
Lecture 7: Martingales and Concentration
John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Lent 2019



Outline

Martingales

Martingale Concentration Inequalities

Examples

Lecture 7: Martingales and Concentration 2



Martingales: Definition

A sequence of random variables Z0,Z1, . . . , is a martingale with respect to
the sequence X0,X1, . . . , if, for all n ≥ 0, the following holds:

1. Zn is a function of X0,X1, . . . ,Xn

2. E[ |Zn| ] <∞, and

3. E[Zn+1|X0, . . . ,Xn ] = Zn.

We will see later why martingales are useful. For
now, just think that being a martingale is good.
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Simple Random Walk

Consider a sequence X1,X2, . . . , of independent random variables with
P[Xi = 1 ] = P[Xi = −1 ] = 1/2

For n ≥ 0 denote by Sn = X0 + X1 + . . .+ Xn, where X0 = k ∈ Z,

Then S0,S1, . . . , is a martingale with respect to X0,X1,X2, . . . ,

We check the definition
1. Sn =

∑n
i=0 Xi , i.e. Sn is a function of X0,X1, . . . ,Xn. Note that S0 = X0 = 0.

2. E[ |Sn| ] ≤ E
[∑n

i=0 |Xi |
]
≤ n <∞

3.

E[ Sn+1|X0, . . . ,Xn ] = E[ Sn + Xn+1|X0, . . . ,Xn ]

= Sn + E[ Xn+1|X0, . . . ,Xn ] = Sn

The usual interpretation is a Gambler who is betting 1 pound each turn,
and Sn is the current profit, and X0 the initial capital.
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Simple Random Walk

A bit more interesting is the fact that Wn = S2
n − n is also a martingale with

respect to X0,X1, . . . ,

1. Wn = S2
n − n is a function of X0,X1, . . . ,Xn

2. |S2
n − n| ≤ (n + k)2 + n <∞

3. Sn+1 = Sn + Xn+1 then

4. To save space, we will write Xm instead of (X0,X1, . . . ,Xm), then

E
[

S2
n+1 − (n + 1)|Xn

]
= E

[
S2

n + 2SnXn+1 + X 2
n+1 − (n + 1)|Xn

]
= S2

n + 2SnE[Xn+1|Xn ] + 1− (n + 1)

= S2
n − n
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Biased random Walks

Consider a sequence X1,X2, . . . , of independent random variables with
P[Xi = 1 ] = p and P[Xi = −1 ] = q.

For n ≥ 0 denote by Sn = X0 + X1 + . . .+ Xn, where X0 = k ∈ Z,

Sn is not a martingale if p 6= q, check it

Then Zn = (q/p)Sn is a martingale with respect to X0,X1,X2, . . . ,

1. Zn is a function of Sn which is a function of X0, . . . ,Xn

2. E[ |Zn| ] ≤ max{q/p, 1}n <∞
3.

E[Zn+1|X0, . . . ,Xn ] = (q/p)Sn+1p + (q/p)Sn−1q

= (q/p)Sn [(q/p)p + (p/q)q]

= Zn
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Martingales: Definition

A sequence of random variables Z0,Z1, . . . , is a martingale with respect to the
sequence X0,X1, . . . , if, for all n ≥ 0, the following holds:
1. Zn is a function of X0,X1, . . . ,Xn

2. E[ |Zn| ] <∞, and

3. E[ Zn+1|X0, . . . ,Xn ] = Zn.

Some remarks
A sequence of random variables Z0,Z1, . . . , is called a martingale when it
is a martingale with respect to itself, i.e. Xi = Zi .

The first index doesn’t need to be 0, sometimes it is better to start at 1

Sometimes we don’t define X0, even though the martingale starts at Z0

The index set can be infinity (all natural numbers) or finite

To save space, we will write Xm instead of (X0,X1, . . . ,Xm)

This is very obnoxious
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Balls into Bins

Consider m balls assigned uniformly at random into n bins.

Enumerate the balls from 1 to m. Ball i is assigned to a random bin Xi .

Let Z be the number of empty bins (after assigning the balls)

Denote Yi = 1 if bin i is empty, 0 otherwise. Then Z =
∑n

i=1 Yi .

Can we prove
concentration here?

Denote Zt = E
[

Z |Xt ] and Z0 = E[Z ]. Then Zt is a martingale wrt
X1,X2, . . . ,Xt

1. Zt = f (X1, . . . ,Xt)

2. E[ |Zt | ] ≤ n
3. For 1 ≤ t ≤ m − 1,

E
[

Zt+1|Xt
]
= E

[
E
[

Z |Xt+1
]
|Xt
]
= E

[
Z |Xt

]
and

E[Z1 ] = E[E[Z |X1 ] ] = E[Z ] = Z0
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Martingales: Doob Martingale

A Doob martingale refers to a generic construction that is always a
martingale. The construction is as follows.

