
Probability and Computation: Mock Exam Solutions

Question 1. Consider the balls into bins problem where m balls are assigned uniformly and independently
at random to n bins, where m > n. Let X be the number of empty bins.

(a) Compute E[X ].

(b) Prove that X is Liptschitz as a function of the bin number to which each ball is assigned.

(c) Use McDiarmid’s inequality to derive an upper bound for P[X > E[X ] + t ] provided t > 0.

(d) Find a better bound for P[X > E[X ] + t ] by expressing X as a function of something different.

Solution:

(a) A bin is empty if no balls are assigned to it. This event occurs with probability (1−1/n)m. Therefore,
the expected number of empty bins is n(1− 1/n)m.

(b) Let Y1, . . . , Ym be the location of the ball, so ball i ∈ [1,m] is placed in bin number Ym ∈ [1, n]. The
number of empty bins X can be expressed as a function X = f(Y1, . . . , Ym) of the ball locations.
Note that changing the value of Yi increases or reduces the number of empty bins in at most 1. Thus
X is Liptschitz with constant c = (1, 1, . . . , 1).

(c) Since the location of each ball is independent, McDiarmid’s inequality yields

P[X > E[X ] + t ] ≤ exp

(
− 2t2

c21 + · · ·+ c2m

)
= exp

(
−2t2/m

)
(1)

(d) This question is hard: one will be tempted to write this as a function of the number of empty bins,
but that does not work as they are not independent. So we need to go a bit deeper.

Define the Doob martingale Xt = E[X|Y1, . . . , Yt ] and X0 = E[X ]. We may think of Xt as the
process where we assign the m balls one by one, and after assigning a ball ask: what is the expected
number of empty bins at the end of the process? Recall that Xm = E[X|Y1, . . . , Ym ] = X.

We are going to use the Azuma-Hoeffding inequality (Lecture 7). To apply this, we need to find at
and bt such that

at ≤ Xt −Xt−1 ≤ bt.

Let ct be the number empty bins after we assign the first t balls (which clearly is a function of
Y1, . . . , Yt). Then we can explicitly compute Xt. Consider a bin that is part of the ct empty bins.
Then the probability that this bin is empty after an additional m− t balls is (1− 1/n)m−t Therefore

Xm = E

[
ct∑
i=1

1Yt+1 6=i,...,Ym 6=i|Y1, . . . , Yt

]
=

ct∑
i=1

E
[
1Yt+1 6=i,...,Ym 6=i|Y1, . . . , Yt

]
= ct(1− 1/n)m−t,

by independence of ball locations. Our next step is to compute (bound) the differences

Xt −Xt−1 = ct(1− 1/n)m−t − ct−1(1− 1/n)m−t+1.

Note that ct takes values ct−1 or ct−1 − 1 (either the t-th ball is assigned to an empty bin or not),
thus

Xt −Xt−1 ≤ ct−1(1− 1/n)m−t − ct−1(1− 1/n)m−t+1 =
ct−1

n
(1− 1/n)m−t
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and

Xt −Xt−1 ≥ (ct−1 − 1)(1− 1/n)m−t − ct−1(1− 1/n)m−t+1 =
ct−1

n
(1− 1/n)m−t − (1− 1/n)m−t.

Hence bt − at ≤
(
1− 1

n

)m−t
and

∑m
i=1(bi − ai)2 equals

m∑
i=1

((
1− 1

n

)2
)m−i

=

m−1∑
i=0

((
1− 1

n

)2
)i

≤
∞∑
i=0

((
1− 1

n

)2
)i

=
1

1−
(
1− 1

n

)2 =
n

2− 1/n
.

The Azuma-Hoeffding inequality tells us that

P[Xm −X0 ≥ t ] ≤ exp

(
− 2t2∑m

i=1(bi − ai)2

)
≤ exp

(
−2t2 (2− 1/n)

n

)
and similarly for P[Xm −X0 ≤ −t ]. This bound is better than exp

(
− 2t2

m

)
obtained in part (b).

Question 2.

(a) Fill the missing entries in the matrix below so that it represents the transition matrix of a reversible
Markov chain: 

0 3/4 1/4 0 . . .
. . . 0 . . . 0 0
. . . 4/7 0 2/7 0
0 0 . . . 0 . . .
0 0 . . . . . . 0


(b) Find the stationary distribution of your matrix. Is the corresponding Markov chain irreducible? Is

it aperiodic? Explain your answers.

(c) Let P be a transition matrix of a Markov chain on state space Ω. Let π be a probability distribution
satisfying the following equation:

π(x)P (x, y) = π(y)P (y, x) ∀x, y ∈ Ω.

Prove that π is a stationary distribution for P .

