Lecture 7: Martingales and Concentration

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Outline

Martingales

Martingale Concentration Inequalities

Examples

Martingales: Definition

A sequence of random variables Z_{0}, Z_{1}, \ldots, is a martingale with respect to the sequence X_{0}, X_{1}, \ldots, if, for all $n \geq 0$, the following holds:

1. Z_{n} is a function of $X_{0}, X_{1}, \ldots, X_{n}$
2. $\mathrm{E}\left[\left|Z_{n}\right|\right]<\infty$, and
3. $\mathrm{E}\left[Z_{n+1} \mid X_{0}, \ldots, X_{n}\right]=Z_{n}$.

We will see later why martingales are useful. For now, just think that being a martingale is good.

Simple Random Walk

- Consider a sequence X_{1}, X_{2}, \ldots, of independent random variables with $\mathbf{P}\left[X_{i}=1\right]=\mathbf{P}\left[X_{i}=-1\right]=1 / 2$
- For $n \geq 0$ denote by $S_{n}=X_{0}+X_{1}+\ldots+X_{n}$, where $X_{0}=k \in \mathbb{Z}$,
- Then S_{0}, S_{1}, \ldots, is a martingale with respect to $X_{0}, X_{1}, X_{2}, \ldots$,
- We check the definition

1. $S_{n}=\sum_{i=0}^{n} X_{i}$, i.e. S_{n} is a function of $X_{0}, X_{1}, \ldots, X_{n}$. Note that $S_{0}=X_{0}=0$.
2. $\mathrm{E}\left[\left|S_{n}\right|\right] \leq \mathrm{E}\left[\sum_{i=0}^{n}\left|X_{i}\right|\right] \leq n<\infty$
3.

$$
\begin{aligned}
\mathrm{E}\left[S_{n+1} \mid X_{0}, \ldots, X_{n}\right] & =\mathrm{E}\left[S_{n}+X_{n+1} \mid X_{0}, \ldots, X_{n}\right] \\
& =S_{n}+\mathrm{E}\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right]=S_{n}
\end{aligned}
$$

- The usual interpretation is a Gambler who is betting 1 pound each turn, and S_{n} is the current profit, and X_{0} the initial capital.

Simple Random Walk

A bit more interesting is the fact that $W_{n}=S_{n}^{2}-n$ is also a martingale with respect to X_{0}, X_{1}, \ldots,

1. $W_{n}=S_{n}^{2}-n$ is a function of $X_{0}, X_{1}, \ldots, X_{n}$
2. $\left|S_{n}^{2}-n\right| \leq(n+k)^{2}+n<\infty$
3. $S_{n+1}=S_{n}+X_{n+1}$ then
4. To save space, we will write \mathbf{X}^{m} instead of $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$, then

$$
\begin{aligned}
\mathbf{E}\left[S_{n+1}^{2}-(n+1) \mid \mathbf{X}_{\mathbf{n}}\right] & =\mathbf{E}\left[S_{n}^{2}+2 S_{n} X_{n+1}+X_{n+1}^{2}-(n+1) \mid \mathbf{X}_{\mathbf{n}}\right] \\
& =S_{n}^{2}+2 S_{n} \mathbf{E}\left[X_{n+1} \mid \mathbf{X}_{\mathbf{n}}\right]+1-(n+1) \\
& =S_{n}^{2}-n
\end{aligned}
$$

Biased random Walks

- Consider a sequence X_{1}, X_{2}, \ldots, of independent random variables with $\mathbf{P}\left[X_{i}=1\right]=p$ and $\mathbf{P}\left[X_{i}=-1\right]=q$.
- For $n \geq 0$ denote by $S_{n}=X_{0}+X_{1}+\ldots+X_{n}$, where $X_{0}=k \in \mathbb{Z}$,
- S_{n} is not a martingale if $p \neq q$, check it
- Then $Z_{n}=(q / p)^{S_{n}}$ is a martingale with respect to $X_{0}, X_{1}, X_{2}, \ldots$,