Let X0, . . . ,Xn be a sequence of random variables.

Let Y be another random variable with E[ |Y | ] <∞ (usually Y is a
function of X0, . . . ,Xn).

Define Zi = E
[

Y |Xi ].
Z0, . . . ,Zn is a martingale w.r.t X0, . . . ,Xn

1. Clearly Zi is a function of X0, . . . ,Xi .
2. E[ |Zi | ] = E

[
|E
[

Y |Xi ] | ] ≤ E
[

E
[
|Y ||Xi ] ] = E[ |Y | ] <∞.

3.
E
[

Zi+1

∣∣∣Xi
]

= E
[

E
[

Y
∣∣∣Xi+1

] ∣∣∣Xi
]

= E
[

Y
∣∣∣Xi
]

= Zi

In most applications, X0 is undefined/ignored and Z0 corresponds to E[Y ]
while Zn = Y .
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Example of Doob Martingale: Edge Exposure Martingale

Consider a random graph G sampled from Gn,p where the vertex set is
{1, . . . , n} and the edge between i, j appears with probability p
independent of everything.

Enumerate all the possible edges from 1 to m =
(n

2

)
. Denote by Xj = 1 if

edge j appears in G, 0 otherwise.

Let F (G) be a numerical quantity of G, e.g. number of connected
components, number of edges, indicator if G is hamiltonian or not...

define Zi = E
[

F (G)|Xi ] and define Z0 = E[F (G) ].

Zi is a Doob Martingale wrt to X1, . . . ,Xm, and it is called the
edge-exposure martingale

The interpretation is that instead of computing F (G) by observing G
directly, we reveal the edges of G one by one, and estimate F (G) with the
given information. With no information the ’best’ guess for F (G) is its
expectation.
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Example of Doob Martingale: Vertex Exposure Martingale

Similarly, instead of reveal edges one at a time, we can reveal vertices
(with the corresponding edges), one at a time.

Fix the vertices from 1 to n, and let Gi be the subgraph of G induced by
the first i vertices.

let Z0 = E[F (G) ] and Zi = E[F (G)|G1, . . . ,Gi ]

this Doob martingale is called the vertex-exposure martingale
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Martingales: Azuma-Hoeffding Inequality

Let Z0, . . .Zn be a martingale wrt X0,X1, . . . , such that

ak ≤ Zk − Zk−1 ≤ bk

Then, for all t ≥ 0 and any k > 0 it holds

P[Zk − Z0 ≥ t ] ,P[Zk − Z0 ≤ −t ] ≤ exp

(
− 2t2∑k

i=1(bi − ai)2

)

Azuma-Hoeffding Inequality

Exercise. Check that if Z0 is deterministic then E[Zk ] = Z0.

The proof follows the standard recipe.
1. Let λ > 0, then

P[Zk − Z0 ≥ t ] ≤ e−λtE
[

eλ(Zk−Z0)
]

2. Compute an upper bound for E
[

eλ(Zk−Z0)
]

3. Optimise the value of λ > 0.
We only show that E

[
eλ(Zk−Z0)

]
≤ e

∑k
i=1 λ

2(bi−ai )
2/8, the rest is an Exercise.
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Martingales: Azuma-Hoeffding Inequality

Define Yi = Zi − Zi−1 for i ≥ 1.

By martingale properties E[Yi |X0,X1, . . . ,Xi−1 ] = 0.

We pretty much follow the same argument used in the Proof of the
Hoeffding’s Extension Lemma

By convexity

eλYi ≤ bi − Yi

bi − ai
eλai +

Yi − ai

bi − ai
eλbi

Then

E
[

eλYi
∣∣∣X0, . . . ,Xi−1

]
≤ bieλai

bi − ai
− aieλbi

bi − ai
≤ exp

[
(bi − ai)

2λ2

8

]
Exactly as in the Hoefd-
ding’s Extension Lemma
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so we have E
[

eλYi |X0, . . .Xi−1
]
≤ exp

[
(bi−ai )

2λ2

8

]
We bound E

[
eλ(Xk−X0)

]
.

