Outline

Martingales

Martingale Concentration Inequalities

Examples
A sequence of random variables Z_0, Z_1, \ldots, is a **martingale** with respect to the sequence X_0, X_1, \ldots, if, for all $n \geq 0$, the following holds:

1. Z_n is a function of X_0, X_1, \ldots, X_n
2. $E[|Z_n|] < \infty$, and
3. $E[Z_{n+1}|X_0, \ldots, X_n] = Z_n$.

We will see later why martingales are useful. For now, just think that being a martingale is good.
Simple Random Walk

- Consider a sequence \(X_1, X_2, \ldots \), of independent random variables with \(P[X_i = 1] = P[X_i = -1] = 1/2 \).
- For \(n \geq 0 \) denote by \(S_n = X_0 + X_1 + \ldots + X_n \), where \(X_0 = k \in \mathbb{Z} \).
- Then \(S_0, S_1, \ldots \), is a martingale with respect to \(X_0, X_1, X_2, \ldots \).
- We check the definition
 1. \(S_n = \sum_{i=0}^{n} X_i \), i.e. \(S_n \) is a function of \(X_0, X_1, \ldots, X_n \). Note that \(S_0 = X_0 = 0 \).
 2. \(E[|S_n|] \leq E[\sum_{i=0}^{n} |X_i|] \leq n < \infty \)
 3. \[
 E[S_{n+1}|X_0, \ldots, X_n] = E[S_n + X_{n+1}|X_0, \ldots, X_n] = S_n + E[X_{n+1}|X_0, \ldots, X_n] = S_n
 \]
- The usual interpretation is a Gambler who is betting 1 pound each turn, and \(S_n \) is the current profit, and \(X_0 \) the initial capital.
A bit more interesting is the fact that $W_n = S_n^2 - n$ is also a martingale with respect to X_0, X_1, \ldots,

1. $W_n = S_n^2 - n$ is a function of X_0, X_1, \ldots, X_n
2. $|S_n^2 - n| \leq (n + k)^2 + n < \infty$
3. $S_{n+1} = S_n + X_{n+1}$ then
4. To save space, we will write X^m instead of (X_0, X_1, \ldots, X_m), then

\[
E \left[S_{n+1}^2 - (n + 1) | X_n \right] = E \left[S_n^2 + 2S_nX_{n+1} + X_{n+1}^2 - (n + 1) | X_n \right] \\
= S_n^2 + 2S_nE[X_{n+1} | X_n] + 1 - (n + 1) \\
= S_n^2 - n
\]
Biased random Walks

- Consider a sequence X_1, X_2, \ldots, of independent random variables with $P[X_i = 1] = p$ and $P[X_i = -1] = q$.
- For $n \geq 0$ denote by $S_n = X_0 + X_1 + \ldots + X_n$, where $X_0 = k \in \mathbb{Z}$.
- S_n is not a martingale if $p \neq q$, check it.
- Then $Z_n = (q/p)^{S_n}$ is a martingale with respect to X_0, X_1, X_2, \ldots.

1. Z_n is a function of S_n which is a function of X_0, \ldots, X_n
2. $\mathbb{E}[|Z_n|] \leq \max\{q/p, 1\}^n < \infty$
3.
 \[
 \mathbb{E}[Z_{n+1}|X_0, \ldots, X_n] = (q/p)^{S_{n+1}} p + (q/p)^{S_{n-1}} q \\
 = (q/p)^{S_n} [(q/p)p + (p/q)q] \\
 = Z_n
 \]
Martingales: Definition

A sequence of random variables \(Z_0, Z_1, \ldots \), is a martingale with respect to the sequence \(X_0, X_1, \ldots \), if, for all \(n \geq 0 \), the following holds:

1. \(Z_n \) is a function of \(X_0, X_1, \ldots, X_n \)
2. \(\mathbb{E}[|Z_n|] < \infty \), and
3. \(\mathbb{E}[Z_{n+1}|X_0, \ldots, X_n] = Z_n \).

Some remarks

- A sequence of random variables \(Z_0, Z_1, \ldots \), is called a martingale when it is a martingale with respect to itself, i.e. \(X_i = Z_i \).
- The first index doesn’t need to be 0, sometimes it is better to start at 1
- Sometimes we don’t define \(X_0 \), even though the martingale starts at \(Z_0 \)
- The index set can be infinity (all natural numbers) or finite
- To save space, we will write \(X^m \) instead of \((X_0, X_1, \ldots, X_m) \)
Balls into Bins

Consider \(m \) balls assigned uniformly at random into \(n \) bins.

