## Lecture 6: Concentration Inequalities Introduction to Martingales

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

## Outline

## More Chernoff Bounds

## Conditional Expectation

Chernoff Bounds

Remember the Chernoff Bounds from the previous lecture..

- Chernoff Bounds: upper tails

Suppose $X_{1}, \ldots, X_{n}$ are independent Bernoulli random variables with parameter $p_{i}$. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]=\sum p_{i}$. Then, for any $\delta>0$ it holds that

$$
\mathbf{P}[X \geq(1+\delta) \mu] \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}
$$

and for $t>\mu$ it holds that

$$
\mathbf{P}[X \geq t] \leq e^{-\mu}\left(\frac{e \mu}{t}\right)^{t}
$$

Chernoff Bounds
.. and the lower tails..
Chernoff Bounds: Lower Tails
Suppose $X_{1}, \ldots, X_{n}$ are independent Bernoulli random variables with parameter $p_{i}$. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]=\sum p_{i}$. Then, for any $\delta>0$ it holds that

$$
\mathbf{P}[X \leq(1-\delta) \mu] \leq\left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu}
$$

and for any $t<\mu$

$$
\mathbf{P}[X \leq t] \leq e^{-\mu}\left(\frac{e \mu}{t}\right)^{t}
$$

..and the nicer version!
_ Nicer Chernoff Bounds
Suppose $X_{1}, \ldots, X_{n}$ are independent Bernoulli random variables with parameter $p_{i}$. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathrm{E}[X]=\sum p_{i}$. Then,

- For all $t>0$,

$$
\begin{aligned}
& \mathbf{P}[X \geq \mathbf{E}[X]+t] \leq e^{-2 t^{2} / n} \\
& \mathbf{P}[X \leq \mathbf{E}[X]-t] \leq e^{-2 t^{2} / n}
\end{aligned}
$$

- For $0<\delta<1$,

$$
\begin{aligned}
& \mathbf{P}[X \geq(1+\delta) \mathbf{E}[X]] \leq \exp \left(-\frac{\delta^{2} \mathbf{E}[X]}{3}\right) \\
& \mathbf{P}[X \leq(1-\delta) \mathbf{E}[X]] \leq \exp \left(-\frac{\delta^{2} \mathbf{E}[X]}{2}\right)
\end{aligned}
$$

## Chernoff Bound: Extension to other Random Variables

- Most of the time we will use Chernoff Bounds for sum of independent Bernoulli random variables
- but not always
- it does not hurt to know how to derive similar bounds for other random variables

Remember the key steps:
—— Chernoff Bound recipe

1. Let $\lambda>0$, then

$$
\mathbf{P}[X \geq(1+\delta) \mu] \leq e^{-\lambda(1+\delta) \mu} \mathbf{E}\left[e^{\lambda X}\right]
$$

2. Compute an upper bound for $\mathbf{E}\left[e^{\lambda X}\right]$
3. Optimise the value of $\lambda>0$.

## Exercise:

- Let $X$ be a Poisson random variable of mean $\mu$. Prove that

$$
\mathbf{E}\left[e^{\lambda X}\right]=e^{\mu\left(e^{\lambda}-1\right)}
$$

and deduce that for $t \geq \mu$

$$
\mathbf{P}[X \geq t] \leq e^{-\mu}\left(\frac{e \lambda}{t}\right)^{t} \quad \text { and } \quad \mathbf{P}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu}
$$

and the corresponding lower tails.