Solution:

(a) To come up with a solution, recall that, for P to be a transition matrix, each row must sum to one.
Moreover, to enforce reversibility, you should make sure P (x, y) = 0 ⇐⇒ P (y, x) = 0. To fill the
entries that you cannot fill up enforcing these two conditions, remember that P is reversible if and
only if can be represented as a transition matrix of an undirected weighted graph. This is a possible
solution: 

0 3/4 1/4 0 0
3/7 0 4/7 0 0
1/7 4/7 0 2/7 0
0 0 1/2 0 1/2
0 0 0 1 0


It is a transition matrix because each row sum to 1. It is reversible because it represents the transition
matrix of a random walk on the weighted graph G = (V,E,w) defined as follows: V = {1, . . . , 5}, E =
{{1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}}, with corresponding weights {3, 1, 4, 2, 2}.

(b) The stationary distribution of a random walk on an undirected graph has form π(u) = d(u)/
∑

z d(z).
In this case (1/6, 7/24, 7/24, 1/6, 1/12). The Markov chain is irreducible since the graph is connected,
and it is aperiodic since the graph is not bipartite (remember this only works for random walks on
undirected graphs).
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(c) We want to prove that πP = π. For any x ∈ Ω we have that

(πP )(x) =
∑
y∈Ω

π(y)P (y, x) =
∑
y∈Ω

π(x)P (x, y) = π(x)
∑
y∈Ω

P (x, y) = π(x),

where the last line follows because each row of P sums to 1.

Question 3. A matching in a graph is a set of edges without common vertices. In the Maximum
Bipartite Matching problem, we are given a bipartite graph G(L∪R,E) (without multiple edges), and we
want to find a matching of maximum cardinality. Consider the following randomised algorithm for this
problem: Each edge is selected independently with probability p. All edges that have common endpoints
are discarded. Assume that the bipartite graph has |L| = |R| = n and that every vertex has degree 3.

(a) What is the expected cardinality of the matching returned by the algorithm as a function of p?

(b) Find the value of p that maximises the expected cardinality of the matching. What is the expected
cardinality of the matching in this case?

(c) Assume now the graph is regular of degree d ≥ 3, not necessarily constant. Would you choose a
constant value of p or a value that depends on d and/or n? Explain your choice.

Solution:

(a) Let M ⊆ E be the random set of edges included in the matching. Then by linearity of expectations,

E[ |M | ] = E

 ∑
{u,v}∈E

1{u,v}∈M

 =
∑

{u,v}∈E

E
[
1{u,v}∈M

]
=

∑
{u,v}∈E

P[ {u, v} ∈M ]

Let us now consider the event {u, v} ∈ M for a fixed edge {u, v} ∈ E(G). With probability p, the
edge is selected in the first phase. Conditional on this, with probability (1− p)2 · (1− p)2 = (1− p)4

the other two incident edges to u and v are not included. Thus with probability

p · (1− p)4

any fixed edge {u, v} ∈ E(G) is included. Thus

E[ |M | ] = p · (1− p)4 · |E|. (2)

(b) Let us denote
f(p) := p · (1− p)4.

Hence,
f ′(p) = (1− p)4 +−4p · (1− p)3 = (1− p)3 · (1− 5p), (3)

and
f ′′(p) = 4(5p− 2) · (1− p)2 (4)

There are two roots p = 1 and p = 1/5 to (3), i.e. p such that f ′(p) = 0, we must check both to see
if either is a maximum. Firstly plugging p = 1 into (4) yields f ′′(1) = 0, similarly for p = 1/5 we
have f ′′(1/5) = 4(−1)(4/5)2 < 0. Thus p = 1/5 is a maxima for f(p), using this in the expression
(2) for the expected size of the matching m yields

E[ |M | ] = (1/5) · (4/5)4 · |E| = 28 · |E|/55.

(c) The following is a rigorous derivation, given for the sake of completeness, but not needed for full
marks. It is also sufficient to say that, p needs to decrease as d grows to infinity. The formula from
part a) extended to arbitrary d demonstrates that the optimal value of p should not depend on n.

Rigorous Derivation: In the case where G is d-regular,

E[ |M | ] = p · (1− p)2(d−1) · |E| =: fd(p).
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Thus
f ′d(p) = (1− p)2d−3 · (1− 2dp+ p),

and
f ′′d (p) = 2 · (d− 1) · (1− p)2(d−2) · ((2 · d− 1)p− 2)

Hence setting 1− 2dp+ p = 0 yields p(1− 2d) = −1 and thus p = 1
2d−1 . Also it can be seen that for

this choice of p, f ′′d (p) < 0, thus it is a local maximum. Thus the optimal choice of p is independent
of n.
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