Enumerate the balls from 1 to \(m \). Ball \(i \) is assigned to a random bin \(X_i \).

Let \(Z \) be the number of empty bins (after assigning the balls).

Denote \(Y_i = 1 \) if bin \(i \) is empty, 0 otherwise. Then \(Z = \sum_{i=1}^{n} Y_i \).

Denote \(Z_t = E[Z|X^t] \) and \(Z_0 = E[Z] \). Then \(Z_t \) is a martingale wrt \(X_1, X_2, \ldots, X_t \)

1. \(Z_t = f(X_1, \ldots, X_t) \)
2. \(E[|Z_t|] \leq n \)
3. For \(1 \leq t \leq m - 1 \),

\[
E[Z_{t+1}|X^t] = E\left[E[Z|X^{t+1}] |X^t \right] = E[Z|X^t]
\]

and

\[
E[Z_1] = E[E[Z|X_1]] = E[Z] = Z_0
\]
A **Doob martingale** refers to a generic construction that is always a martingale. The construction is as follows.

- Let X_0, \ldots, X_n be a sequence of random variables.
- Let Y be another random variable with $E[|Y|] < \infty$ (usually Y is a function of X_0, \ldots, X_n).
- Define $Z_i = E[Y|X_i]$.
- Z_0, \ldots, Z_n is a martingale w.r.t X_0, \ldots, X_n
 1. Clearly Z_i is a function of X_0, \ldots, X_i.
 3. $E[Z_i+1|X_i] = E[E[Y|X_i+1] |X_i] = E[Y|X_i] = Z_i$
- In most applications, X_0 is undefined/ignored and Z_0 corresponds to $E[Y]$ while $Z_n = Y$.

Lecture 7: Martingales and Concentration
Consider a random graph G sampled from $G_{n,p}$ where the vertex set is $\{1, \ldots, n\}$ and the edge between i, j appears with probability p independent of everything.

Enumerate all the possible edges from 1 to $m = \binom{n}{2}$. Denote by $X_j = 1$ if edge j appears in G, 0 otherwise.

Let $F(G)$ be a numerical quantity of G, e.g. number of connected components, number of edges, indicator if G is hamiltonian or not...

Define $Z_i = \mathbb{E}[F(G) | X^i]$ and define $Z_0 = \mathbb{E}[F(G)]$.

Z_i is a Doob Martingale wrt to X_1, \ldots, X_m, and it is called the edge-exposure martingale.

The interpretation is that instead of computing $F(G)$ by observing G directly, we reveal the edges of G one by one, and estimate $F(G)$ with the given information. With no information the 'best' guess for $F(G)$ is its expectation.
Example of Doob Martingale: Vertex Exposure Martingale

- Similarly, instead of reveal edges one at a time, we can reveal vertices (with the corresponding edges), one at a time.
- Fix the vertices from 1 to \(n \), and let \(G_i \) be the subgraph of \(G \) induced by the first \(i \) vertices.
- Let \(Z_0 = \mathbb{E}[F(G)] \) and \(Z_i = \mathbb{E}[F(G) | G_1, \ldots, G_i] \)
- this Doob martingale is called the vertex-exposure martingale
Outline

Martingales

Martingale Concentration Inequalities

Examples
Azuma-Hoeffding Inequality

Let \(Z_0, \ldots, Z_n \) be a martingale wrt \(X_0, X_1, \ldots \), such that

\[
a_k \leq Z_k - Z_{k-1} \leq b_k
\]

Then, for all \(t \geq 0 \) and any \(k > 0 \) it holds

\[
P[Z_k - Z_0 \geq t], P[Z_k - Z_0 \leq -t] \leq \exp \left(-\frac{2t^2}{\sum_{i=1}^k (b_i - a_i)^2} \right)
\]

Exercise. Check that if \(Z_0 \) is deterministic then \(E[Z_k] = Z_0 \).