- Let $X$ be a Normal random variable of mean $\mu$ and variance $\sigma^{2}$. Prove that

$$
\mathbf{E}\left[e^{\lambda X}\right]=e^{\mu \lambda+\sigma^{2} \lambda^{2} / 2}
$$

and deduce that for $t>\mu$

$$
\mathbf{P}[X \geq t] \leq e^{-(t-\mu)^{2} / 2}
$$

## Hoeffding's Extension

- Beside sums of independent Bernoulli Random variables, sums of independent and bounded random variables is very important in applications.
- Unfortunately the distribution of the $X_{i}$ will be unknown or very hard to compute, thus it will be very hard to compute the moment-generating function of $X_{i}$.
- Hoeffding's Lemma helps us here sider $X^{\prime}=X-\mathbf{E}[X]$

Let $X$ be a random variable with mean 0 such that $a \leq X \leq b$, then for all $\lambda \in \mathbb{R}$.

$$
\mathbf{E}\left[e^{\lambda x}\right] \leq \exp \left(\frac{(b-a)^{2} \lambda^{2}}{8}\right)
$$

## Chernoff-Hoeffding Bounds

Chernoff-Hoeffding's Bounds
Let $X_{1}, \ldots, X_{n}$ be independent random variable with mean $\mu_{i}$ such that $a_{i} \leq X_{i} \leq b_{i}$. Let $X=X_{1}+\ldots+X_{n}$, and let $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} \mu_{i}$. Then for any $t>0$

$$
\mathbf{P}[X \geq \mu+t] \leq \exp \left[\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right]
$$

and

$$
\mathbf{P}[X \leq \mu-t] \leq \exp \left[\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right]
$$

Proof:

- Let $X_{i}^{\prime}=X_{i}-\mu_{i}$ and $X^{\prime}=X_{1}^{\prime}+\ldots, X_{n}^{\prime}$, then $\mathbf{P}[X \geq \mu+t]=\mathbf{P}\left[X^{\prime} \geq t\right]$
- $\mathbf{P}\left[X^{\prime} \geq t\right] \leq e^{-\lambda t} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X_{i}^{\prime}}\right] \leq \exp \left[-\lambda t+\frac{\lambda^{2}}{8} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}\right]$
- Choose $\lambda=\frac{4 t}{\left.n-1 b_{i}-a_{i}\right)^{2}}$ to get the result.

This is not magic! you just need to optimise on $\lambda$

Hoeffding's Extension Lemma
Let $X$ be a random variable with mean 0 such that $a \leq X \leq b$, then for all $\lambda \in \mathbb{R}$.

$$
\mathbf{E}\left[e^{\lambda x}\right] \leq \exp \left(\frac{(b-a)^{2} \lambda^{2}}{8}\right)
$$

Proof (for $\lambda \geq 0$ ):

- $f(x)=e^{\lambda x}$ is a convex function.



## Hoeffding's Extension Lemma

Let $X$ be a random variable with mean 0 such that $a \leq X \leq b$, then for all $\lambda \in \mathbb{R}$.

$$
\mathbf{E}\left[e^{\lambda X}\right] \leq \exp \left(\frac{(b-a)^{2} \lambda^{2}}{8}\right)
$$

Proof (for $\lambda \geq 0$ ):

1. $f(x)=e^{\lambda x}$ is a convex function.
2. As $a \leq X \leq b$, we consider the points $\left(a, e^{\lambda a}\right)$ and ( $\left.b, e^{\lambda b}\right)$
3. The straight line between those points is always above the graph of $e^{\lambda x}$
4. i.e.

$$
e^{\lambda X} \leq \frac{b-X}{b-a} e^{\lambda a}+\frac{X-a}{b-a} e^{\lambda b}
$$

5. Then

$$
\mathbf{E}\left[e^{\lambda X}\right] \leq \frac{b e^{\lambda a}}{b-a}-\frac{a e^{\lambda b}}{b-a}
$$

1. $f(x)=e^{\lambda x}$ is a convex function.
2. As $a \leq X \leq b$, we consider the points ( $a, e^{\lambda a}$ ) and ( $b, e^{\lambda b}$ )
3. The straight line between those points is always above the graph of $e^{\lambda x}$
4. i.e.

$$
e^{\lambda X} \leq \frac{b-X}{b-a} e^{\lambda a}+\frac{X-a}{b-a} e^{\lambda b}
$$

