Probability and Computation: Mock Exam

Send your solutions to luca.zanetti@cl.cam.ac.uk by 1pm Thursday 7th of March.

Question 1. Consider the balls into bins problem where m balls are assigned uniformly and independently at random to n bins, where m > n. Let X be the number of empty bins.

- (a) Compute $\mathbf{E}[X]$.
- (b) Prove that X is Liptschitz as a function of the bin number to which each ball is assigned.
- (c) Use McDiarmid's inequality to derive an upper bound for $\mathbf{P}[X > \mathbf{E}[X] + t]$ provided t > 0.
- (d) Find a better bound for $\mathbf{P}[X > \mathbf{E}[X] + t]$ by expressing X as a function of something different.

Question 2.

(a) Fill the missing entries in the matrix below so that it represents the transition matrix of a reversible Markov chain:

$\left(\begin{array}{c} 0 \end{array} \right)$	3/4	1/4	0)
	0		0	0
	4/7	0	2/7	0
0	0		0	
$\int 0$	0			0 /

- (b) Find the stationary distribution of your matrix. Is the corresponding Markov chain irreducible? Is it aperiodic? Explain your answers.
- (c) Let P be a transition matrix of a Markov chain on state space Ω . Let π be a probability distribution satisfying the following equation:

$$\pi(x)P(x,y) = \pi(y)P(y,x) \quad \forall x, y \in \Omega.$$

Prove that π is a stationary distribution for P.

Question 3. A matching in a graph is a set of edges without common vertices. In the Maximum Bipartite Matching problem, we are given a bipartite graph $G(L \cup R, E)$ (without multiple edges), and we want to find a matching of maximum cardinality. Consider the following randomised algorithm for this problem: Each edge is selected independently with probability p. All edges that have common endpoints are discarded. Assume that the bipartite graph has |L| = |R| = n and that every vertex has degree 3.

- (a) What is the expected cardinality of the matching returned by the algorithm as a function of p?
- (b) Find the value of p that maximises the expected cardinality of the matching. What is the expected cardinality of the matching in this case?
- (c) Assume now the graph is regular of degree $d \ge 3$, not necessarily constant. Would you choose a constant value of p or a value that depends on d and/or n? Explain your choice.