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Chernoff Bounds

Remember the Chernoff Bounds from the previous lecture..

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . .+ Xn and µ = E[X ] =

∑
pi . Then, for any

δ > 0 it holds that

P[X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
.

and for t > µ it holds that

P[X ≥ t ] ≤ e−µ
(eµ

t

)t
,

Chernoff Bounds: upper tails
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Chernoff Bounds

.. and the lower tails..

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . .+ Xn and µ = E[X ] =

∑
pi . Then, for any

δ > 0 it holds that

P[X ≤ (1− δ)µ ] ≤
[

e−δ

(1− δ)1−δ

]µ
.

and for any t < µ

P[X ≤ t ] ≤ e−µ
(eµ

t

)t
.

Chernoff Bounds: Lower Tails
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Chernoff Bounds

..and the nicer version!

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . .+ Xn and µ = E[X ] =

∑
pi . Then,

For all t > 0,
P[X ≥ E[X ] + t ] ≤ e−2t2/n

P[X ≤ E[X ]− t ] ≤ e−2t2/n

For 0 < δ < 1,

P[X ≥ (1 + δ)E[X ] ] ≤ exp

(
−δ

2E[X ]

3

)

P[X ≤ (1− δ)E[X ] ] ≤ exp

(
−δ

2E[X ]

2

)

Nicer Chernoff Bounds
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Chernoff Bound: Extension to other Random Variables

Most of the time we will use Chernoff Bounds for sum of independent
Bernoulli random variables

but not always

it does not hurt to know how to derive similar bounds for other random
variables

Remember the key steps:

1. Let λ > 0, then

P[X ≥ (1 + δ)µ ] ≤ e−λ(1+δ)µE
[

eλX
]

2. Compute an upper bound for E
[

eλX ]
3. Optimise the value of λ > 0.

Chernoff Bound recipe
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Exercise:

Let X be a Poisson random variable of mean µ. Prove that

E
[

eλX
]
= eµ(e

λ−1)

and deduce that for t ≥ µ

P[X ≥ t ] ≤ e−µ
(

eλ
t

)t

and P[X ≥ (1 + δ)µ ] ≤ e−δ
2µ,

and the corresponding lower tails.

Let X be a Normal random variable of mean µ and variance σ2. Prove that

E
[

eλX
]
= eµλ+σ

2λ2/2,

and deduce that for t > µ

P[X ≥ t ] ≤ e−(t−µ)2/2.
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Hoeffding’s Extension

Beside sums of independent Bernoulli Random variables, sums of
independent and bounded random variables is very important in
applications.

Unfortunately the distribution of the Xi will be unknown or very hard to
compute, thus it will be very hard to compute the moment-generating
function of Xi .

Hoeffding’s Lemma helps us here

Let X be a random variable with mean 0 such that a ≤ X ≤ b, then for
all λ ∈ R.

E
[

eλX
]
≤ exp

(
(b − a)2λ2

8

)
Hoeffding’s Extension Lemma

You can always con-
sider X ′ = X − E[X ]
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Chernoff-Hoeffding Bounds

Let X1, . . . ,Xn be independent random variable with mean µi such that
ai ≤ Xi ≤ bi . Let X = X1 + . . .+ Xn, and let µ = E[X ] =

∑n
i=1 µi . Then

for any t > 0

P[X ≥ µ+ t ] ≤ exp

[
−2t2∑n

i=1(bi − ai)2

]
and

P[X ≤ µ− t ] ≤ exp

[
−2t2∑n

i=1(bi − ai)2

]

Chernoff-Hoeffding’s Bounds

Proof:

Let X ′i = Xi − µi and X ′ = X ′1 + . . . ,X ′n, then P[X ≥ µ+ t ] = P[X ′ ≥ t ]

P[X ′ ≥ t ] ≤ e−λt ∏n
i=1 E

[
eλX ′

i

]
≤ exp

[
−λt + λ2

8

∑n
i=1(bi − ai)

2
]

Choose λ = 4t∑n
i=1(bi−ai )

2 to get the result.

This is not magic! you just need to optimise on λ

Lecture 6: Concentration Inequalities - Introduction to Martingales 9



Let X be a random variable with mean 0 such that a ≤ X ≤ b, then for
all λ ∈ R.

E
[

eλX
]
≤ exp

(
(b − a)2λ2

8

)
Hoeffding’s Extension Lemma

Proof (for λ ≥ 0):

f (x) = eλx is a convex function.