The proof follows the standard recipe.
1. Let \(\lambda > 0 \), then

\[
P[Z_k - Z_0 \geq t] \leq e^{-\lambda t} E \left[e^{\lambda (Z_k - Z_0)} \right]
\]

2. Compute an upper bound for \(E \left[e^{\lambda (Z_k - Z_0)} \right] \)
3. Optimise the value of \(\lambda > 0 \).

We only show that \(E \left[e^{\lambda (Z_k - Z_0)} \right] \leq e^{\sum_{i=1}^k \lambda^2 (b_i - a_i)^2 / 8} \), the rest is an Exercise.
Martingales: Azuma-Hoeffding Inequality

- Define $Y_i = Z_i - Z_{i-1}$ for $i \geq 1$.
- By martingale properties $E[Y_i | X_0, X_1, \ldots, X_{i-1}] = 0$.
- We pretty much follow the same argument used in the Proof of the Hoeffding’s Extension Lemma.
- By convexity
 \[
 e^{\lambda Y_i} \leq \frac{b_i - Y_i}{b_i - a_i} e^{\lambda a_i} + \frac{Y_i - a_i}{b_i - a_i} e^{\lambda b_i}
 \]
- Then
 \[
 E \left[e^{\lambda Y_i} \bigg| X_0, \ldots, X_{i-1} \right] \leq \frac{b_i e^{\lambda a_i}}{b_i - a_i} - \frac{a_i e^{\lambda b_i}}{b_i - a_i} \leq \exp \left[\frac{(b_i - a_i)^2 \lambda^2}{8} \right]
 \]
 Exactly as in the Hoeffding’s Extension Lemma
so we have \[E \left[e^{\lambda Y_i} \mid X_0, \ldots, X_{i-1} \right] \leq \exp \left[\frac{(b_i - a_i)^2 \lambda^2}{8} \right] \]

- We bound \[E \left[e^{\lambda (X_k - X_0)} \right] . \]

\[
E \left[e^{\lambda (Z_k - Z_0)} \right] = \mathbb{E} \left[e^{\sum_{i=1}^{k} \lambda Y_i} \right] = \mathbb{E} \left[\prod_{i=1}^{k} e^{\lambda Y_i} \right]
\]
\[
= \mathbb{E} \left[\mathbb{E} \left[\prod_{i=1}^{k} e^{\lambda Y_i} \mid X_0, \ldots, X_{k-1} \right] \right]
\]
\[
= \mathbb{E} \left[\prod_{i=1}^{k-1} e^{\lambda Y_i} \mathbb{E} \left[e^{\lambda Y_k} \mid X_0, \ldots, X_{k-1} \right] \right]
\]
\[
\leq \mathbb{E} \left[\prod_{i=1}^{k-1} e^{\lambda Y_i} \right] \exp \left[\frac{(b_i - a_i)^2 \lambda^2}{8} \right]
\]
\[
\leq \exp \left[\sum_{i=1}^{k} \frac{(b_i - a_i)^2 \lambda^2}{8} \right]
\]

Exercise: Check the previous steps.

- pick \(\lambda = \frac{4t}{\sum_{i=1}^{n} (b_i - a_i)^2} \)
Method of Bounded Differences

Suppose, we have random variables X_1, \ldots, X_n. We want to study the random variable

$$f(X_1, \ldots, X_n)$$

Some examples:

1. $X = X_1 + \ldots + X_n$

2. In balls into bins, X_i indicate where ball i is allocated, and $f(X_1, \ldots, X_m)$ is the number of empty bins

3. X_i indicates if the i-th edge belongs to a random graph G, and $f(X_1, \ldots, X_m)$ represent the number of connected components of G

We can simply prove concentration of X around it means by the so-called Method of Bounded Differences
A function f is called Liptchitz of parameter $c = (c_1, \ldots, c_n)$ if for all i

$$|f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) - f(x_1, x_2, \ldots, x_{i-1}, y_i, x_{i+1}, \ldots, x_n)| \leq c_i$$

where x_i and y_i are in the domain of the i-th coordinate.

McDiarmid's inequality

Let X_1, \ldots, X_n be independent random variables. Let f be Liptchitz of parameter $c = (c_1, \ldots, c_n)$. Let $X = f(X_1, \ldots, X_n)$. Then

$$P[X - E[X] \geq t], P[X - E[X] \leq -t] \leq \exp \left(-\frac{2t^2}{\sum c_i^2}\right)$$
Let X_1, \ldots, X_n be independent random variables. Let f be Liptchitz of parameter $\mathbf{c} = (c_1, \ldots, c_n)$. Let $X = f(X_1, \ldots, X_n)$. Then

$$
P[X - \mathbb{E}[X] \geq t], \ P[X - \mathbb{E}[X] \leq -t] \leq \exp \left(-\frac{2t^2}{\sum c_i^2} \right)
$$

McDiarmid’s inequality

In our proof we are going to assume the X_i are discrete random variables. Nevertheless, the result can be proven for continuous random variables.

