Probability and Computation: Problem sheet 1

Question 1. Recall that a permutation $\sigma : [n] \to [n]$ is a bijection from [n] to [n]. A cycle $c = (c_1, c_2, \ldots, c_k)$ is a sequence such that $\sigma(a_i) = a_{i+1 \mod k}$. Example: if $\sigma(1) = 3$, $\sigma(2) = 2$, $\sigma(3) = 4$ and $\sigma(4) = 1$ (this is also denoted $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 4 \\ \end{pmatrix}$) then (1, 3, 4) is a cycle (as are (3, 4, 1) and (4, 1, 3)).

- (i) How many permutations on [n] are there?
- (ii) Show that the number of permutations on [n] which contain a cycle of length ℓ is $n!/\ell$.
- (iii) Let \mathcal{E} be the event that a uniformly distributed random permutation contains no cycle longer than $\lfloor n/2 \rfloor$. Show that $\mathbf{P}[\mathcal{E}] = 1 \left(\frac{1}{\lfloor n/2 \rfloor + 1} + \ldots + \frac{1}{n}\right)$.
- (iv) Approximate the expression for $\mathbf{P}[\mathcal{E}]$ above by integrals to give $\mathbf{P}[\mathcal{E}] = 1 \ln 2 + o(1) \approx 0.31183$.

Question 2. Recall that a probability vector (distribution) is a non-negative real vector whose elements sum to 1. A stochastic matrix is a real square matrix, where each row is a probability vector. Observe every Stochastic matrix gives rise to a Markov chain and visa versa.

(i) Let $\nu \in \mathbb{R}^n_+$ be a probability vector and $M \in \mathbb{R}^{n \times n}_+$ be a stochastic matrix. Show that νM is a probability vector.

A doubly stochastic matrix is a real square matrix, where each row and column is a probability vector.

(ii) Prove that the uniform distribution is stationary for any Markov chain whose transition matrix is doubly stochastic.

Question 3. In this question we shall consider two probability measures μ_1, μ_2 on the common state space $[12] = \{1, \ldots, 12\}$. The first measure is the uniform measure $\mu_1(x) = 1/12$ for all $x \in [12]$, this is a "12 sided fair die". The second μ_2 is the measure generated by the sum of two independent, fair, 6-sided die i.e. $\mu_2(1) = 0, \mu_2(2) = 1/6^2, \ldots$ Calculate $\|\mu_1 - \mu_2\|$.

Question 4. Recall Jerry's Coupling Z_t for two Simple Random walks T_t, J_t on the 3-cycle. This coupling is given by Markov chain $Z_t = (T_t, J_t)$ on $\{0, 1, 2\} \times \{0, 1, 2\}$:

- Run the Cat T_t as normal
- Mouse J_t moves according to the rule: $J_{t+1} = \begin{cases} J_t + 1 \mod 3 & \text{if } T_{t+1} = T_t + 1 \mod 3 \\ J_t 1 \mod 3 & \text{if } T_{t+1} = T_t 1 \mod 3. \end{cases}$

This coupling lets the "Mouse" J_t avoid the "Cat" T_t forever.

- 1. Write down the rule for "Tom's Coupling" the coupling where T_t and J_t meet as soon as possible and show this is a valid coupling.
- 2. Draw a diagram of the Markov Chain Z_t on $\{0,1,2\} \times \{0,1,2\}$ generated by Tom's Coupling.

Question 5. In lecture 1 we saw the balls in bins experiment where one assigns m balls to n bins uniformly and independently. By considering the number of balls assigned to bins between the first time i bins are empty and i - 1 bins are empty, show that the the expected number of balls one must assign before there is no empty bin is $n \log n + \Theta(n)$.

Question 6. Let X_n be the sum of n independent rolls of a fair die. Show that, for any $k \ge 2$,

$$\lim_{n \to \infty} \mathbf{P}[X_n \text{ is divisible by } k] = \frac{1}{k}.$$

Hint. At face value X_n is an (infinite) Markov chain on \mathbb{N} . We would like to consider it as a finite Markov chain, reduction mod m (for some suitable m) will help us achieve this.

Question 7. State *j* is accessible from state *i* if, for some integer $n \ge 0$, $P_{i,j}^n > 0$. If two states *i* and *j* are accessible from each other, we say that they communicate and we write $i \sim j$. Prove that communicating relation \sim defines an equivalence relation.

Question 8. Prove the following Lemma from class: For any probability distributions μ and η on a countable state space Ω

$$\left\|\mu - \eta\right\|_{tv} = \frac{1}{2} \sum_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)|.$$

Hint. Recall the sets Ω^{\pm} from the Coupling Lemma.

Question 9. This question asks you to prove lower bounds on the mixing time of some lazy random walks on graphs.

- 1. Let $G = (V_1 \cup V_2)$ be a graph made of two disjoint complete graphs of n vertices, supported respectively on V_1 and V_2 , connected by a single edge. This is called the Barbell graph. Consider a lazy random walk on G. Prove that $t_{mix}(G) = \Omega(n^2)$ (recall from Lecture 3 that $t_{mix} = \tau(1/4)$).
- 2. Suppose now we add s < n edges to the Barbell graph, where each edge has one endpoint in V_1 and the other endpoint in V_2 . What happens to $t_{mix}(G)$?
- 3. Consider now a version of the Barbell graph where $|V_1| = n$, $|V_2| = \lfloor \log(n) \rfloor$ and there exists only an edge between V_1 and V_2 . What is the mixing time of this graph?