-2 -1 1 2

2

4

6
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Let X be a random variable with mean 0 such that a ≤ X ≤ b, then for
all λ ∈ R.

E
[

eλX
]
≤ exp

(
(b − a)2λ2

8

)
Hoeffding’s Extension Lemma

Proof (for λ ≥ 0):

1. f (x) = eλx is a convex function.

2. As a ≤ X ≤ b, we consider the points (a, eλa) and (b, eλb)

3. The straight line between those points is always above the graph of eλx

4. i.e.
eλX ≤ b − X

b − a
eλa +

X − a
b − a

eλb

5. Then

E
[

eλX
]
≤ beλa

b − a
− aeλb

b − a
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1. f (x) = eλx is a convex function.
2. As a ≤ X ≤ b, we consider the points (a, eλa) and (b, eλb)
3. The straight line between those points is always above the graph of eλx

4. i.e.
eλX ≤ b − X

b − a
eλa +

X − a
b − a

eλb

5. Then

E
[

eλX
]
≤ beλa

b − a
− aeλb

b − a

6. Consider

φ(λ) = log

(
beλa

b − a
− aeλb

b − a

)
and check that (Exercise )

φ(0) = 0
φ′(0) = 0
φ′′(t) ≤ (b − a)2/4 for all t ∈ R

7. For t ≥ 0, use that φ′(t) =
∫ t

0 φ
′′(x)dx ≤ t(b − a)2/4

8. For t ≥ 0, use that

φ(t) =
∫ t

0
φ′(x)dx ≤

∫ t

0
x(b − a)2/4dx ≤ t2(b − a)2/8

9. replace t = λ for non-negative λ.
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Chernoff-Bounds: Final Remarks

There are several version of Chernoff-style Bounds that work for sum of
independent random variables.

The proof of all of them usually follows the same recipe
Some bounds include more information about the random variables, e.g.
the variance

the limit is the amount of information we have about the random variables
and our ability to manipulate/bound quantities.
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Beyond sum of independent variables

Can we prove concentration of other type of random variables? Yes.. but

There is no general tool to prove concentration beyond the basic recipe
but in general it is very hard to compute moment generating functions

It is worth trying to transform the problem into the setting of sum of
independent random variable

If everything fails.. There are a few other families of random variables for
which proving concentration is doable One of them are the so-called
Martingales
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Conditional Expectation

Before talking about martingales, we need to review conditional
expectation.

Given two events A and B with P[A ] > 0 we define
P[B|A ] = P[B ∩ A ] /P[A ].

if P[A ] = 0, the usual convention is that P[B|A ] = 0.

Given a discrete random variable Y , we define its conditional expectation
with respect to the event A by

E[Y |A ] =
∑

b

bP[Y = b|A ]

a particular case is when the event A = {X = a} where X is another
discrete random variable. In such a case we define the function f (a) by

f (a) = E[Y |X = a ] ,

We define the conditional expectation E[Y |X ], as the random variable
that takes the value E[Y |X = a ] then X = a, i.e. f (X ).
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Important Remarks

The conditional expectation of Y w.r.t a event A, E[Y |A ] is a deterministic
number .

The conditional expectation of Y w.r.t a random variable X , E[Y |X ] is a
random variable .

X can be a random vector (X1, . . . ,XN) in the definition of E[Y |X ].

There is a definition of conditional expectation with respect to general
random variables1, but most of the results in the discrete setting extend to
the continuous setting.

The conditional expectation E[Y |X ] is always a function of X .

Behind conditional expectation there is the notion of information 2. The
standard notion of expectation is like ’the best estimate of a random
variable given no information of it’, while the conditional expectation given
X is like ’the best estimate of a random variable given the information of
X ’

1such a definition require the understanding of Measure theory
2Measure theory, again
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Conditional Expectation: two dices

Suppose we independently roll two standard 6-sided dice. Let X1 and X2 the
observed number in the first and second dice respectively. We compute a few
conditional expectations.
1. E[X1 + X2|X1 ] = 3.5 + X1. Why? Because if X1 = a then

E[X1 + X2|X1 = a ] =
12∑

b=1

bP[X1 + X2 = b|X1 = a ]

=
12∑

b=1

bP[X1 + X2 = b,X1 = a ] /P[X1 = a ]