5. Then

$$
\mathbf{E}\left[e^{\lambda X}\right] \leq \frac{b e^{\lambda a}}{b-a}-\frac{a e^{\lambda b}}{b-a}
$$

6. Consider

$$
\phi(\lambda)=\log \left(\frac{b e^{\lambda a}}{b-a}-\frac{a e^{\lambda b}}{b-a}\right)
$$

and check that (Exercise )

- $\phi(0)=0$
- $\phi^{\prime}(0)=0$
- $\phi^{\prime \prime}(t) \leq(b-a)^{2} / 4$ for all $t \in \mathbb{R}$

7. For $t \geq 0$, use that $\phi^{\prime}(t)=\int_{0}^{t} \phi^{\prime \prime}(x) d x \leq t(b-a)^{2} / 4$
8. For $t \geq 0$, use that

$$
\phi(t)=\int_{0}^{t} \phi^{\prime}(x) d x \leq \int_{0}^{t} x(b-a)^{2} / 4 d x \leq t^{2}(b-a)^{2} / 8
$$

9. replace $t=\lambda$ for non-negative $\lambda$.

## Chernoff-Bounds: Final Remarks

- There are several version of Chernoff-style Bounds that work for sum of independent random variables.
- The proof of all of them usually follows the same recipe
- Some bounds include more information about the random variables, e.g. the variance
- the limit is the amount of information we have about the random variables and our ability to manipulate/bound quantities.


## Beyond sum of independent variables

Can we prove concentration of other type of random variables? Yes.. but

- There is no general tool to prove concentration beyond the basic recipe
- but in general it is very hard to compute moment generating functions
- It is worth trying to transform the problem into the setting of sum of independent random variable
- If everything fails.. There are a few other families of random variables for which proving concentration is doable One of them are the so-called Martingales


## Outline

## More Chernoff Bounds

## Conditional Expectation

## Conditional Expectation

Before talking about martingales, we need to review conditional expectation.

- Given two events $A$ and $B$ with $\mathbf{P}[A]>0$ we define $\mathbf{P}[B \mid A]=\mathbf{P}[B \cap A] / \mathbf{P}[A]$.
- if $\mathbf{P}[A]=0$, the usual convention is that $\mathbf{P}[B \mid A]=0$.
- Given a discrete random variable $Y$, we define its conditional expectation with respect to the event $A$ by

$$
\mathbf{E}[Y \mid A]=\sum_{b} b \mathbf{P}[Y=b \mid A]
$$

- a particular case is when the event $A=\{X=a\}$ where $X$ is another discrete random variable. In such a case we define the function $f(a)$ by

$$
f(a)=\mathbf{E}[Y \mid X=a],
$$

- We define the conditional expectation $\mathrm{E}[Y \mid X]$, as the random variable that takes the value $\mathrm{E}[Y \mid X=a]$ then $X=a$, i.e. $f(X)$.


## Important Remarks

- The conditional expectation of $Y$ w.r.t a event $A, \mathrm{E}[Y \mid A]$ is a deterministic number.
- The conditional expectation of $Y$ w.r.t a random variable $X, \mathrm{E}[Y \mid X]$ is a random variable.
- $X$ can be a random vector $\left(X_{1}, \ldots, X_{N}\right)$ in the definition of $\mathrm{E}[Y \mid X]$.
- There is a definition of conditional expectation with respect to general random variables ${ }^{1}$, but most of the results in the discrete setting extend to the continuous setting.
- The conditional expectation $\mathrm{E}[Y \mid X]$ is always a function of $X$.
- Behind conditional expectation there is the notion of information ${ }^{2}$. The standard notion of expectation is like 'the best estimate of a random variable given no information of it', while the conditional expectation given $X$ is like the best estimate of a random variable given the information of $X$

[^0]
## Conditional Expectation: two dices

Suppose we independently roll two standard 6 -sided dice. Let $X_{1}$ and $X_{2}$ the observed number in the first and second dice respectively. We compute a few conditional expectations.