1. Z_{n} is a function of S_{n} which is a function of X_{0}, \ldots, X_{n}
2. $\mathrm{E}\left[\left|Z_{n}\right|\right] \leq \max \{q / p, 1\}^{n}<\infty$
3.

$$
\begin{aligned}
\mathrm{E}\left[Z_{n+1} \mid X_{0}, \ldots, X_{n}\right] & =(q / p)^{s_{n+1}} p+(q / p)^{s_{n}-1} q \\
& =(q / p)^{s_{n}}[(q / p) p+(p / q) q] \\
& =Z_{n}
\end{aligned}
$$

Martingales: Definition

A sequence of random variables Z_{0}, Z_{1}, \ldots, is a martingale with respect to the sequence X_{0}, X_{1}, \ldots, if, for all $n \geq 0$, the following holds:

1. Z_{n} is a function of $X_{0}, X_{1}, \ldots, X_{n}$
2. $\mathrm{E}\left[\left|Z_{n}\right|\right]<\infty$, and
3. $\mathrm{E}\left[Z_{n+1} \mid X_{0}, \ldots, X_{n}\right]=Z_{n}$.

Some remarks

- A sequence of random variables Z_{0}, Z_{1}, \ldots, is called a martingale when it is a martingale with respect to itself, i.e. $X_{i}=Z_{i}$.
- The first index doesn't need to be 0 , sometimes it is better to start at 1
- Sometimes we don't define X_{0}, even though the martingale starts at Z_{0}
- The index set can be infinity (all natural numbers) or finite
- To save space, we will write $\mathbf{X}^{\mathbf{m}}$ instead of $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$

Balls into Bins

Consider m balls assigned uniformly at random into n bins.
Enumerate the balls from 1 to m. Ball i is assigned to a random bin X_{i}.
Let Z be the number of empty bins (after assigning the balls)

Denote $Z_{t}=\mathbf{E}\left[Z \mid \mathbf{X}^{\mathrm{t}}\right]$ and $Z_{0}=\mathbf{E}[Z]$. Then Z_{t} is a martingale wrt $X_{1}, X_{2}, \ldots, X_{t}$

1. $Z_{t}=f\left(X_{1}, \ldots, X_{t}\right)$
2. $\mathrm{E}\left[\left|Z_{t}\right|\right] \leq n$
3. For $1 \leq t \leq m-1$,

$$
\mathbf{E}\left[Z_{t+1} \mid \mathbf{X}^{\mathbf{t}}\right]=\mathbf{E}\left[\mathbf{E}\left[Z \mid \mathbf{X}^{\mathbf{t}+\mathbf{1}}\right] \mid \mathbf{X}^{\mathbf{t}}\right]=\mathbf{E}\left[Z \mid \mathbf{X}^{\mathbf{t}}\right]
$$

and

$$
\mathrm{E}\left[Z_{1}\right]=\mathrm{E}\left[\mathrm{E}\left[Z \mid X_{1}\right]\right]=\mathrm{E}[Z]=Z_{0}
$$

Martingales: Doob Martingale

A Doob martingale refers to a generic construction that is always a martingale. The construction is as follows.

- Let X_{0}, \ldots, X_{n} be a sequence of random variables.
- Let Y be another random variable with $\mathrm{E}[|Y|]<\infty$ (usually Y is a function of $\left.X_{0}, \ldots, X_{n}\right)$.
- Define $Z_{i}=\mathbf{E}\left[Y \mid \mathbf{X}^{\mathbf{i}}\right]$.
- Z_{0}, \ldots, Z_{n} is a martingale w.r.t X_{0}, \ldots, X_{n}

1. Clearly Z_{i} is a function of X_{0}, \ldots, X_{i}.
2. $\mathrm{E}\left[\left|Z_{i}\right|\right]=\mathbf{E}\left[\left|\mathbf{E}\left[Y \mid \mathbf{X}^{\mathbf{i}}\right]\right|\right] \leq \mathbf{E}\left[\mathbf{E}\left[|Y| \mid \mathbf{X}^{\mathbf{i}}\right]\right]=\mathrm{E}[|Y|]<\infty$.
3.

$$
\mathbf{E}\left[Z_{i+1} \mid \mathbf{x}^{\mathbf{i}}\right]=\mathbf{E}\left[\mathbf{E}\left[Y \mid \mathbf{x}^{\mathbf{i}+1}\right] \mid \mathbf{x}^{\mathbf{i}}\right]=\mathbf{E}\left[Y \mid \mathbf{x}^{\mathbf{i}}\right]=Z_{i}
$$

- In most applications, X_{0} is undefined/ignored and Z_{0} corresponds to $\mathrm{E}[Y$] while $Z_{n}=Y$.

