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Chernoff Bounds

Remember the Chernoff Bounds from the previous lecture..

Chernoff Bounds: upper tails
Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter p;. Let X = X1 + ...+ Xy, and . = E[ X] = }_ pi. Then, for any
6 > 0 it holds that

5

PIX > (1+6)u] < {W} .

and for t > p it holds that

P[X>t]<e" (e—t")t
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Chernoff Bounds

.. and the lower tails..
Chernoff Bounds: Lower Tails

Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter p;. Let X = X1 + ...+ Xy, and p = E[ X] = }_ pi. Then, for any
6 > 0 it holds that

—s I
PLX < (1—6)u] < [ufﬁ] ‘

and forany t < p
t

PIX<t]<e™" (‘it“)
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Chernoff Bounds

..and the nicer version!
Nicer Chernoff Bounds

Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter p;. Let X = X1 + ...+ Xy and p = E[ X] = > p;. Then,

= Forall t >0,
2
P[X > E[X]+t]<e?/"
P[X <E[X]—t] <e 2/
" For0<d <1,

S2E[ X ]

P[X > (1+0)E[X]] < exp (_ 3

PLX < (1 — OE[X]] < exp (—%[X])
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Chernoff Bound: Extension to other Random Variables

= Most of the time we will use Chernoff Bounds for sum of independent
Bernoulli random variables

= but not always

= it does not hurt to know how to derive similar bounds for other random
variables

Remember the key steps:
Chernoff Bound recipe

1. Let A > 0, then
P[X 2 (1 +6)M] S ef)\(1+5)/,LE|:e)\Xi|

2. Compute an upper bound for E[ eAX]
3. Optimise the value of \ > 0.
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Exercise:

= Let X be a Poisson random variable of mean p. Prove that
E[eAX] _ ey(ehn
and deduce that for t >
—n el ! —8%u
P[X>t]<e + and P[X>(1+4+0)p]<e ’*,

and the corresponding lower tails.
= Let X be a Normal random variable of mean . and variance o2. Prove that
E [ e“} _ emwz/\?/z
and deduce that for t >

P[X > t] < e (W2,
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Hoeffding’s Extension

= Beside sums of independent Bernoulli Random variables, sums of
independent and bounded random variables is very important in
applications.

= Unfortunately the distribution of the X; will be unknown or very hard to
compute, thus it will be very hard to compute the moment-generating

function of Xi. You can always con-
= Hoeffding’s Lemma helps us her sider X’ = X — E[X]

Hoeffding’s Extension Lemma —
Let X be a random variable with mean 0 such that a < X < b, then for

all A € R. -
AX (b—a))\
E[e¥] <o (f)
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Chernoff-Hoeffding Bounds

Chernoff-Hoeffding’s Bounds

Let Xi,..., X, be independent random variable with mean p; such that
a <X <b.LetX=X +...+ Xy, and let u = E[X] = >, pi. Then
forany t >0
P[X>pu+t]<exp [i}
ST =P IS b - ay
and
PIX<pu—t]<exp [i}
ST IS b -y
Proof:

sLetX/ =X —pwand X' = X{ +..., X, then P[X > p+t] = P[ X' > {]
- P[X > t] < e ML, E[eW] < exp [—AH— 2 (b — a,)?]
= Choose A\ ==+ to get the result.

&(b/—aﬂ

( This is not magic! you just need to optimise on \ j
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Hoeffding’s Extension Lemma

Let X be a random variable with mean 0 such that a < X < b, then for

all A € R. -
AX (b—a))\
E[e¥] <o (T)

Proof (for A > 0):

= f(x) = ™ is a convex function.




Hoeffding’s Extension Lemma
Let X be a random variable with mean 0 such that a < X < b, then for

all \ € R. -
AX (b*a))\
E[eM] <o (T)

Proof (for A > 0):

A WP =

. f(x) = e is a convex function.
. As a < X < b, we consider the points (a, e*2) and (b, e*?)
. The straight line between those points is always above the graph of e

i.e.
b—X X—a
>\X< Aa b
€ —b—ae +b—a

. Then

Ab

~b—a b-a

E[e*x} < be*?  ae
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1. f(x) = e is a convex function.
2. As a < X < b, we consider the points (a, %) and (b, e*?)
3. The straight line between those points is always above the graph of e**
4. ie.
b—X X—a
X < Aa Ab
~— b-—a et b—a €
5. Then . b
be ae
X .
E[e } ~b—-a b-a
6. Consider N b
be ae
and check that (Exercise )
" ¢(0)=0
= ¢'(0)=0
= ¢/ (1) < (b— a)? /4 for alteR
7. Fort > 0, use that ¢'(t) = [; ¢ (x)dx < t(b— a)?/4

8. For t > 0, use that
t t
6(t) = / ¢ (X)dx < / x(b— a)/4dx < (b — a)?/8
0 0
9. replace t = X for non-negative .

afi
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Chernoff-Bounds: Final Remarks

= There are several version of Chernoff-style Bounds that work for sum of
independent random variables.

= The proof of all of them usually follows the same recipe

= Some bounds include more information about the random variables, e.g.
the variance

= the limit is the amount of information we have about the random variables
and our ability to manipulate/bound quantities.

S R
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Beyond sum of independent variables

Can we prove concentration of other type of random variables? Yes.. but
= There is no general tool to prove concentration beyond the basic recipe
= but in general it is very hard to compute moment generating functions

= It is worth trying to transform the problem into the setting of sum of
independent random variable

= |f everything fails.. There are a few other families of random variables for
which proving concentration is doable One of them are the so-called
Martingales

Sl
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Conditional Expectation

Before talking about martingales, we need to review conditional
expectation.