Proof: Use that $Z_i = \mathbb{E}[f(X_1, \ldots, X_n)|X_1, \ldots, X_i]$ with $\mathbb{E}[Z_0] = \mathbb{E}[f(X_1, \ldots, X_n)]$ is a (Doob) Martingale. We just need bounds for $Z_i - Z_{i-1}$ for all $i \geq 1$.

Lecture 7: Martingales and Concentration
Recall that \(Z_i - Z_{i-1} = \mathbb{E}[f | X_1, \ldots, X_i] - \mathbb{E}[f | X_1, \ldots, X_{i-1}] \)

For \(i < j \) write \(X^i_j = (X_i, \ldots, X_j) \). By definition of conditional expectation \(Z_i - Z_{i-1} \) equals (exercise)

\[
\sum_x f(X^{i-1}_1, X_i, x) \Pr[X_{i+1} = x] - \sum_{(y,x)} f(X^{i-1}_1, y, x) \Pr[(X_i, X^i_{i+1}) = (y, x)]
\]

Here we use that \(X_i \) are independent:

\[
\Pr[(X_i, X^i_{i+1}) = (y, x)] = \Pr[X_i = y] \Pr[X_{i+1} = x]
\]

Therefore \(Z_i - Z_{i-1} \) equals

\[
\sum_x \sum_y \left[f(X^{i-1}_1, X_i, x) - f(X^{i-1}_1, y, x) \right] \Pr[X_i = y] \Pr[X_{i+1} = x]
\]

Denote \(a_i = \inf_{y'} \left[f(X^{i-1}_1, y', x) - f(X^{i-1}_1, y, x) \right] \) and

\[
b_i = \sup_{z'} \left[f(X^{i-1}_1, z', x) - f(X^{i-1}_1, y, x) \right].
\]

Note that

\[
\left| \left[f(X^{i-1}_1, z', x) - f(X^{i-1}_1, y, x) \right] - \left[f(X^{i-1}_1, y', x) - f(X^{i-1}_1, y, x) \right] \right| \leq c_i
\]

Hence \(b_i - a_i \leq c_i \)
McDiarmid’s inequality

Let X_1, \ldots, X_n be independent random variables. Let f be Lipschitz of parameter $c = (c_1, \ldots, c_n)$. Let $X = f(X_1, \ldots, X_n)$. Then

$$P[X - E[X] \geq t], P[X - E[X] \leq -t] \leq \exp \left(-\frac{2t^2}{\sum c_i^2} \right)$$
Outline

Martingales

Martingale Concentration Inequalities

Examples
Examples: Balls into Bins

Consider m balls assigned uniformly at random into n bins.

Enumerate the balls from 1 to m. Ball i is assigned to a random bin X_i.

Let Z be the number of empty bins (after assigning the balls)

$Z = f(X_1, \ldots, X_n$ and f is Liptchitz with $c = (1, \ldots, 1)$ (because if we move one ball to another bin, the number of empty bins changes at most in 1)

By the McDiarmid’s inequality

$$P[|F - E[F]| > t] \leq 2e^{-2t^2/m}$$
Example: Bin Packing

Consider the Bin Packing problem

1. We are given \(n \) items of sizes in the unit interval \([0, 1]\)

2. We want to pack those items into the fewest number of unit-capacity bins as possible

3. Suppose that the item sizes \(X_i \) are independent random variables in the interval \([0, 1]\)

4. let \(B = B(X_1, \ldots, X_n) \) the optimal number of bins that suffice to pack the items

5. The Lipschitz conditions holds with \(c = (1, \ldots, 1) \), Why?

6. Therefore

\[
P[B - \mathbb{E}[B] \geq t], P[B - \mathbb{E}[B] \leq -t] \leq e^{-2t^2/n}.
\]
Consider an n by n square grid $\{0, 1, \ldots, n\}^2$, where each point is connected to each of its (at most) four neighbours (N, S, E, W). Within each inner square of the grid, we draw a diagonal from SW to NE with probability p.

We say that $(0, 0)$ is on the bottom left corner and (n, n) in the top right corner.

