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Plan for the next four lectures

The topic of the next four lectures is “Probability meets Linear Algebra"

Linear algebra is the study of linear maps on
finite-dimensional vector spaces (matrices)

Why:

Discrete probability distributions can be represented by vectors and
Markov chains by matrices

Data has become large: we need to be able to think in higher dimension.

Linear algebra primitives can be exploited to design fast algorithms

Our plan:

Review (briefly) main concepts of linear algebra

Borrow tools from linear algebra to analyse Markov chains

Connect Markov chains to the problem of graph clustering
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Today’s lecture

In previous lectures we have seen that:

Any aperiodic and irreducible finite Markov Chain (e.g., lazy random
walks) converges to a unique stationary distribution

The mixing time captures how long it takes for convergence to happen

Bounds on mixing using the coupling method

Q? Can we find a parameter, which is easy to compute, and from which we
can derive good bounds on the mixing time?

Yes! It turns out the eigenvalues of the transition matrix govern convergence
of the chain
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A brief linear algebra review
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Vectors and inner products

Ω: finite dimensional state space (|Ω| = n)

We will represent a vector f ∈ Rn as a function f : Ω→ R

Let f , g : Ω→ R and π : Ω→ R+. We define an inner product 〈·, ·〉π as

〈f , g〉π =
∑
x∈Ω

f (x)g(x)π(x)

For example, 〈·, ·〉1 is the usual inner-product in Rn.
If π is a probability measure, 〈f , g〉π = Eπ(fg).

After fixing π, we denote with `2(Ω, π) = {f : Ω→ R} the set of all functions
from Ω to R equipped with 〈·, ·〉π.

We say f , g ∈ `2(Ω, π) are orthogonal (f ⊥ g) if 〈f , g〉π = 0
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Norms and distances

Let f ∈ `2(Ω, π) and p > 0. The `p(π) norm of f is:

‖f‖p,π =

(∑
x∈Ω

|f (x)|pπ(x)

) 1
p

.

In particular, ‖f‖2,π =
√
〈f , f 〉π.

We say that f1, . . . , fk are orthonormal if, for any i 6= j , ‖fi‖2,π = 1 and fi ⊥ fj .

Let f , g ∈ `2(Ω, π). The `p(π)-distance between f and g is

‖f − g‖p,π =

(∑
x∈Ω

|f (x)− g(x)|pπ(x)

) 1
p

.

Pythagorean theorem: f ⊥ g =⇒ ‖f + g‖2
2,π = ‖f‖2

2,π + ‖g‖2
2,π
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Matrices as linear operators

A |Ω| × |Ω| matrix M is just a representation of a linear operator
M : `2(Ω, π)→ `2(Ω, π).

M(αf + βg) = αMf + βMg
For any f ∈ `2(Ω, π), x ∈ Ω,

Mf (x) =
∑
y∈Ω

M(x , y)f (y)

fM(x) =
∑
y∈Ω

M(y , x)f (y)

M : `2(Ω, π)→ `2(Ω, π) is called self-adjoint if, for any f , g ∈ `2(Ω, π),

〈Mf , g〉π = 〈f ,Mg〉π.

Definition

Note: if π = 1, which implies 〈·, ·〉π = 〈·, ·〉, we recover the usual definition of
symmetric matrix.
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Eigenvalues and eigenvectors

f ∈ `2(Ω, π) is a left (right) eigenvector with eigenvalue λ ∈ C for
M : `2(Ω, π)→ `2(Ω, π) if

f M = λf (Mf = λf )

Definition

Examples:

Let P be the transition matrix of a finite Markov chain on Ω with stationary
distribution π:

P1 = 1 πP = π

Suppose f is a left (right) eigenvector with eigenvalue λ for M. Then, for
any k ≥ 0,

f Mk = λk f
(

Mk f = λk f
)
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The spectral theorem

Recall: M : `2(Ω, π)→ `2(Ω, π) is self-adjoint if, for any f , g ∈ `2(Ω, π),
〈Mf , g〉π = 〈f ,Mg〉π.

Let M : `2(Ω, π) → `2(Ω, π) be self-adjoint and |Ω| = n. Then, M has n
real eigenvalues λ1 ≥ · · · ≥ λn and a corresponding set of n orthonormal
right eigenvectors {f1, . . . , fn}.

The spectral theorem

Consequences:

We can express any g ∈ `2(Ω, π) as g =
∑n

i=1〈g, fi〉πfi .

M can be decomposed as: M(x,·)
π

=
∑n

i=1 λi fi (x)fi

Proof: M(x,·)
π

=
∑n

i=1

〈
M(x,·)
π

, fi
〉
π

fi〈
M(x,·)
π

, fi
〉
π

=
∑

y
M(x,y)fi (y)π(y)

π(y)
= Mfi (x) = λi fi (x) �
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Back to Markov chains

Lecture 9: Eigenvalues and mixing time 10



Reversible Markov chains

A Markov chain on Ω with transition matrix P and stationary distribution
π is called reversible if, for any x , y ∈ Ω,

π(x)P(x , y) = π(y)P(y , x)

Definition

Any Markov chain can be described as random walk on a weighted
directed graph.
Reversible Markov chains are equivalent to random walks on weighted
undirected graphs.

A Markov chain with transition matrix P is reversible if and only if P is
self-adjoint w.r.t. its stationary distribution π.

Lemma

Proof:

( =⇒ ) 〈Pf , g〉π =
∑

x,y∈Ω

P(x , y)f (y)g(x)π(x)
REV.
=

∑
x,y∈Ω

P(y , x)f (y)g(x)π(y)

= 〈f ,Pg〉π

(⇐= ) π(y)P(y , x) = 〈P1x , 1y 〉π
S.A.
= 〈1x ,P1y 〉π = π(x)P(x , y). �
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Basic facts about eigenvalues

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the transition matrix P of a
reversible Markov chain.

λ1 = 1

λ2 < 1 if and only if the chain is irreducible

λn ≥ −1

λn > −1 if and only if the chain is aperiodic

This implies the fundamental theorem of finite Markov chains (i.e.,
convergence to stationarity) holds whenever

λ , max
i 6=1
|λi | < 1.

You will be asked to prove these facts in the exercises.
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