=
12∑

b=1

bP[X2 = b − a,X1 = a ] /P[X1 = a ]

X1 indep X2 =
12∑

b=1

bP[X2 = b − a ]

=
6∑

c=1

(c + a)P[X2 = c ]

= 3.5 + a
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Conditional Expectation: Properties

1. E[E[Y |X ] ] = E[Y ].

2. E[ 1|X ] = 1
3. Linearity :

For any constant c ∈ R, E[ cY |X ] = cE[Y |X ]
E[Y + Z |X ] = E[Y |X ] + E[Z |X ]

4. If X is independent of Y , then E[Y |X ] = E[Y ] .

5. if Y is a function of X 3, i.e. Y = f (X ), then E[YZ |X ] = Y E[Z |X ].
Particularly, E[X |X ] = X

6. Tower Property:
E[E[X |(Z ,Y ) ] |Y ] = E[X |Y ].

7. Jensen Inequality:
if f is a convex real function, then f (E[X |Y ]) ≤ E[ f (X)|Y ].

By using this properties, everything becomes a bit easier, e.g., our two dices
example

E[X1 + X2|X1 ]
p3
= E[X1|X1 ] + E[X2|X1 ]

p5,p4
= X1 + E[X2 ] = X1 + 3.5

3measurable function
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Exercise: Prove the properties

1. E[E[Y |X ] ] = E[Y ].
Proof: e.g.∑

x

E[Y |X = x ]P[X = x ] =
∑

x

∑
y

yP[Y = y |X = x ]P[X = x ]

=
∑

x

∑
y

yP[Y = y ,X = x ]

=
∑

y

yP[Y = y ]
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Example: Expectation of a Geometric Random Variable

Suppose X1,X2, . . . , are an infinite sequence of independent Bernoulli (coins)
random variables of parameter p, i.e. P[Xi = 1 ] = p. Define

G = min{k ≥ 1 : Xk = 1}, which is the number of coins we have to observe
until we get a head.

G has geometric distribution of parameter p. Indeed
P[G = k ] = p(1− p)k−1.

The expectation of G is given by the formula

E[G ] =
∞∑

k=1

kp(1− p)k−1

Let say that we forgot how to compute that type of sums...
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We can compute E[G ] by other means.

E[G ]
p1
= E[E[G|X1 ] ]

G = X1 + (1− X1)(1 + G′) where G′ is the number of coins we need to
wait to see a head after the first coin.

E[X1 + (1− X1)(1 + G′)|X1 ]
p3,p5
= X1 + (1− X1)E[ 1 + G′|X1 ]

G′ has geometric distribution of parameter p and it is independent of X1.
Hence

E
[

1 + G′|X1
] p4
= E

[
1 + G′

]
= 1 + E[G ]

Solve
E[G ] = p + (1− p)(1 + E[G ])
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Example: Balls into Bins

Suppose we have n bins but a random number of balls, say M. Suppose M
has finite expectation. What is the expected number of balls in the first bin?.

1. Recall balls are assigned to bins uniformly at random and independent of
everything

2. Let Xi = 1 if the ball i falls in bin 1

3. The total number of balls in bin 1 is
∑M

i=1 Xi (recall M is a random
variable, and M is independent of Xi )
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4. E
[∑M

i=1 Xi

]
p1
= E

[
E

[∑M
i=1 Xi

∣∣∣∣∣ M

]]

5. E

[∑M
i=1 Xi

∣∣∣∣∣ M

]
= E

[∑∞
i=1 Xi1{i≤M}

∣∣∣∣∣ M

]
p3

4

=
∑∞

i=1 E

[
Xi1{i≤M}

∣∣∣∣∣ M

]

6. E

[
Xi1{i≤M}

∣∣∣∣∣ M

]
p5
= 1{i≤M}E

[
Xi

∣∣∣∣∣ M

]
p4
= 1{i≤M}E[Xi ] = 1{i≤M} · (1/n)

7. Replacing 6 in 5: E

[∑M
i=1 Xi

∣∣∣∣∣ M

]
=
∑∞

i=1(1/n) · 1{i≤M}

8. replacing 7 into 4: E
[∑M

i=1 Xi

]
=
∑∞

i=1(1/n) · P[ i ≤ M ] =5(1/n) · E[M ]

4Technically linearity works for a finite sum, but in most cases it can be done for infinite case. We
need measure theory to justify that

5See Q2 of the Homework Assessment
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