Lecture 8: The Optional Stopping Theorem

John Sylvester Nicolás Rivera Luca Zanetti Thomas

Sauerwald

Outline

Stopping Times

Optional Stopping Theorem

Applications to Random Walks

Martingales: Definition

A sequence of random variables Z_{0}, Z_{1}, \ldots, is a martingale with respect to the sequence X_{0}, X_{1}, \ldots, if, for all $n \geq 0$, the following holds:

1. Z_{n} is a function of $X_{0}, X_{1}, \ldots, X_{n}$
2. $\mathrm{E}\left[\left|Z_{n}\right|\right]<\infty$, and
3. $\mathbf{E}\left[Z_{n+1} \mid X_{0}, \ldots, X_{n}\right]=Z_{n}$.

The Gambler's Ruin Problem

- Consider a sequence X_{1}, X_{2}, \ldots, of independent random variables with $\mathbf{P}\left[X_{i}=1\right]=\mathbf{P}\left[X_{i}=-1\right]=1 / 2$
- For $n \geq 1$ denote by S_{n} the sum $X_{0}+X_{1}+\ldots+X_{n}$, where $X_{0}=K$,
- Then S_{0}, S_{1}, \ldots, is a martingale with respect to $X_{0}, X_{1}, X_{2}, \ldots$,
- We check the definition

1. $S_{n}=\sum_{i=0}^{n} X_{i}$, i.e. S_{n} is a function of $X_{0}, X_{1}, \ldots, X_{n}$. Note that $S_{0}=X_{0}=0$.
2. $\mathrm{E}\left[\left|S_{n}\right|\right] \leq \mathbf{E}\left[\sum_{i=0}^{n}\left|X_{i}\right|\right] \leq n<\infty$
3.

$$
\begin{aligned}
\mathbf{E}\left[S_{n+1} \mid X_{0}, \ldots, X_{n}\right] & =\mathbf{E}\left[S_{n}+X_{n+1} \mid X_{0}, \ldots, X_{n}\right] \\
& =S_{n}+\mathbf{E}\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right]=S_{n}
\end{aligned}
$$

- The usual interpretation is a Gambler who is betting 1 pound each turn, and S_{n} is the current profit.

The Gambler's Ruin Problem

In a more realistic situation, we start at $X_{0}=K>0$.

Let say we are going to play until we lose everything or we get $N>K$ pounds. This is no more than a random walk on the path on vertices $\{0,1, \ldots, N\}$ where vertex i is adjacent to $i+1$.

Natural questions are

1. What is the expected reward?
2. What is the probability I leave the casino with N pounds?
3. What is the expected time I will be playing?

A more general question is: there is a good quitting strategy for the Gambler?

Today's goal is to answer those questions

A simpler exercise

The simpler quitting strategy is to quit after i rounds.

> Expectation of Martingale
> Let Z_{0}, Z_{1}, \ldots, be a martingale w.r.t X_{0}, X_{1}, \ldots. Then for all $i \geq 0, \mathrm{E}\left[Z_{i}\right]=$ $\mathrm{E}\left[Z_{0}\right.$]

Proof:

1. $\mathbf{E}\left[Z_{i+1} \mid X_{0}, \ldots, X_{i}\right]=Z_{i}$ because Z_{i} is a martingale wrt X_{0}, X_{1}, \ldots
2. $\mathrm{E}\left[Z_{i}\right]=\mathrm{E}\left[\mathrm{E}\left[Z_{i+1} \mid X_{0}, \ldots, X_{i}\right]\right]=\mathrm{E}\left[Z_{i+1}\right]$ because $\mathrm{E}[\mathrm{E}[Z \mid X]]=\mathrm{E}[Z]$
3. recursively, $\mathbf{E}\left[Z_{i+1}\right]=\mathbf{E}\left[Z_{0}\right]$ for all $i \geq 0$

Returning to our gambling example: If we decide to stop playing after i rounds, in expectation, we finish with the same money we started

But in out quitting strategy we stop playing at a random time, so the previous result cannot be applied...

Martingales: Stopping Times

Not all stopping strategies are valid. We need stopping strategies that gives us stopping times.

