
Lecture 4: Card Shuffling and Covertime
John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Lent 2019

Outline

Shuffling and Strong Stationary Times

Covertime

s − t Connectivity

2-Sat

Lecture 4: Mixing and shuffling 2

Card Shuffling

A Permutation σ of [n] = {1, . . . , n} is a bijection σ : [n]→ [n].

Let Σn be the set of all n! permutations of [n].

Given an ordered set [n] we wish to sample a permutation of [n] uniformly.
Sampling from uniform.

Given a deck of n cards take the top card and
place it at random position in the deck.

Markov chain on Σn with π uniform.

Top-to-Random (T-to-R) Shuffling

Lecture 4: Mixing and shuffling 3

Card Shuffling

A Permutation σ of [n] = {1, . . . , n} is a bijection σ : [n]→ [n].

Let Σn be the set of all n! permutations of [n].

Given an ordered set [n] we wish to sample a permutation of [n] uniformly.
Sampling from uniform.

Given a deck of n cards take the top card and
place it at random position in the deck.

Markov chain on Σn with π uniform.

Top-to-Random (T-to-R) Shuffling

Lecture 4: Mixing and shuffling 3

Card Shuffling

A Permutation σ of [n] = {1, . . . , n} is a bijection σ : [n]→ [n].

Let Σn be the set of all n! permutations of [n].

Given an ordered set [n] we wish to sample a permutation of [n] uniformly.
Sampling from uniform.

Given a deck of n cards take the top card and
place it at random position in the deck.

Markov chain on Σn with π uniform.

Top-to-Random (T-to-R) Shuffling

Lecture 4: Mixing and shuffling 3

Card Shuffling

A Permutation σ of [n] = {1, . . . , n} is a bijection σ : [n]→ [n].

Let Σn be the set of all n! permutations of [n].

Given an ordered set [n] we wish to sample a permutation of [n] uniformly.
Sampling from uniform.

Given a deck of n cards take the top card and
place it at random position in the deck.

Markov chain on Σn with π uniform.

Top-to-Random (T-to-R) Shuffling

Lecture 4: Mixing and shuffling 3

Card Shuffling

A Permutation σ of [n] = {1, . . . , n} is a bijection σ : [n]→ [n].

Let Σn be the set of all n! permutations of [n].

Given an ordered set [n] we wish to sample a permutation of [n] uniformly.
Sampling from uniform.

Given a deck of n cards take the top card and
place it at random position in the deck.

Markov chain on Σn with π uniform.

Top-to-Random (T-to-R) Shuffling

Lecture 4: Mixing and shuffling 3

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (Xt) with stationary distribution
π is a stopping time τ , possibly depending on the stating state x , such that

Px [t = τ,Xτ = y] = Px [t = τ]πy .

Thus Xτ has distribution π and is independent of τ .

If τ is a strong stationary time then for any x ∈ I,∥∥∥P t
x − π

∥∥∥
tv
≤ P[τ > t | X0 = x] .

Mixing from Strong Stationary Times

Proof: For any A ⊆ I the difference Px [Xt ∈ A]− π(A) is equal to

Px [Xt ∈ A | τ > t] Px [τ > t] + Px [Xt ∈ A | τ ≤ t] (1− Px [τ > t])− π(A)

= (Px [Xt ∈ A | τ > t]− π(A)) Px [τ > t] .

Then since −1 ≤ Px [Xt ∈ A | τ > t]− π(A) ≤ 1 we have

|Px [Xt ∈ A]− π(A)| = |Px [Xt ∈ A | τ > t]− π(A)|Px [τ > t] ≤ Px [τ > t] ,

for any A ⊂ I. We can take supA⊂I to complete the result. �

Lecture 4: Mixing and shuffling 4

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (Xt) with stationary distribution
π is a stopping time τ , possibly depending on the stating state x , such that

Px [t = τ,Xτ = y] = Px [t = τ]πy .

Thus Xτ has distribution π and is independent of τ .

If τ is a strong stationary time then for any x ∈ I,∥∥∥P t
x − π

∥∥∥
tv
≤ P[τ > t | X0 = x] .

Mixing from Strong Stationary Times

Proof: For any A ⊆ I the difference Px [Xt ∈ A]− π(A) is equal to

Px [Xt ∈ A | τ > t] Px [τ > t] + Px [Xt ∈ A | τ ≤ t] (1− Px [τ > t])− π(A)

= (Px [Xt ∈ A | τ > t]− π(A)) Px [τ > t] .