Example of Doob Martingale: Edge Exposure Martingale

- Consider a random graph G sampled from $G_{n, p}$ where the vertex set is $\{1, \ldots, n\}$ and the edge between i, j appears with probability p independent of everything.
- Enumerate all the possible edges from 1 to $m=\binom{n}{2}$. Denote by $X_{j}=1$ if edge j appears in $\mathrm{G}, 0$ otherwise.
- Let $F(G)$ be a numerical quantity of G, e.g. number of connected components, number of edges, indicator if G is hamiltonian or not...
- define $Z_{i}=\mathbf{E}\left[F(G) \mid \mathbf{X}^{\mathbf{i}}\right]$ and define $Z_{0}=\mathbf{E}[F(G)]$.
- Z_{i} is a Doob Martingale wrt to X_{1}, \ldots, X_{m}, and it is called the edge-exposure martingale
- The interpretation is that instead of computing $F(G)$ by observing G directly, we reveal the edges of G one by one, and estimate $F(G)$ with the given information. With no information the 'best' guess for $F(G)$ is its expectation.

Example of Doob Martingale: Vertex Exposure Martingale

- Similarly, instead of reveal edges one at a time, we can reveal vertices (with the corresponding edges), one at a time.
- Fix the vertices from 1 to n, and let G_{i} be the subgraph of G induced by the first i vertices.
- let $Z_{0}=\mathbf{E}[F(G)]$ and $Z_{i}=\mathbf{E}\left[F(G) \mid G_{1}, \ldots, G_{i}\right]$
- this Doob martingale is called the vertex-exposure martingale

Outline

Martingales

Martingale Concentration Inequalities

Examples

Martingales: Azuma-Hoeffding Inequality

Azuma-Hoeffding Inequality

Let $Z_{0}, \ldots Z_{n}$ be a martingale wrt X_{0}, X_{1}, \ldots, such that

$$
a_{k} \leq Z_{k}-Z_{k-1} \leq b_{k}
$$

Then, for all $t \geq 0$ and any $k>0$ it holds

$$
\mathbf{P}\left[Z_{k}-Z_{0} \geq t\right], \mathbf{P}\left[Z_{k}-Z_{0} \leq-t\right] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{k}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Exercise. Check that if Z_{0} is deterministic then $\mathrm{E}\left[Z_{k}\right]=Z_{0}$.
The proof follows the standard recipe.

1. Let $\lambda>0$, then

$$
\mathbf{P}\left[Z_{k}-Z_{0} \geq t\right] \leq e^{-\lambda t} \mathbf{E}\left[e^{\lambda\left(Z_{k}-Z_{0}\right)}\right]
$$

2. Compute an upper bound for $\mathbf{E}\left[e^{\lambda\left(z_{k}-z_{0}\right)}\right]$
3. Optimise the value of $\lambda>0$.

We only show that $\mathbf{E}\left[e^{\lambda\left(z_{k}-z_{0}\right)}\right] \leq e^{\sum_{i=1}^{k} \lambda^{2}\left(b_{i}-a_{i}\right)^{2} / 8}$, the rest is an Exercise.