E
[

eλ(Zk−Z0)
]

= E
[

e
∑k

i=1 λYi
]
= E

[
k∏

i=1

eλYi

]

= E

[
E

[
k∏

i=1

eλYi

∣∣∣∣∣ X0, . . . ,Xk−1

]]

= E

[
k−1∏
i=1

eλYi E
[

eλYk
∣∣∣ X0, . . . ,Xk−1

] ]

≤ E

[
k−1∏
i=1

eλYi

]
exp

[
(bi − ai)

2λ2

8

]

≤ exp

[
k∑

i=1

(bi − ai)
2λ2

8

]

Exercise: Check the previous steps.
pick λ = 4t∑n

i=1(bi−ai )
2
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Method of Bounded Differences

Suppose, we have random variables X1, . . . ,Xn. We want to study the
random variable

f (X1, . . . ,Xn)

Some examples:

1. X = X1 + . . .+ Xn

2. In balls into bins, Xi indicate where ball i is allocated, and f (X1, . . . ,Xm) is
the number of empty bins

3. Xi indicates if the i-th edge belongs to a random graph G, and
f (X1, . . . ,Xm) represent the number of connected components of G

We can simply prove concentration of X around it means by the so-called
Method of Bounded Differences
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Method of Bounded Differences

A function f is called Liptchitz of parameter c = (c1, . . . , cn) if for all i

|f (x1, x2, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, x2, . . . , xi−1, yi , xi+1, . . . , xn)| ≤ ci

where xi and yi are in the domain of the i-th coordinate

Let X1, . . . ,Xn be independent random variables. Let f be Liptchitz of
parameter c = (c1, . . . , cn). Let X = f (X1, . . . ,Xn). Then

P[X − E[X ] ≥ t ] ,P[X − E[X ] ≤ −t ] ≤ exp

(
− 2t2∑

c2
i

)
McDiarmid’s inequality
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Let X1, . . . ,Xn be independent random variables. Let f be Liptchitz of
parameter c = (c1, . . . , cn). Let X = f (X1, . . . ,Xn). Then

P[X − E[X ] ≥ t ] ,P[X − E[X ] ≤ −t ] ≤ exp

(
− 2t2∑

c2
i

)
McDiarmid’s inequality

In our proof we are going to assume the Xi are discrete random variables.
Nevertheless, the result can be proven for continuous random variables. f
Proof: Use that Zi = E[ f (X1, . . . ,Xn)|X1, . . . ,Xi ] with

E[Z0 ] = E[ f (X1, . . . ,Xn) ] is a (Doob) Martingale.
We just need bounds for Zi − Zi−1 for all i ≥ 1.
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Recall that Zi − Zi−1 = E[ f |X1, . . . ,Xi ]− E[ f |X1, . . . ,Xi−1 ]

For i < j write Xj
i = (Xi , . . . ,Xj). By definition of conditional expectation

Zi − Zi−1 equals (exercise )∑
x

f (Xi−1
1 ,Xi , x)P

[
Xn

i+1 = x
]
−
∑
(y,x)

f (Xi−1
1 , y , x)P

[
(Xi ,Xn

i+1) = (y , x)
]

Here we use that Xi are independent:
P[ (Xi ,Xn

i+1) = (y , x) ] = P[Xi = y ]P[Xn
i+1 = x ]

Therefore Zi − Zi−1 equals∑
x

∑
y

[
f (Xi−1

1 ,Xi , x)− f (Xi−1
1 , y , x)

]
P[Xi = y ]P

[
Xn

i+1 = x
]

Denote ai = infy′

[
f (Xi−1

1 , y ′, x)− f (Xi−1
1 , y , x)

]
and

bi = supz′

[
f (Xi−1

1 , z′, x)− f (Xi−1
1 , y , x)

]
.

Note that∣∣∣[f (Xi−1
1 , z′, x)− f (Xi−1

1 , y , x)
]
−
[
f (Xi−1

1 , y ′, x)− f (Xi−1
1 , y , x)

]∣∣∣ ≤ ci

Hence bi − ai ≤ ci
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Let X1, . . . ,Xn be independent random variables. Let f be Liptchitz of
parameter c = (c1, . . . , cn). Let X = f (X1, . . . ,Xn). Then

P[X − E[X ] ≥ t ] ,P[X − E[X ] ≤ −t ] ≤ exp

(
− 2t2∑

c2
i

)
McDiarmid’s inequality
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Examples: Balls into Bins

Consider m balls assigned uniformly at random into n bins.

Enumerate the balls from 1 to m. Ball i is assigned to a random bin Xi .

