Probability and Computation: Problem sheet 1 Solutions

Question 1. Recall that a permutation $\sigma : [n] \to [n]$ is a bijection from [n] to [n]. A cycle $c = (c_1, c_2, \ldots, c_k)$ is a sequence such that $\sigma(a_i) = a_{i+1 \mod k}$. Example: if $\sigma(1) = 3$, $\sigma(2) = 2$, $\sigma(3) = 4$ and $\sigma(4) = 1$ (this is also denoted $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 4 \\ \end{pmatrix}$) then (1, 3, 4) is a cycle (as are (3, 4, 1) and (4, 1, 3)).

- (i) How many permutations on [n] are there?
- (ii) Show that the number of permutations on [n] which contain a cycle of length $\ell > \lfloor n/2 \rfloor + 1$ is $n!/\ell$
- (iii) Let \mathcal{E} be the event that a uniformly distributed random permutation contains no cycle longer than $\lfloor n/2 \rfloor$. Show that $\mathbf{P}[\mathcal{E}] = 1 \left(\frac{1}{\lfloor n/2 \rfloor + 1} + \ldots + \frac{1}{n}\right)$.
- (iv) Approximate the expression for $\mathbf{P}[\mathcal{E}]$ above by integrals to give $\mathbf{P}[\mathcal{E}] = 1 \ln 2 + o(1) \approx 0.31183$.

Solution: Part (i) there are n! permutations on [n].

For part (*ii*) each permutation on [n] can contain at most one cycle longer than $\lfloor n/2 \rfloor + 1$ and there are exactly $\binom{n}{\ell}$ ways to select the elements of such a cycle. Within this cycle, the elements can be arranged in $\ell!/\ell = (\ell - 1)!$ ways since two cycles are the same if one is a rotation of the other. The remaining elements of the permutation can be arranged in $(n - \ell)!$ ways. Therefore, the number of permutations on [n] with a cycle of length ℓ is equal to

$$\binom{n}{\ell} \cdot (\ell - 1)! \cdot (n - \ell)! = \frac{n!}{\ell}.$$

For part (*iii*) a permutation of the numbers 1 to n can contain at most one cycle of length $\ell > \lfloor n/2 \rfloor$. Since the event that a uniform permutation contains a cycle of length $\ell > \lfloor n/2 \rfloor$ are disjoint their probability follows by summing the result of part (*ii*) and dividing by the total number of permutations (*n*!). Thus we have

$$\mathbf{P}[\text{No cycle } \ge \lfloor n/2 \rfloor] = 1 - \sum_{\ell = \lfloor n/2 \rfloor}^{n} \mathbf{P}[\text{longest cycle } = \ell] = 1 - \frac{1}{n!} \left(\frac{n!}{\lfloor n/2 \rfloor + 1} + \dots + \frac{n!}{n} \right)$$
$$= 1 - \left(\frac{1}{\lfloor n/2 \rfloor + 1} + \dots + \frac{1}{n} \right).$$

For part (iv) the expression above is $1 - H_n - H_{\lfloor n/2 \rfloor + 1}$ where H_n is the *n*-th harmonic number. Observe that for any $n \ge 2$

$$\int_{\lfloor n/2 \rfloor + 1}^{n+1} \frac{1}{x} dx \le \frac{1}{\lfloor n/2 \rfloor + 1} + \dots + \frac{1}{n} \le \int_{\lfloor n/2 \rfloor}^{n} \frac{1}{x} dx,$$

where the two integrals above evaluate to $\ln 2 \pm \ln (1 - O(1/n))$. The result follows by Taylor's approximation for the natural logarithm $\ln(\cdot)$.

Question 2. Recall that a probability vector (distribution) is a non-negative real vector whose elements sum to 1. A stochastic matrix is a real square matrix, where each row is a probability vector. Observe every Stochastic matrix gives rise to a Markov chain and visa versa.

(i) Let $\nu \in \mathbb{R}^n_+$ be a probability vector and $M \in \mathbb{R}^{n \times n}_+$ be a stochastic matrix. Show that νM is a probability vector.

A doubly stochastic matrix is a real square matrix, where each row and column is a probability vector.

(ii) Prove that the uniform distribution is stationary for any Markov chain whose transition matrix is doubly stochastic.

Question 3. In this question we shall consider two probability measures μ_1, μ_2 on the common state space $[12] = \{1, \ldots, 12\}$. The first measure is the uniform measure $\mu_1(x) = 1/12$ for all $x \in [12]$, this is a "12 sided fair die". The second μ_2 is the measure generated by the sum of two independent, fair, 6-sided die i.e. $\mu_2(1) = 0, \mu_2(2) = 1/6^2, \ldots$ Calculate $\|\mu_1 - \mu_2\|$.