Martingales: Azuma-Hoeffding Inequality

- Define $Y_{i}=Z_{i}-Z_{i-1}$ for $i \geq 1$.
- By martingale properties $\mathrm{E}\left[Y_{i} \mid X_{0}, X_{1}, \ldots, X_{i-1}\right]=0$.
- We pretty much follow the same argument used in the Proof of the Hoeffding's Extension Lemma
- By convexity

$$
e^{\lambda Y_{i}} \leq \frac{b_{i}-Y_{i}}{b_{i}-a_{i}} e^{\lambda a_{i}}+\frac{Y_{i}-a_{i}}{b_{i}-a_{i}} e^{\lambda b_{i}}
$$

- Then

$$
\mathbf{E}\left[e^{\lambda Y_{i}} \mid X_{0}, \ldots, X_{i-1}\right] \leq \frac{b_{i} e^{\lambda a_{i}}}{b_{i}-a_{i}}-\frac{a_{i} e^{\lambda b_{i}}}{b_{i}-a_{i}} \leq \exp \left[\frac{\left(b_{i}-a_{i}\right)^{2} \lambda^{2}}{8}\right]
$$

Exactly as in the Hoefdding's Extension Lemma

- so we have $\mathbf{E}\left[e^{\lambda Y_{i}} \mid X_{0}, \ldots X_{i-1}\right] \leq \exp \left[\frac{\left(b_{i}-a_{i}\right)^{2} \lambda^{2}}{8}\right]$
- We bound $\mathbf{E}\left[e^{\lambda\left(x_{k}-x_{0}\right)}\right]$.

$$
\begin{aligned}
\mathbf{E}\left[e^{\lambda\left(Z_{k}-Z_{0}\right)}\right] & =\mathbf{E}\left[e^{\sum_{i=1}^{k} \lambda Y_{i}}\right]=\mathbf{E}\left[\prod_{i=1}^{k} e^{\lambda Y_{i}}\right] \\
& =\mathbf{E}\left[\mathbf{E}\left[\prod_{i=1}^{k} e^{\lambda Y_{i}} \mid X_{0}, \ldots, X_{k-1}\right]\right] \\
& =\mathbf{E}\left[\prod_{i=1}^{k-1} e^{\lambda Y_{i}} \mathbf{E}\left[e^{\lambda Y_{k}} \mid X_{0}, \ldots, X_{k-1}\right]\right] \\
& \leq \mathbf{E}\left[\prod_{i=1}^{k-1} e^{\lambda Y_{i}}\right] \exp \left[\frac{\left(b_{i}-a_{i}\right)^{2} \lambda^{2}}{8}\right] \\
& \leq \exp \left[\sum_{i=1}^{k} \frac{\left(b_{i}-a_{i}\right)^{2} \lambda^{2}}{8}\right]
\end{aligned}
$$

Exercise: Check the previous steps.

- pick $\lambda=\frac{4 t}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}$

Method of Bounded Differences

Suppose, we have random variables X_{1}, \ldots, X_{n}. We want to study the random variable

$$
f\left(X_{1}, \ldots, X_{n}\right)
$$

Some examples:

1. $X=X_{1}+\ldots+X_{n}$
2. In balls into bins, X_{i} indicate where ball i is allocated, and $f\left(X_{1}, \ldots, X_{m}\right)$ is the number of empty bins
3. X_{i} indicates if the i-th edge belongs to a random graph G, and $f\left(X_{1}, \ldots, X_{m}\right)$ represent the number of connected components of G
We can simply prove concentration of X around it means by the so-called Method of Bounded Differences

Method of Bounded Differences

A function f is called Liptchitz of parameter $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ if for all i

$$
\left|f\left(x_{1}, x_{2}, \ldots, x_{i-1}, \boldsymbol{x}_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{i-1}, \boldsymbol{y}_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

where x_{i} and y_{i} are in the domain of the i-th coordinate

- McDiarmid's inequality

Let X_{1}, \ldots, X_{n} be independent random variables. Let f be Liptchitz of parameter $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. Let $X=f\left(X_{1}, \ldots, X_{n}\right)$. Then

$$
\mathbf{P}[X-\mathbf{E}[X] \geq t], \mathbf{P}[X-\mathbf{E}[X] \leq-t] \leq \exp \left(-\frac{2 t^{2}}{\sum c_{i}^{2}}\right)
$$

