Probability and Computation: Mock Exam

Send your solutions to luca.zanetti@cl.cam.ac.uk by 1pm Thursday 7th of March.

Question 1. Consider the balls into bins problem where m balls are assigned uniformly and independently at random to n bins, where $m>n$. Let X be the number of empty bins.
(a) Compute $\mathbf{E}[X]$.
(b) Prove that X is Liptschitz as a function of the bin number to which each ball is assigned.
(c) Use McDiarmid's inequality to derive an upper bound for $\mathbf{P}[X>\mathbf{E}[X]+t]$ provided $t>0$.
(d) Find a better bound for $\mathbf{P}[X>\mathbf{E}[X]+t]$ by expressing X as a function of something different.

Question 2.

(a) Fill the missing entries in the matrix below so that it represents the transition matrix of a reversible Markov chain:

$$
\left(\begin{array}{ccccc}
0 & 3 / 4 & 1 / 4 & 0 & \ldots \\
\ldots & 0 & \ldots & 0 & 0 \\
\ldots & 4 / 7 & 0 & 2 / 7 & 0 \\
0 & 0 & \ldots & 0 & \ldots \\
0 & 0 & \ldots & \ldots & 0
\end{array}\right)
$$

(b) Find the stationary distribution of your matrix. Is the corresponding Markov chain irreducible? Is it aperiodic? Explain your answers.
(c) Let P be a transition matrix of a Markov chain on state space Ω. Let π be a probability distribution satisfying the following equation:

$$
\pi(x) P(x, y)=\pi(y) P(y, x) \quad \forall x, y \in \Omega .
$$

Prove that π is a stationary distribution for P.
Question 3. A matching in a graph is a set of edges without common vertices. In the Maximum Bipartite Matching problem, we are given a bipartite graph $G(L \cup R, E)$ (without multiple edges), and we want to find a matching of maximum cardinality. Consider the following randomised algorithm for this problem: Each edge is selected independently with probability p. All edges that have common endpoints are discarded. Assume that the bipartite graph has $|L|=|R|=n$ and that every vertex has degree 3 .
(a) What is the expected cardinality of the matching returned by the algorithm as a function of p ?
(b) Find the value of p that maximises the expected cardinality of the matching. What is the expected cardinality of the matching in this case?
(c) Assume now the graph is regular of degree $d \geq 3$, not necessarily constant. Would you choose a constant value of p or a value that depends on d and/or n? Explain your choice.