Question 4. Recall Jerry's Coupling Z_t for two Simple Random walks T_t, J_t on the 3-cycle. This coupling is given by Markov chain $Z_t = (T_t, J_t)$ on $\{0, 1, 2\} \times \{0, 1, 2\}$:

- Run the Cat T_t as normal
- Mouse J_t moves according to the rule: $J_{t+1} = \begin{cases} J_t + 1 \mod 3 & \text{if } T_{t+1} = T_t + 1 \mod 3 \\ J_t 1 \mod 3 & \text{if } T_{t+1} = T_t 1 \mod 3. \end{cases}$

This coupling lets the "Mouse" J_t avoid the "Cat" T_t forever.

- 1. Write down the rule for "Tom's Coupling" the coupling where T_t and J_t meet as soon as possible and show this is a valid coupling.
- 2. Draw a diagram of the Markov Chain Z_t on $\{0,1,2\} \times \{0,1,2\}$ generated by Tom's Coupling.

Solution: Clearly the Mouse's marginal distribution is correct, what about Cat? Let $\mathbf{P}_{(x,y)}[\cdot] := \mathbf{P}[\cdot | Z_t = (x, y)]$, then for $x, y, z \in \{0, 1, 2\}$

$$\begin{aligned} \mathbf{P}_{(x,y)}[T_{t+1} = x] &= \mathbf{P}[T_{t+1} = x, J_t = x] + \mathbf{P}[T_{t+1} = x, J_t = z] = 0 + 0 = 0\\ \mathbf{P}_{(x,y)}[T_{t+1} = y] &= \mathbf{P}[T_{t+1} = y, J_t = x] + \mathbf{P}[T_{t+1} = y, J_t = z] = 1/2 + 0 = 1/2\\ \mathbf{P}_{(x,y)}[T_{t+1} = z] &= \mathbf{P}[T_{t+1} = z, J_t = x] + \mathbf{P}[T_{t+1} = z, J_t = z] = 0 + 1/2 = 1/2\end{aligned}$$

Thus the Tom has the right transition densities. Z_t looks like

Question 5. In lecture 1 we saw the balls in bins experiment where one assigns m balls to n bins uniformly and independently. By considering the number of balls assigned to bins between the first time i bins are empty and i - 1 bins are empty, show that the the expected number of balls one must assign before there is no empty bin is $n \log n + \Theta(n)$.

Solution: Let T_i be number of balls assigned while you have exactly *i* bins still empty. The r.v. T_i is geometrically distributed $Geo(p_i)$ for some p_i .

There are i bins empty out of n total and all bins are equally likely thus

$$p_i = i/n.$$

The total number T of balls assigned is given by $\sum_{i=1}^{n} T_i$ and so

$$\mathbf{E}[T] = \sum_{i=1}^{n} \mathbf{E}[T_i] = \sum_{i=1}^{n} \frac{n}{i} = n \cdot H_n = n \log n + \Theta(n),$$

where H_n is the *n*-th harmonic number.

Question 6. Let X_n be the sum of n independent rolls of a fair die. Show that, for any $k \ge 2$,

$$\lim_{n \to \infty} \mathbf{P}[X_n \text{ is divisible by } k] = \frac{1}{k}.$$

Hint. At face value X_n is an (infinite) Markov chain on \mathbb{N} . We would like to consider it as a finite Markov chain, reduction mod m (for some suitable m) will help us achieve this.

Question 7. State j is accessible from state i if, for some integer $n \ge 0$, $P_{i,j}^n > 0$. If two states i and j are accessible from each other, we say that they communicate and we write $i \sim j$. Prove that communicating relation \sim defines an equivalence relation.

Question 8. Prove the following Lemma from class: For any probability distributions μ and η on a countable state space Ω

$$\left\|\mu - \eta\right\|_{tv} = \frac{1}{2} \sum_{\omega \in \Omega} \left|\mu(\omega) - \eta(\omega)\right|$$

Hint. Recall the sets Ω^{\pm} from the Coupling Lemma.