McDiarmid's inequality

Let X_{1}, \ldots, X_{n} be independent random variables. Let f be Liptchitz of parameter $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. Let $X=f\left(X_{1}, \ldots, X_{n}\right)$. Then

$$
\mathbf{P}[X-\mathbf{E}[X] \geq t], \mathbf{P}[X-\mathbf{E}[X] \leq-t] \leq \exp \left(-\frac{2 t^{2}}{\sum c_{i}^{2}}\right)
$$

In our proof we are going to assume the X_{i} are discrete random variables. Nevertheless, the result can be proven for continuous random variables. f Proof: Use that $Z_{i}=\mathrm{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}, \ldots, X_{i}\right]$ with
$\mathbf{E}\left[Z_{0}\right]=\mathbf{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]$ is a (Doob) Martingale.
We just need bounds for $Z_{i}-Z_{i-1}$ for all $i \geq 1$.

- Recall that $Z_{i}-Z_{i-1}=\mathbf{E}\left[f \mid X_{1}, \ldots, X_{i}\right]-\mathbf{E}\left[f \mid X_{1}, \ldots, X_{i-1}\right]$
- For $i<j$ write $\mathbf{X}_{\mathbf{i}}^{\mathbf{j}}=\left(X_{i}, \ldots, X_{j}\right)$. By definition of conditional expectation $Z_{i}-Z_{i-1}$ equals (exercise)

$$
\sum_{\mathbf{x}} f\left(\mathbf{X}_{1}^{\mathbf{i}-\mathbf{1}}, X_{i}, \mathbf{x}\right) \mathbf{P}\left[\mathbf{X}_{\mathbf{i}+\mathbf{1}}^{\mathbf{n}}=\mathbf{x}\right]-\sum_{(y, \mathbf{x})} f\left(\mathbf{X}_{1}^{\mathbf{i}-\mathbf{1}}, y, \mathbf{x}\right) \mathbf{P}\left[\left(X_{i}, \mathbf{X}_{\mathbf{i}+\mathbf{1}}^{\mathbf{n}}\right)=(y, \mathbf{x})\right]
$$

- Here we use that X_{i} are independent:

$$
\mathbf{P}\left[\left(X_{i}, \mathbf{X}_{i+1}^{\mathrm{n}}\right)=(y, \mathbf{x})\right]=\mathbf{P}\left[X_{i}=y\right] \mathbf{P}\left[\mathbf{X}_{\mathbf{i}+\mathbf{1}}^{\mathrm{n}}=\mathbf{x}\right]
$$

- Therefore $Z_{i}-Z_{i-1}$ equals

$$
\sum_{\mathbf{x}} \sum_{y}\left[f\left(\mathbf{X}_{1}^{\mathrm{i}-\mathbf{1}}, X_{i}, \mathbf{x}\right)-f\left(\mathbf{X}_{1}^{\mathrm{i}-\mathbf{1}}, y, \mathbf{x}\right)\right] \mathbf{P}\left[X_{i}=y\right] \mathbf{P}\left[\mathbf{X}_{\mathbf{i}+1}^{\mathrm{n}}=\mathbf{x}\right]
$$

- Denote $a_{i}=\inf _{y^{\prime}}\left[f\left(\mathbf{X}_{1}^{i-1}, y^{\prime}, \mathbf{x}\right)-f\left(\mathbf{X}_{1}^{i-1}, y, \mathbf{x}\right)\right]$ and $b_{i}=\sup _{z^{\prime}}\left[f\left(\mathbf{X}_{1}^{\mathbf{i}-\mathbf{1}}, z^{\prime}, \mathbf{x}\right)-f\left(\mathbf{X}_{1}^{\mathbf{i}-\mathbf{1}}, y, \mathbf{x}\right)\right]$.
- Note that

$$
\left|\left[f\left(\mathbf{X}_{1}^{\mathbf{i}-\mathbf{1}}, z^{\prime}, \mathbf{x}\right)-f\left(\mathbf{X}_{1}^{\mathbf{i}-\mathbf{1}}, y, \mathbf{x}\right)\right]-\left[f\left(\mathbf{X}_{1}^{\mathbf{i}-\mathbf{1}}, y^{\prime}, \mathbf{x}\right)-f\left(\mathbf{X}_{1}^{\mathbf{i}-\mathbf{1}}, y, \mathbf{x}\right)\right]\right| \leq c_{i}
$$