1. $\mathrm{E}\left[X_{1}+X_{2} \mid X_{1}\right]=3.5+X_{1}$. Why? Because if $X_{1}=a$ then

$$
\begin{aligned}
\mathbf{E}\left[X_{1}+X_{2} \mid X_{1}=a\right] & =\sum_{b=1}^{12} b \mathbf{P}\left[X_{1}+X_{2}=b \mid X_{1}=a\right] \\
& =\sum_{b=1}^{12} b \mathbf{P}\left[X_{1}+X_{2}=b, X_{1}=a\right] / \mathbf{P}\left[X_{1}=a\right] \\
& =\sum_{b=1}^{12} b \mathbf{P}\left[X_{2}=b-a, X_{1}=a\right] / \mathbf{P}\left[X_{1}=a\right] \\
X_{1} \text { indep } X_{2} & =\sum_{b=1}^{12} b \mathbf{P}\left[X_{2}=b-a\right] \\
& =\sum_{c=1}^{6}(c+a) \mathbf{P}\left[X_{2}=c\right] \\
& =3.5+a
\end{aligned}
$$

## Conditional Expectation: Properties

1. $\mathbf{E}[\mathbf{E}[Y \mid X]]=\mathbf{E}[Y]$.
2. $\mathrm{E}[1 \mid X]=1$
3. Linearity:

- For any constant $c \in \mathbb{R}, \mathbf{E}[c Y \mid X]=c \mathbf{E}[Y \mid X]$
- $\mathrm{E}[Y+Z \mid X]=\mathrm{E}[Y \mid X]+\mathrm{E}[Z \mid X]$

4. If $X$ is independent of $Y$, then $\mathbf{E}[Y \mid X]=\mathbf{E}[Y]$.
5. if $Y$ is a function of $X^{3}$, i.e. $Y=f(X)$, then $\mathrm{E}[Y Z \mid X]=Y \mathrm{E}[Z \mid X]$. Particularly, $\mathrm{E}[X \mid X]=X$
6. Tower Property:

- $\mathrm{E}[\mathrm{E}[X \mid(Z, Y)] \mid Y]=\mathrm{E}[X \mid Y]$.

7. Jensen Inequality:

- if $f$ is a convex real function, then $f(\mathbf{E}[X \mid Y]) \leq \mathbf{E}[f(X) \mid Y]$.

By using this properties, everything becomes a bit easier, e.g., our two dices example

$$
\mathbf{E}\left[X_{1}+X_{2} \mid X_{1}\right] \stackrel{p 3}{=} \mathbf{E}\left[X_{1} \mid X_{1}\right]+\mathbf{E}\left[X_{2} \mid X_{1}\right] \stackrel{p 5, p 4}{=} X_{1}+\mathbf{E}\left[X_{2}\right]=X_{1}+3.5
$$

[^1]
## Exercise: Prove the properties

1. $\mathrm{E}[\mathrm{E}[Y \mid X]]=\mathrm{E}[Y]$. Proof: e.g.

$$
\begin{aligned}
\sum_{x} \mathbf{E}[Y \mid X=x] \mathbf{P}[X=x] & =\sum_{x} \sum_{y} y \mathbf{P}[Y=y \mid X=x] \mathbf{P}[X=x] \\
& =\sum_{x} \sum_{y} y \mathbf{P}[Y=y, X=x] \\
& =\sum_{y} y \mathbf{P}[Y=y]
\end{aligned}
$$

## Example: Expectation of a Geometric Random Variable

Suppose $X_{1}, X_{2}, \ldots$, are an infinite sequence of independent Bernoulli (coins) random variables of parameter $p$, i.e. $\mathbf{P}\left[X_{i}=1\right]=p$. Define
$G=\min \left\{k \geq 1: X_{k}=1\right\}$, which is the number of coins we have to observe until we get a head.
$G$ has geometric distribution of parameter $p$. Indeed $\mathbf{P}[G=k]=p(1-p)^{k-1}$.