A stopping time T w.r.t X_{0}, X_{1}, \ldots, is a random variable taking values in $\{0,1,2, \ldots,\} \cup\{\infty\}$ such that for each $n \geq 0$:

- the event $\{T=n\}$ can be written as an event depending on X_{0}, \ldots, X_{n}.

The idea of a stopping time, is that we can decide to stop at time n only with the information we observed up to time n.

Martingales: Stopping Times

Example: Consider the Gambler's example. Are the following stopping times?
$\checkmark \quad T=8$.
T is deterministic, hence it does not depend on X_{i}, so $\{T=n\}$ does not need to know the values of X_{n+1}, X_{n+2}, \ldots,
$\checkmark T=$ first time the gambler wins.

$$
\{T=n\}=\left\{X_{1}=-1, \ldots, X_{n-1}=-1, X_{n}=1\right\}
$$

$\checkmark T=$ second time the gambler wins.
$\checkmark T=$ third time the gambler loses in a row.
\times First time the gambler starts a sequence of 10 loses in a row.
First time the gambler reaches 50
\checkmark First time the gambler reaches of 50 or 0 .
\times Two step before the Gambler reaches 50

Stopped Martingales

Consider a Martingale $\left(Z_{i}\right)_{i \geq 0}$ and a stopping time T, both with respect to X_{0}, X_{1}, \ldots.
Define the Stopped Martingale Z_{i}^{\top} as follows

$$
Z_{i}^{T}= \begin{cases}Z_{i} & \text { if } i \leq T \\ Z_{T} & \text { if } i>T\end{cases}
$$

Stopped Martingales are Martingales:

- Note that $Z_{i}^{T}=Z_{i-1}^{T}+\mathbf{1}_{\{T \geq i\}}\left(Z_{i}-Z_{i-1}\right)$
- if $T \geq i$ then $Z_{i}^{T}=Z_{i}, Z_{i-1}^{T}=Z_{i-1}$ and $\mathbf{1}_{\{T \geq i\}}=1$
- if $T<i$ then $Z_{i}^{T}=Z_{T}, Z_{i-1}^{T}=Z_{T}$ and $\mathbf{1}_{\{T \geq i\}}=0$
- Also note that $\{T \geq i\}=\bigcup_{m=0}^{i-1}\{T=m\}^{c}$, therefore $\{T \geq i\}$ is an event that depends at most on X_{0}, \ldots, X_{i-1}, and nothing else. Thus $\mathbf{1}_{\{T \geq i\}}$ is a function of X_{0}, \ldots, X_{i-1}.
- Now you can check the definition of martingales (Exercise)

Stopped Martingales

The stopped martingale is your standard martingale, but when we hit the stopping time, the martingale stops moving.

Martingales: Stopping Times

Going back to our original question: Can the gambler build a different quitting strategy that has a better outcome for him?
In general: NO.

Outline

Stopping Times

Optional Stopping Theorem

Applications to Random Walks

Optional Stopping Theorem

Optional Stopping Theorem

Let Z_{0}, Z_{1}, \ldots, be a martingale w.r.t X_{0}, X_{1}, \ldots. Let T be a stopping time w.r.t. X_{0}, \ldots Then $\mathrm{E}\left[Z_{T}\right]=\mathrm{E}\left[Z_{0}\right]$ whenever one of the following holds:

1. Z_{i} are bounded, i.e. exists $C>0$ such that $\left|Z_{i}\right| \leq C$.
2. T is bounded
3. $\mathbf{E}[T]<\infty$ and there is a constant $C>0$ such that
$\mathrm{E}\left[\left|Z_{i+1}-Z_{i}\right| \mid X_{1}, \ldots, X_{i}\right]<C$

The OST says that if at least one of those conditions holds, then $\mathrm{E}\left[Z_{T}\right]=\mathrm{E}\left[Z_{0}\right]$ where T is a stopping time.

This is equivalently to say that no matter how complex is our stopping strategy, if it is reasonable enough, then in expectation Z_{T} have the same value than Z_{0}

Martingales: The Gambler's Ruin Problem

Recall the problem:

- We start with K pounds. We stop playing when we reach either N pounds or 0 . Of course $0<K<N$.
- At reach round we win 1 with probability $1 / 2$ otherwise we lose 1.
- S_{m} is the amount of money we have after m rounds. $S_{0}=K$
- $T=T_{0, N}$ is the stopping time defined as $T_{0, N}=\min \left\{i: S_{i}=N\right.$ or $\left.S_{i}=0\right\}$
- We want to know S_{T}.