Can we prove concentration of the shortest path from $(0, 0)$ to (n, n)?
Lecture 7: Martingales and Concentration
A random distance problem

Can we prove concentration of the shortest path from \((0, 0)\) to \((n, n)\)?
Yes! Let \(Z\) be the total length of the shortest path. Two options

1. Define \(X_{ij} = 1\) if there is a diagonal in square \(ij\), otherwise \(X_{ij} = 0\). Then
 \[Z = f(X_{11}, \ldots, X_{nn}) \]
 satisfies the Lipschitz conditions with \(c = (2 - \sqrt{2})(1, \ldots, 1)\), Why?
 Then
 \[P[|Z - E[Z]| \geq t] \leq 2 \exp \left[\frac{-t^2}{(2 - \sqrt{2})^2 n^2} \right] \]

2. Enumerate the columns of squares from 1 to \(n\). Let \(Y_i = (X_{1i}, \ldots, X_{ni})\).
 Then \(Z = g(Y_1, \ldots, Y_n)\). \(g\) satisfies the Lipschitz conditions with
 \(c = (2 - \sqrt{2})(1, \ldots, 1)\). Why?
 Then
 \[P[|Z - E[Z]| \geq t] \leq 2 \exp \left[\frac{-t^2}{(2 - \sqrt{2})^2 n} \right] \]

Note the second bound is way more useful than the first one.
Example: Clique Number in Random Graphs

1. Consider a random graph $G = G_{n,p}$ on n vertices where each possible edge appears with probability p independent of each other.

2. Denote by K the clique number of G defined as the size of the largest complete subgraph of G.

3. K is a function of the number of edges of the graph, i.e. $K = K(X_1, \ldots, X_{n \choose 2})$ where X_i represent if the i-th possible edge is in the graph or not.

4. Lipschitz conditions holds with $c = (1, \ldots, 1)$. Why?

5. Therefore, for $t > 0$

\[P[K - E[K] \geq t], P[K - E[K] \leq t] \leq e^{-2t^2/(n^2)}. \]
Example: Clique Number in Random Graphs

1. Consider a random graph \(G = G_{n,p} \) on \(n \) vertices where each possible edge appears with probability \(p \) independent of each other.

2. Denote by \(K \) the clique number of \(G \) defined as the size of the largest complete subgraph of \(G \).

3. Enumerate the vertices from 1 to \(n \)

4. Let \(X_{i,j} = 1 \) if there is an edge between vertices \(i \) and \(j \), otherwise \(X_{i,j} = 0 \)

5. Let \(Y_i = (X_{i,1}, X_{i,2}, \ldots, X_{i,i-1}) \)

6. \(K \) is a function of the \(Y_i \).

7. Lipschitz conditions holds with \(c = (1, \ldots, 1) \). Why?

8. Therefore, for \(t > 0 \)

\[
P[K - E[K] > t], P[K - E[K] < t] \leq e^{-2t^2/n}.
\]

Observe this bound is better than the previous one
MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of assuming worst case input, we assume a random input.

1. Consider a random graph $G_{n,1/2}$ on vertices $[n] = \{1, \ldots, n\}$ where each possible edge appears with probability $1/2$

2. Let $S \subseteq [n]$. Denote by $E(S : S^c)$ be the set of edges between S and its complement (i.e. the size of the cut given by S).

3. $\mathbb{E}[|E(S : S^c)|] = \frac{|S|(n-|S|)}{2} \leq \frac{n^2}{8}$

4. Note that $C_S = |E(S : S^c)|$ depends on the possible $|S|(n - |S|)$ edges between S and S^c

5. $C_S = C_S(X_1, \ldots, X_m)$ where $m = |S|(n - |S|)$, where X_i indicates if the i-th edge appears in the cut or not

6. C_S is Lipschitz with $c = (1, \ldots, 1)$

7. Therefore, for $\delta > 0$,

$$\mathbb{P}[C_S - \mathbb{E}[C_S] \geq \delta \mathbb{E}[C_S]] \leq \exp \left(-\frac{2\delta^2 \mathbb{E}[C_S]^2}{|S|(n-|S|)} \right)$$
8. **Exercise:** Deduce that for any $S \subseteq [n]$,

$$
P \left[C_S \geq \frac{n^2}{8} + \delta \frac{n^2}{4} \right] \leq e^{-\Omega(\delta^2 n^2)}
$$

9. By the union bound, we have that

$$
P \left[\exists S : C_S \geq \frac{n^2}{8} + \delta \frac{n^2}{4} \right] \leq 2^n e^{-\Omega(\delta^2 n^2)} = 2^n e^{-\Omega(c^2 n)}
$$

10. Recall that $\delta = c/\sqrt{n}$, now we pick c to be large enough, such that

$$
2^n e^{-\Omega(c^2 n)} = 2^{-n}
$$

11. The main result is:

```markdown
Theorem

There is a constant $c$, such that w.h.p. the Max Cut in $G_{n,1/2}$ is at most $n^2/8 + cn^{1/2}$
```