The expectation of $G$ is given by the formula

$$
\mathbf{E}[G]=\sum_{k=1}^{\infty} k p(1-p)^{k-1}
$$

Let say that we forgot how to compute that type of sums...

We can compute $\mathrm{E}[G]$ by other means.

- $\mathbf{E}[G] \stackrel{p 1}{=} \mathbf{E}\left[\mathbf{E}\left[G \mid X_{1}\right]\right]$
- $G=X_{1}+\left(1-X_{1}\right)\left(1+G^{\prime}\right)$ where $G^{\prime}$ is the number of coins we need to wait to see a head after the first coin.
- $\mathrm{E}\left[X_{1}+\left(1-X_{1}\right)\left(1+G^{\prime}\right) \mid X_{1}\right] \stackrel{p 3, p 5}{=} X_{1}+\left(1-X_{1}\right) \mathbf{E}\left[1+G^{\prime} \mid X_{1}\right]$
- $G^{\prime}$ has geometric distribution of parameter $p$ and it is independent of $X_{1}$. Hence

$$
\mathbf{E}\left[1+G^{\prime} \mid X_{1}\right] \stackrel{p 4}{=} \mathbf{E}\left[1+G^{\prime}\right]=1+\mathbf{E}[G]
$$

- Solve

$$
\mathbf{E}[G]=p+(1-p)(1+\mathbf{E}[G])
$$

## Example: Balls into Bins

Suppose we have $n$ bins but a random number of balls, say $M$. Suppose $M$ has finite expectation. What is the expected number of balls in the first bin?.

1. Recall balls are assigned to bins uniformly at random and independent of everything
2. Let $X_{i}=1$ if the ball $i$ falls in bin 1
3. The total number of balls in bin 1 is $\sum_{i=1}^{M} X_{i}$ (recall $M$ is a random variable, and $M$ is independent of $X_{i}$ )
4. $\mathbf{E}\left[\sum_{i=1}^{M} X_{i}\right] \stackrel{p 1}{=} \mathbf{E}\left[\mathbf{E}\left[\sum_{i=1}^{M} X_{i} \mid M\right]\right]$
5. $\mathbf{E}\left[\sum_{i=1}^{M} X_{i} \mid M\right]=\mathbf{E}\left[\sum_{i=1}^{\infty} X_{i} \mathbf{1}_{\{i \leq M\}} \mid M\right] \stackrel{p 3^{4}}{=} \sum_{i=1}^{\infty} \mathbf{E}\left[X_{i} \mathbf{1}_{\{i \leq M\}} \mid M\right]$
6. $\mathbf{E}\left[X_{i} \mathbf{1}_{\{i \leq M\}} \mid M\right] \stackrel{p 5}{=} \mathbf{1}_{\{i \leq M\}} \mathbf{E}\left[X_{i} \mid M\right] \stackrel{p 4}{=} \mathbf{1}_{\{i \leq M\}} \mathbf{E}\left[X_{i}\right]=\mathbf{1}_{\{i \leq M\}} \cdot(1 / n)$
7. Replacing 6 in 5: $\mathbf{E}\left[\sum_{i=1}^{M} X_{i} \mid M\right]=\sum_{i=1}^{\infty}(1 / n) \cdot \mathbf{1}_{\{i \leq M\}}$
8. replacing 7 into 4: $\mathbf{E}\left[\sum_{i=1}^{M} X_{i}\right]=\sum_{i=1}^{\infty}(1 / n) \cdot \mathbf{P}[i \leq M]={ }^{5}(1 / n) \cdot \mathbf{E}[M]$
[^2]
[^0]:    ${ }^{1}$ such a definition require the understanding of Measure theory
    ${ }^{2}$ Measure theory, again

[^1]:    ${ }^{3}$ measurable function

[^2]:    ${ }^{4}$ Technically linearity works for a finite sum, but in most cases it can be done for infinite case. We need measure theory to justify that
    ${ }^{5}$ See Q2 of the Homework Assessment