- Hence $b_{i}-a_{i} \leq c_{i}$

McDiarmid's inequality

Let X_{1}, \ldots, X_{n} be independent random variables. Let f be Liptchitz of parameter $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. Let $X=f\left(X_{1}, \ldots, X_{n}\right)$. Then

$$
\mathbf{P}[X-\mathbf{E}[X] \geq t], \mathbf{P}[X-\mathbf{E}[X] \leq-t] \leq \exp \left(-\frac{2 t^{2}}{\sum c_{i}^{2}}\right)
$$

Outline

Martingales

Martingale Concentration Inequalities

Examples

Examples: Balls into Bins

Consider m balls assigned uniformly at random into n bins.

Enumerate the balls from 1 to m. Ball i is assigned to a random bin X_{i}.

Let Z be the number of empty bins (after assigning the balls)
$Z=f\left(X_{1}, \ldots, X_{n}\right.$ and f is Liptchitz with $\mathbf{c}=(1, \ldots, 1)$ (because if we move one ball to another bin, the number of empty bins changes at most in 1)

By the McDiarmid's inequality

$$
\mathbf{P}[|F-\mathbf{E}[F]|>t] \leq 2 e^{-2 t^{2} / m}
$$

Example: Bin Packing

Consider the Bin Packing problem

1. We are given n items of sizes in the unit interval $[0,1]$
2. We want to pack those items into the fewest number of unit-capacity bins as possible
3. Suppose that the item sizes X_{i} are independent random variables in the interval $[0,1]$
4. let $B=B\left(X_{1}, \ldots, X_{n}\right)$ the optimal number of bins that suffice to pack the items
5. The Lipschitz conditions holds with $\boldsymbol{c}=(1, \ldots, 1)$, Why?
6. Therefore

$$
\mathbf{P}[B-\mathbf{E}[B] \geq t], \mathbf{P}[B-\mathbf{E}[B] \leq-t] \leq e^{-2 t^{2} / n} .
$$

A random distance problem

Consider an n by n square grid $\{0,1, \ldots, n\}^{2}$, where each point is connected to each of its (at most) four neighbours (N, S, E, W). Within each inner square of the grid, we draw a diagonal from $S W$ to $N E$ with probability p.

We say that $(0,0)$ is on the bottom left corner and (n, n) in the top right corner.

Can we prove concentration of the shortest path from $(0,0)$ to (n, n) ?

A random distance problem

Can we prove concentration of the shortest path from $(0,0)$ to (n, n) ? Yes! Let Z be the total length of the shortest path. Two options

1. Define $X_{i j}=1$ if there is a diagonal in square $i j$, otherwise $X_{i j}=0$. Then
$Z=f\left(X_{11}, \ldots, X_{n n}\right)$ satisfies the Lipschitz conditions with
$\boldsymbol{c}=(2-\sqrt{2})(1, \ldots, 1)$, Why? .
Then

$$
\mathbf{P}[|Z-\mathbf{E}[Z]| \geq t] \leq 2 \exp \left[\frac{-t^{2}}{(2-\sqrt{2})^{2} n^{2}}\right]
$$

2. Enumerate the columns of squares from 1 to n. Let $Y_{i}=\left(X_{1 i}, \ldots, X_{n i}\right)$. Then $Z=g\left(Y_{1}, \ldots, Y_{n}\right)$. g satisfies the Lipschitz conditions with $c=(2-\sqrt{2})(1, \ldots, 1)$. Why?
Then

$$
\mathbf{P}[|Z-\mathbf{E}[Z]| \geq t] \leq 2 \exp \left[\frac{-t^{2}}{(2-\sqrt{2})^{2} n}\right]
$$

Note the second bound is way more useful than the first one.