The OST suggests that $\mathbf{E}\left[S_{T}\right]=\mathbf{E}\left[S_{0}\right]=K$.
Recall the conditions

OST: conditions

1. S_{i} are bounded, i.e. exists $C>0$ such that $\left|S_{i}\right| \leq C$.
2. T is bounded, i.e. $\mathbf{P}[T<C]=1$ for some $C>0$
3. $\mathrm{E}[T]<\infty$ and there is a constant $C>0$ such that
$\mathrm{E}\left[\mid S_{i+1}-S_{i} \| X_{1}, \ldots, X_{i}\right]<C$
4. S_{i} are bounded, i.e. exists $C>0$ such that $\left|S_{i}\right| \leq C$.
5. T is bounded, i.e. $\mathbf{P}[T<C]=1$ for some $C>0$
6. $\mathrm{E}[T]<\infty$ and there is a constant $C>0$ such that $\mathrm{E}\left[\mid S_{i+1}-S_{i} \| X_{1}, \ldots, X_{i}\right]<C$

- We cannot use Condition 1 because the martingale is unbounded
- We cannot use Condition 2 because in a finite amount of time there is a positive probability that something bad occurs.
- We have to use Condition 3! which require us to check that $\mathbf{E}[T]<\infty$!!
but we can bypass that by using the Stopped Martingale S_{i}^{T}. Recall that

$$
S_{i}^{T}= \begin{cases}S_{i} & \text { if } i \leq T \\ S_{T} & \text { if } i>T\end{cases}
$$

by definition $S_{i}^{T}=S_{i}$ for $i \leq T$, which is good for us because we do not care about the game after we retire

Martingales: The Gambler's Ruin Problem

The good thing: S_{i}^{T} is bounded, indeed $0 \leq S_{i}^{T} \leq N$. Then by the OST

$$
\mathbf{E}\left[S_{T}\right]=\mathbf{E}\left[S_{T}^{T}\right]=\mathbf{E}\left[S_{0}^{T}\right]=\mathbf{E}\left[S_{0}\right]=K
$$

So in expectation, we are not doing better that not playing at all

We also get something for free. Let $P_{0}=\mathbf{P}\left[S_{T}=0\right]$ and $P_{N}=\mathbf{P}\left[S_{T}=N\right]$. Clearly,

$$
P_{0}+P_{N}=1
$$

but

$$
\mathrm{E}\left[S_{T}\right]=N \times P_{N}+0 \times P_{0}=K
$$

therefore $P_{N}=K / N$ and $P_{0}=(N-K) / N$.

Remarks

- It does not matter what we do: if our strategy is such that T is a stopping time and the conditions of the OST are satisfied, then we are not going to do better
- to find better strategies we need to looking into the future (i.e. not stopping times) or breaking the OST conditions

$$
\begin{aligned}
& \text { 1. } \mathrm{OST} \text { : conditions } \\
& \text { 1. } S_{i} \text { are bounded, i.e. exists } C>0 \text { such that }\left|S_{i}\right| \leq C \text {. } \\
& \text { 2. } T \text { is bounded, i.e. } \mathrm{P}[T<C]=1 \text { for some } C>0 \\
& \text { 3. } \mathrm{E}[T]<\infty \text { and there is a constant } C>0 \text { such that } \\
& \mathrm{E}\left[\left|S_{i+1}-S_{i}\right| \mid X_{1}, \ldots, X_{i}\right]<C
\end{aligned}
$$

- Breaking 1 implies to have huge amount of debt (negative values of S_{i})
- We are usually breaking 2, so that is not a problem
- breaking 3 means that $E[T]=\infty$, i.e. you have to be eager to play quite a lot, which also implies you need a big credit card
- in general, we break 1 and 3 at the same time

More about The Gambler's Ruin Problem

Ok, our strategy is not good.
At least: how long are we going to have fun in the casino?

- We claim that

$$
Z_{m}=S_{m}^{2}-m
$$

is a martingale wrt X_{1}, X_{2}, \ldots (Check it!!)