= Given two events A and B with P[ A] > 0 we define
P[B|A] =P[Bn A]/P[A].
if P[A] = 0, the usual convention is that P[ B|JA] = 0.

= Given a discrete random variable Y, we define its conditional expectation
with respect to the event A by

E[Y|A] =) bP[Y = b|A]
b

= a particular case is when the event A = {X = a} where X is another
discrete random variable. In such a case we define the function f(a) by

f(a)=E[Y|X = a],

We define the conditional expectation E[ Y|X], as the random variable
that takes the value E[ Y|X = a] then X = a, i.e. f(X).

affin
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Important Remarks

The conditional expectation of Y w.r.t a event A, E[ Y|A] is a deterministic
number .

The conditional expectation of Y w.r.t a random variable X, E[ Y|X] is a
random variable .

X can be a random vector (X, ..., Xy) in the definition of E[ Y| X].

There is a definition of conditional expectation with respect to general
random variables', but most of the results in the discrete setting extend to
the continuous setting.

The conditional expectation E[ Y|X] is always a function of X.

Behind conditional expectation there is the notion of information 2. The
standard notion of expectation is like 'the best estimate of a random
variable given no information of it’, while the conditional expectation given
X is like 'the best estimate of a random variable given the information of
X

'.’ﬂ

Tsuch a definition require the understanding of Measure theory
2Measure theory, again

bed
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Conditional Expectation: two dices

Suppose we independently roll two standard 6-sided dice. Let X; and X the
observed number in the first and second dice respectively. We compute a few
conditional expectations.
1. E[ X1 + X2|X1] = 3.5+ X;. Why? Because if X; = athen
12
> bP[Xi + Xo = b|Xi = a]
b=1
12
= Y bP[Xi+Xo=b, X =a] /P[X; = a]
b=1

E[X1 —|—X2‘X1 = a]

12
= Y bP[Xe=b-aX =a]/P[X =a]
b=1

12
Xiindep X = Y bP[Xp=b- a]
b=1

6

= > (c+aP[X =c]

= 35+a

Sl
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Conditional Expectation: Properties

1. E[E[Y|X]]=E[Y].
2. E[1|X]=1
3. Linearity :
= For any constant c € R, E[cY|X ] = cE[ Y|X]
= E[Y + Z|X] = E[ Y|X] + E[Z|X]
4. If X is independent of Y, then E[ Y|X] =E[Y].
5. if Yis a function of X3, i.e. Y = f(X), then E[ YZ|X] = YE[Z|X].
Particularly, E[ X|X] = X
6. Tower Property:
= E[E[X|(Z,V)]|Y]=E[X]Y].
7. Jensen Inequality:
= if fis a convex real function, then f(E[ X|Y']) < E[f(X)|Y].
By using this properties, everything becomes a bit easier, e.g., our two dices
example

E[ X + Xe| X1 ] ZE[X X1 ] + E[ X2 X: ] 22 X: + E[Xo] = Xi + 3.5

3measurable function
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Exercise: Prove the properties

1. E[E[Y|X]]=E[Y].
Proof: e.g.

STE[YIX=x]P[X=x]=>_> yP[Y =y|X =x]P[X =x]
X X y
=D D YPIY =y X=x]
Xy
=> yP[Y =y]
y
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Example: Expectation of a Geometric Random Variable

Suppose Xi, Xz, .. ., are an infinite sequence of independent Bernoulli (coins)
random variables of parameter p, i.e. P[ X; = 1] = p. Define

G = min{k > 1: X, = 1}, which is the number of coins we have to observe
until we get a head.

G has geometric distribution of parameter p. Indeed
P[G=k]=p(1-p)".

The expectation of G is given by the formula

E[G] = ko(1 — p) "

k=1

Let say that we forgot how to compute that type of sums...

Sl
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We can compute E[ G] by other means.
- E[G] 2 E[E[G|X:]]

B

G=Xi+(1—X)(1+ G)where G is the number of coins we need to
wait to see a head after the first coin.

E[X: +(1—X)(1+ &)X 1" X + (1 - X)E[1 + G|X ]

G’ has geometric distribution of parameter p and it is independent of X;.

Hence
E[1+GX]2E[1+G]=1+E[G]

Solve
E[G]=p+ (1 —p)(1+E[G])

Lecture 6: Concentration Inequalities - Introduction to Martingales
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Example: Balls into Bins

Suppose we have n bins but a random number of balls, say M. Suppose M
has finite expectation. What is the expected number of balls in the first bin?.

1. Recall balls are assigned to bins uniformly at random and independent of
everything
2. Let X; = 1 if the ball / falls in bin 1

3. The total number of balls in bin 1is >>, X; (recall M is a random
variable, and M is independent of X;)

S R
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4 E[s, x] 2 E[E{Z,EX/ ‘ MH

d

M] 2 1{i<M}E|:)(i ‘ M} 2 1i<mE[Xi] = 1i<my - (1/n)

4
5. E[Z,’-V’1 X; M] ED Y E[XH{«SM}

M] = E{Z?ﬂ Xilgi<my

6. E [Xﬂ {i<My

7. Replacing 6 in 5: E [Z,’ﬂ X;

M] =>4 (1/n) Ai<my

8. replacing 7 into 4: E[z,@;x,-] = °,(1/n) - P[i < M]=%(1/n) - E[M]

“Technically linearity works for a finite sum, but in most cases it can be done for infinite case. We
need measure theory to justify that
5See Q2 of the Homework Assessment

afi
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