt looks like

(2,2)

(0,1)

(1,0)

(1,1)

(0,2) (2,0)

(0,0)

(1,2)

(2,1)

1/21/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2 1/2

1/2

1/2

Question 5. In lecture 1 we saw the balls in bins experiment where one assigns m balls to n bins
uniformly and independently. By considering the number of balls assigned to bins between the first time
i bins are empty and i − 1 bins are empty, show that the the expected number of balls one must assign
before there is no empty bin is n log n+ Θ(n).
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Solution: Let Ti be number of balls assigned while you have exactly i bins still empty. The r.v. Ti is
geometrically distributed Geo(pi) for some pi.

There are i bins empty out of n total and all bins are equally likely thus

pi = i/n.

The total number T of balls assigned is given by
∑n

i=1 Ti and so

E[T ] =

n∑
i=1

E[Ti ] =

n∑
i=1

n

i
= n ·Hn = n log n+ Θ(n) ,

where Hn is the n-th harmonic number.

Question 6. Let Xn be the sum of n independent rolls of a fair die. Show that, for any k ≥ 2,

lim
n→∞

P[Xn is divisible by k ] =
1

k
.

Hint. At face value Xn is an (infinite) Markov chain on N. We would like to consider it as a finite
Markov chain, reduction mod m (for some suitable m) will help us achieve this.

Question 7. State j is accessible from state i if, for some integer n ≥ 0, Pn
i,j > 0. If two states i

and j are accessible from each other, we say that they communicate and we write i ∼ j. Prove that
communicating relation ∼ defines an equivalence relation.

Question 8. Prove the following Lemma from class: For any probability distributions µ and η on a
countable state space Ω

‖µ− η‖tv =
1

2

∑
ω∈Ω

|µ(ω)− η(ω)|.

Hint. Recall the sets Ω± from the Coupling Lemma.

Solution: Let Ω+ = {ω : µ(ω) ≥ η(ω)} and Ω− = {ω : µ(ω) < η(ω)} . Then

max
A⊆Ω

µ(A)− η(A) = µ(Ω+)− η(Ω+)

and
max
A⊆Ω

η(A)− µ(A) = η(Ω−)− µ(Ω−).

Since Ω = Ω+ ∪ Ω− and Ω+ ∩ Ω− = ∅ we have

µ(Ω+) + µ(Ω−) = 1 and η(Ω+) + η(Ω−) = 1,

thus
µ(Ω+)− η(Ω+) = η(Ω−)− µ(Ω−).

Hence
sup
a⊂Ω
|µ(A)− η(A)| = |µ(Ω+)− η(Ω+)| = |µ(Ω−)− η(Ω−)|.

Combining the above yields

2 ‖µ− η‖tv = |µ(Ω+)− η(Ω+)|+ |µ(Ω−)− η(Ω−)| =
∑
ω∈Ω

|µ(ω)− η(ω)|.

Question 9. This question asks you to prove lower bounds on the mixing time of some lazy random
walks on graphs.
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1. Let G = (V1 ∪ V2, E) be a graph made of two disjoint complete graphs of n vertices, supported
respectively on V1 and V2, connected by a single edge. This is called the Barbell graph. Consider a
lazy random walk on G. Prove that tmix(G) = Ω(n2) (recall from Lecture 3 that tmix = τ(1/4)).

2. Suppose now we add s < n edges to the Barbell graph, where each edge has one endpoint in V1 and
the other endpoint in V2. What happens to tmix(G)?

3. Consider now a version of the Barbell graph where |V1| = n, |V2| = blog(n)c and there exists only
an edge between V1 and V2. What is the mixing time of this graph?

Solution: For part (i): let π be the stationary distribution of a lazy random walk in G (recall that,
for any vertex u, π(u) = d(u)/2|E| where d(u) is the degree of u). Now notice that, by symmetry,∑

u∈V1
π(u) =

∑
u∈V2

π(u) = 1/2. You can prove this explicitly by using the formula for the stationary
distribution mentioned above. Consider a probability distribution p such that

∑
u∈V2

p(u) ≤ ε for some
small ε ≥ 0. Then,

‖p− π‖TV =
1

2

∑
u∈V1

|p(u)− π(u)|+ 1

2

∑
u∈V2

|p(u)− π(u)|

≥ 1

2

∑
u∈V1

(p(u)− π(u)) +
1

2

∑
u∈V2

(π(u)− p(u))

=
1

2

(∑
u∈V1

p(u)−
∑
u∈V1

π(u) +
∑
u∈V2

π(u)−
∑
u∈V2

p(u)

)

≥ 1

2

(
1− ε− 1

2

)
+

1

2

(
1

2
− ε
)

=
1

2
− ε

where the last inequality follows from the facts that
∑

u∈V2
p(u) ≤ ε and

∑
u∈V1

π(u) =
∑

u∈V2
π(u) =

1/2. Therefore, a walk to be mixed must have at least probability ε ≥ 1/4 to be in V2.
But now suppose a walk start from a vertex u ∈ V1 which is not the only vertex v ∈ V1 adjacent to

a vertex in V2. Then, at each step, if the walk it’s still in V1, it has probability O(1/n2) to move to V2

(because it must move first to v and then move in V2). Therefore, after t steps,
∑

w∈V2
P t(u,w) = O(t/n2)

(this follows from a union bounds on the events “at step i the walk moves from V1 to V2” for i = 1, . . . , t).
Hence, we need to wait Ω(n2) before the walk is close to stationarity.

For part (ii) repeat the same argument as in part (i) but now at each step the probability to go from
V1 to V2 is Ω(s/n2). Therefore, tmix = O(n2/s) (when you reach V2, since the subgraph supported on
V2 is complete, after a few steps you are mixed).

For part (ii), repeating again the same argument it is clear that to be mixed we just need to move
from V2 to V1 (it is important here to notice that the worst case is to start in V2: since V2 is very small
compared to V1, if we start in the latter our argument doesn’t work anymore). But this happens with
probability Θ(1/(log n)2). Therefore mixing happens in O(log n)2 steps.
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