- Recall $T=T_{0, N}=\min \left\{m: S_{m}=0\right.$ or $\left.S_{m}=N\right\}$ and that $S_{0}=K$
- Condition 3 of the OST holds but unfortunately we need to check by hand that $\mathrm{E}[T]<\infty$
- the trick with the stopped martingale does not work here :(
- Anyway by the OST ,

$$
K^{2}-0=\mathrm{E}\left[Z_{0}\right]=\mathrm{E}\left[Z_{T}\right]=\mathbf{E}\left[S_{T}^{2}-T\right]
$$

- concluding $\mathbf{E}[T]=\mathbf{E}\left[S_{T}^{2}\right]-K^{2}$
- $\mathbf{E}[T]=\mathbf{E}\left[S_{T}^{2}\right]-K^{2}$
- Note that S_{T} takes two values, either 0 or N. Recall $P_{0}=\mathbf{P}\left[S_{T}=0\right]$ and $P_{N}=\mathbf{P}\left[S_{T}=N\right]$.
- Clearly $P_{0}+P_{N}=1$.
- From our previous result $P_{N}=K / N$
- then $\mathbf{E}[T]=\mathbf{E}\left[S_{T}^{2}\right]-K^{2}=N^{2} P_{N}-K^{2}=N K-K^{2}=K(N-K)$

A very good strategy

Suppose we have a huge debit card, so we can get S_{n} as negative as we want. A good strategy is to stop at

$$
T_{\text {good }}=\min \left\{i: S_{i}=K+1\right\}
$$

where $S_{0}=K$.

Clearly, stopping at $T_{\text {good }}$ is a good stopping time because if we stop there we are one pound richer.

A very good strategy

For $a>0$, consider $T_{-a, k+1}$ the following stopping time

$$
T_{-a, K+1}=\min \left\{i: S_{i}=-a \text { or } S_{i}=K+1\right\}
$$

Remember that $S_{0}=K$. Note that Now, note that

$$
T_{-a, K+1} \leq T_{\text {good }}
$$

why? Translating everything in a we have that

$$
\mathbf{E}\left[T_{-a, K+1} \mid S_{0}=K\right]=\mathbf{E}\left[T_{0, a+K+1} \mid S_{0}=K+a\right]=(K+a)
$$

Hence

$$
(K+a) \leq \mathbf{E}\left[T_{\text {good }}\right]
$$

but the above is valid for any $a>0$.
Therefore

$$
\mathrm{E}\left[T_{\text {good }}\right]=\infty
$$

If you have time and infinitely good debit card: go ahead!

Outline

Stopping Times

Optional Stopping Theorem

Applications to Random Walks

Translating the results to random walks on a line

We know the stopping time $T_{0, N}$ has expectation $K(N-K)$ when we start with K pounds. In terms of random walks this means

Hitting Times of Random Walk on a line

Consider a path on vertices $\{0,1, \ldots, N\}$ where i is connected to $i+1$. If the starting vertex is K, the expected time to reach one of the extreme points is $K(N-K)$

A few more things can be said from this

Random Walks on Graphs

Recall from John's section:

- X_{t} represents the position after step t of a the random walk on a graph G. X_{0} is the initial vertex.
- τ_{y} is the number of steps it takes to reach vertex y
- $h_{x, y}$ is the expected number of steps it takes to reach vertex y starting from x, i.e. $\mathrm{E}\left[\tau_{y} \mid X_{0}=x\right]$
- the cover time is the expected time to visit all the vertices of the graph starting from the worst position.

A few problems

- Consider out path on vertices $\{0, \ldots, N\}$, and suppose $X_{0}=K$. Compute $h_{K, N}$
- Compute the cover time of a path on $\{0, \ldots, N\}$ when N is even. What about when N is odd?
- Consider a cycle on vertices $\{0,1, \ldots, N\}$ where vertex i is adjacent to $i+1$, and 0 is adjacent to N. Compute the cover time.
- Consider a cycle on vertices $\{0,1, \ldots, N\}$. Define T by

$$
T=\min \left\{m: \cup_{i=0}^{m} X_{i}=\{0, \ldots, N\}\right\}
$$

T is the first time all vertices has been covered. Compute $\mathbf{P}\left[X_{T}=i \mid X_{0}=0\right]$ for $i \in\{1, \ldots, N\}$.