Solution: Let $\Omega^+ = \{\omega : \mu(\omega) \ge \eta(\omega)\}$ and $\Omega^- = \{\omega : \mu(\omega) < \eta(\omega)\}$. Then

$$\max_{A \subseteq \Omega} \mu(A) - \eta(A) = \mu(\Omega^+) - \eta(\Omega^+)$$

and

$$\max_{A \subseteq \Omega} \eta(A) - \mu(A) = \eta(\Omega^{-}) - \mu(\Omega^{-})$$

Since $\Omega = \Omega^+ \cup \Omega^-$ and $\Omega^+ \cap \Omega^- = \emptyset$ we have

$$\mu(\Omega^+) + \mu(\Omega^-) = 1 \qquad \text{and} \qquad \eta(\Omega^+) + \eta(\Omega^-) = 1,$$

thus

$$\mu(\Omega^+) - \eta(\Omega^+) = \eta(\Omega^-) - \mu(\Omega^-).$$

Hence

$$\sup_{a \in \Omega} |\mu(A) - \eta(A)| = |\mu(\Omega^+) - \eta(\Omega^+)| = |\mu(\Omega^-) - \eta(\Omega^-)|.$$

Combining the above yields

$$2 \|\mu - \eta\|_{tv} = |\mu(\Omega^{+}) - \eta(\Omega^{+})| + |\mu(\Omega^{-}) - \eta(\Omega^{-})| = \sum_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)|.$$

Question 9. This question asks you to prove lower bounds on the mixing time of some lazy random walks on graphs.

- 1. Let $G = (V_1 \cup V_2, E)$ be a graph made of two disjoint complete graphs of n vertices, supported respectively on V_1 and V_2 , connected by a single edge. This is called the Barbell graph. Consider a lazy random walk on G. Prove that $t_{mix}(G) = \Omega(n^2)$ (recall from Lecture 3 that $t_{mix} = \tau(1/4)$).
- 2. Suppose now we add s < n edges to the Barbell graph, where each edge has one endpoint in V_1 and the other endpoint in V_2 . What happens to $t_{mix}(G)$?
- 3. Consider now a version of the Barbell graph where $|V_1| = n, |V_2| = \lfloor \log(n) \rfloor$ and there exists only an edge between V_1 and V_2 . What is the mixing time of this graph?

Solution: For part (i): let π be the stationary distribution of a lazy random walk in G (recall that, for any vertex u, $\pi(u) = d(u)/2|E|$ where d(u) is the degree of u). Now notice that, by symmetry, $\sum_{u \in V_1} \pi(u) = \sum_{u \in V_2} \pi(u) = 1/2$. You can prove this explicitly by using the formula for the stationary distribution mentioned above. Consider a probability distribution p such that $\sum_{u \in V_2} p(u) \leq \epsilon$ for some small $\epsilon \geq 0$. Then,

$$\begin{split} \|p - \pi\|_{TV} &= \frac{1}{2} \sum_{u \in V_1} |p(u) - \pi(u)| + \frac{1}{2} \sum_{u \in V_2} |p(u) - \pi(u)| \\ &\geq \frac{1}{2} \sum_{u \in V_1} (p(u) - \pi(u)) + \frac{1}{2} \sum_{u \in V_2} (\pi(u) - p(u)) \\ &= \frac{1}{2} \left(\sum_{u \in V_1} p(u) - \sum_{u \in V_1} \pi(u) + \sum_{u \in V_2} \pi(u) - \sum_{u \in V_2} p(u) \right) \\ &\geq \frac{1}{2} \left(1 - \epsilon - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \epsilon \right) = \frac{1}{2} - \epsilon \end{split}$$

where the last inequality follows from the facts that $\sum_{u \in V_2} p(u) \leq \epsilon$ and $\sum_{u \in V_1} \pi(u) = \sum_{u \in V_2} \pi(u) = 1/2$. Therefore, a walk to be mixed must have at least probability $\epsilon \geq 1/4$ to be in V_2 .

But now suppose a walk start from a vertex $u \in V_1$ which is not the only vertex $v \in V_1$ adjacent to a vertex in V_2 . Then, at each step, if the walk it's still in V_1 , it has probability $O(1/n^2)$ to move to V_2 (because it must move first to v and then move in V_2). Therefore, after t steps, $\sum_{w \in V_2} P^t(u, w) = O(t/n^2)$ (this follows from a union bounds on the events "at step i the walk moves from V_1 to V_2 " for $i = 1, \ldots, t$). Hence, we need to wait $\Omega(n^2)$ before the walk is close to stationarity.

For part (*ii*) repeat the same argument as in part (*i*) but now at each step the probability to go from V_1 to V_2 is $\Omega(s/n^2)$. Therefore, $t_{mix} = O(n^2/s)$ (when you reach V_2 , since the subgraph supported on V_2 is complete, after a few steps you are mixed).

For part (*ii*), repeating again the same argument it is clear that to be mixed we just need to move from V_2 to V_1 (it is important here to notice that the worst case is to start in V_2 : since V_2 is very small compared to V_1 , if we start in the latter our argument doesn't work anymore). But this happens with probability $\Theta(1/(\log n)^2)$. Therefore mixing happens in $O(\log n)^2$ steps.