Example: Clique Number in Random Graphs

1. Consider a random graph $G=G_{n, p}$ on n vertices where each possible edge appears with probability p independent of each other.
2. Denote by K the clique number of G defined as the size of the largest complete subgraph of G.
3. K is a function of the number of edges of the graph, i.e. $K=K\left(X_{1}, \ldots, X_{\binom{n}{2}}\right)$ where X_{i} represent if the i-th possible edge is in the graph or not.
4. Lipschitz conditions holds with $\boldsymbol{c}=(1, \ldots, 1)$. Why?
5. Therefore, for $t>0$

$$
\mathbf{P}[K-\mathbf{E}[K] \geq t], \mathbf{P}[K-\mathbf{E}[K] \leq t] \leq e^{-2 t^{2} /\binom{n}{2}}
$$

Example: Clique Number in Random Graphs

1. Consider a random graph $G=G_{n, p}$ on n vertices where each possible edge appears with probability p independent of each other.
2. Denote by K the clique number of G defined as the size of the largest complete subgraph of G.
3. Enumerate the vertices from 1 to n
4. Let $X_{i, j}=1$ if there is a edge between vertices i and j, otherwise $X_{i, j}=0$
5. Let $Y_{i}=\left(X_{i, 1}, X_{i, 2}, \ldots, X_{i, i-1}\right)$
6. K is a function of the Y_{i}.
7. Lipschitz conditions holds with $\boldsymbol{c}=(1, \ldots, 1)$. Why?
8. Therefore, for $t>0$

$$
\mathbf{P}[K-\mathbf{E}[K]>t], \mathbf{P}[K-\mathbf{E}[K]<t] \leq e^{-2 t^{2} / n}
$$

Observe this bound is better than the previous one

MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of assuming worst case input, we assume a random input.

1. Consider a random graph $G_{n, 1 / 2}$ on vertices $[n]=\{1, \ldots, n\}$ where each possible edge appears with probability $1 / 2$
2. Let $S \subseteq[n]$. Denote by $E\left(S: S^{c}\right)$ be the set of edges between S and its complement (i.e. the size of the cut given by S).
3. $\mathbf{E}\left[\left|E\left(S: S^{c}\right)\right|\right]=\frac{\mid S(n-|S|)}{2} \leq n^{2} / 8$
4. Note that $C_{S}=\left|E\left(S: S^{c}\right)\right|$ depends on the possible $|S|(n-|S|)$ edges between S and S^{c}
5. $C_{s}=C_{s}\left(X_{1}, \ldots, X_{m}\right)$ where $m=|S|(n-|S|)$, where X_{i} indicates if the i-th edge appears in the cut or not
6. C_{S} is Lipschitz with $\boldsymbol{c}=(1, \ldots, 1)$
7. Therefore, for $\delta>0$,

$$
\mathbf{P}\left[C_{S}-\mathbf{E}\left[C_{S}\right] \geq \delta \mathbf{E}\left[C_{S}\right]\right] \leq \exp \left(-\frac{2 \delta^{2} \mathbf{E}\left[C_{S}\right]^{2}}{|S|(n-|S|)}\right)
$$

8. Exercise: Deduce that for any $S \subseteq[n]$,

$$
\mathbf{P}\left[C_{S} \geq \frac{n^{2}}{8}+\delta \frac{n^{2}}{4}\right] \leq e^{-\Omega\left(\delta^{2} n^{2}\right)}
$$

9. By the union bound, we have that

$$
\mathbf{P}\left[\exists S: C_{S} \geq \frac{n^{2}}{8}+\delta \frac{n^{2}}{4}\right] \leq 2^{n} e^{-\Omega\left(\delta^{2} n^{2}\right)}=2^{n} e^{-\Omega\left(c^{2} n\right)}
$$

10. Recall that $\delta=c / \sqrt{n}$, now we pick c to be large enough, such that $2^{n} e^{-\Omega\left(c^{2} n\right)}=2^{-n}$
11. The main result is:

There is a constant c, such that w.h.p. the Max Cut in $G_{n, 1 / 2}$ is at most $n^{2} / 8+c n^{1 / 2}$