Let Z be the number of empty bins (after assigning the balls)

Z = f (X1, . . . ,Xn and f is Liptchitz with c = (1, . . . , 1) (because if we move
one ball to another bin, the number of empty bins changes at most in 1)

By the McDiarmid’s inequality

P[ |F − E[F ] | > t ] ≤ 2e−2t2/m
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Example: Bin Packing

Consider the Bin Packing problem

1. We are given n items of sizes in the unit interval [0, 1]

2. We want to pack those items into the fewest number of unit-capacity bins
as possible

3. Suppose that the item sizes Xi are independent random variables in the
interval [0, 1]

4. let B = B(X1, . . . ,Xn) the optimal number of bins that suffice to pack the
items

5. The Lipschitz conditions holds with c = (1, . . . , 1), Why?
6. Therefore

P[B − E[B ] ≥ t ] ,P[B − E[B ] ≤ −t ] ≤ e−2t2/n.
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A random distance problem

Consider an n by n square grid {0, 1, . . . , n}2, where each point is connected
to each of its (at most) four neighbours (N, S, E, W). Within each inner square
of the grid, we draw a diagonal from SW to NE with probability p.

We say that (0, 0) is on the bottom left corner and (n, n) in the top right
corner.

Can we prove concentration of the shortest path from (0, 0) to (n, n)?
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A random distance problem

Can we prove concentration of the shortest path from (0, 0) to (n, n)?
Yes! Let Z be the total length of the shortest path.Two options

1. Define Xij = 1 if there is a diagonal in square ij , otherwise Xij = 0. Then
Z = f (X11, . . . ,Xnn) satisfies the Lipschitz conditions with
c = (2−

√
2)(1, . . . , 1), Why? .

Then

P[ |Z − E[Z ] | ≥ t ] ≤ 2 exp

[
−t2

(2−
√

2)2n2

]
2. Enumerate the columns of squares from 1 to n. Let Yi = (X1i , . . . ,Xni).

Then Z = g(Y1, . . . ,Yn). g satisfies the Lipschitz conditions with
c = (2−

√
2)(1, . . . , 1). Why?

Then

P[ |Z − E[Z ] | ≥ t ] ≤ 2 exp

[
−t2

(2−
√

2)2n

]
Note the second bound is way more useful than the first one.
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Example: Clique Number in Random Graphs

1. Consider a random graph G = Gn,p on n vertices where each possible
edge appears with probability p independent of each other.

2. Denote by K the clique number of G defined as the size of the largest
complete subgraph of G.

3. K is a function of the number of edges of the graph, i.e.
K = K (X1, . . . ,X(n

2)
) where Xi represent if the i-th possible edge is in the

graph or not.

4. Lipschitz conditions holds with c = (1, . . . , 1). Why?
5. Therefore, for t > 0

P[K − E[K ] ≥ t ] ,P[K − E[K ] ≤ t ] ≤ e−2t2/(n
2).
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Example: Clique Number in Random Graphs

1. Consider a random graph G = Gn,p on n vertices where each possible
edge appears with probability p independent of each other.

2. Denote by K the clique number of G defined as the size of the largest
complete subgraph of G.

3. Enumerate the vertices from 1 to n

4. Let Xi,j = 1 if there is a edge between vertices i and j , otherwise Xi,j = 0

5. Let Yi = (Xi,1,Xi,2, . . . ,Xi,i−1)

6. K is a function of the Yi .

7. Lipschitz conditions holds with c = (1, . . . , 1). Why?
8. Therefore, for t > 0

P[K − E[K ] > t ] ,P[K − E[K ] < t ] ≤ e−2t2/n.

Observe this bound is better than the previous one
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MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of
assuming worst case input, we assume a random input.

1. Consider a random graph Gn,1/2 on vertices [n] = {1, . . . , n} where each
possible edge appears with probability 1/2

2. Let S ⊆ [n]. Denote by E(S : Sc) be the set of edges between S and its
complement (i.e. the size of the cut given by S).

3. E[ |E(S : Sc)| ] = |S|(n−|S|)
2 ≤ n2/8

4. Note that CS = |E(S : Sc)| depends on the possible |S|(n − |S|) edges
between S and Sc

5. CS = CS(X1, . . . ,Xm) where m = |S|(n − |S|), where Xi indicates if the
i-th edge appears in the cut or not

6. CS is Lipschitz with c = (1, . . . , 1)

7. Therefore, for δ > 0,

P[CS − E[CS ] ≥ δE[CS ] ] ≤ exp

(
− 2δ2E[CS ]2

|S|(n − |S|)

)
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8. Exercise: Deduce that for any S ⊆ [n],

P
[

CS ≥
n2

8
+ δ

n2

4

]
≤ e−Ω(δ2n2)

9. By the union bound, we have that

P
[
∃S : CS ≥

n2

8
+ δ

n2

4

]
≤ 2ne−Ω(δ2n2) = 2ne−Ω(c2n)

10. Recall that δ = c/
√

n, now we pick c to be large enough, such that
2ne−Ω(c2n) = 2−n

11. The main result is:

There is a constant c, such that w.h.p. the Max Cut in Gn,1/2 is at most
n2/8 + cn1/2

Theorem
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