Then since −1 ≤ Px [Xt ∈ A | τ > t]− π(A) ≤ 1 we have

|Px [Xt ∈ A]− π(A)| = |Px [Xt ∈ A | τ > t]− π(A)|Px [τ > t] ≤ Px [τ > t] ,

for any A ⊂ I. We can take supA⊂I to complete the result. �

Lecture 4: Mixing and shuffling 4

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (Xt) with stationary distribution
π is a stopping time τ , possibly depending on the stating state x , such that

Px [t = τ,Xτ = y] = Px [t = τ]πy .

Thus Xτ has distribution π and is independent of τ .

If τ is a strong stationary time then for any x ∈ I,∥∥∥P t
x − π

∥∥∥
tv
≤ P[τ > t | X0 = x] .

Mixing from Strong Stationary Times

Proof: For any A ⊆ I the difference Px [Xt ∈ A]− π(A) is equal to

Px [Xt ∈ A | τ > t] Px [τ > t] + Px [Xt ∈ A | τ ≤ t] (1− Px [τ > t])− π(A)

= (Px [Xt ∈ A | τ > t]− π(A)) Px [τ > t] .

Then since −1 ≤ Px [Xt ∈ A | τ > t]− π(A) ≤ 1 we have

|Px [Xt ∈ A]− π(A)| = |Px [Xt ∈ A | τ > t]− π(A)|Px [τ > t] ≤ Px [τ > t] ,

for any A ⊂ I. We can take supA⊂I to complete the result. �

Lecture 4: Mixing and shuffling 4

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (Xt) with stationary distribution
π is a stopping time τ , possibly depending on the stating state x , such that

Px [t = τ,Xτ = y] = Px [t = τ]πy .

Thus Xτ has distribution π and is independent of τ .

If τ is a strong stationary time then for any x ∈ I,∥∥∥P t
x − π

∥∥∥
tv
≤ P[τ > t | X0 = x] .

Mixing from Strong Stationary Times

Proof: For any A ⊆ I the difference Px [Xt ∈ A]− π(A) is equal to

Px [Xt ∈ A | τ > t] Px [τ > t] + Px [Xt ∈ A | τ ≤ t] (1− Px [τ > t])− π(A)

= (Px [Xt ∈ A | τ > t]− π(A)) Px [τ > t] .

Then since −1 ≤ Px [Xt ∈ A | τ > t]− π(A) ≤ 1 we have

|Px [Xt ∈ A]− π(A)| = |Px [Xt ∈ A | τ > t]− π(A)|Px [τ > t] ≤ Px [τ > t] ,

for any A ⊂ I. We can take supA⊂I to complete the result. �

Lecture 4: Mixing and shuffling 4

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (Xt) with stationary distribution
π is a stopping time τ , possibly depending on the stating state x , such that

Px [t = τ,Xτ = y] = Px [t = τ]πy .

Thus Xτ has distribution π and is independent of τ .

If τ is a strong stationary time then for any x ∈ I,∥∥∥P t
x − π

∥∥∥
tv
≤ P[τ > t | X0 = x] .

Mixing from Strong Stationary Times

Proof: For any A ⊆ I the difference Px [Xt ∈ A]− π(A) is equal to

Px [Xt ∈ A | τ > t] Px [τ > t] + Px [Xt ∈ A | τ ≤ t] (1− Px [τ > t])− π(A)

= (Px [Xt ∈ A | τ > t]− π(A)) Px [τ > t] .

Then since −1 ≤ Px [Xt ∈ A | τ > t]− π(A) ≤ 1 we have

|Px [Xt ∈ A]− π(A)| = |Px [Xt ∈ A | τ > t]− π(A)|Px [τ > t] ≤ Px [τ > t] ,

for any A ⊂ I. We can take supA⊂I to complete the result. �

Lecture 4: Mixing and shuffling 4

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (Xt) with stationary distribution
π is a stopping time τ , possibly depending on the stating state x , such that

Px [t = τ,Xτ = y] = Px [t = τ]πy .

Thus Xτ has distribution π and is independent of τ .

If τ is a strong stationary time then for any x ∈ I,∥∥∥P t
x − π

∥∥∥
tv
≤ P[τ > t | X0 = x] .

Mixing from Strong Stationary Times

Proof: For any A ⊆ I the difference Px [Xt ∈ A]− π(A) is equal to

Px [Xt ∈ A | τ > t] Px [τ > t] + Px [Xt ∈ A | τ ≤ t] (1− Px [τ > t])− π(A)

= (Px [Xt ∈ A | τ > t]− π(A)) Px [τ > t] .

Then since −1 ≤ Px [Xt ∈ A | τ > t]− π(A) ≤ 1 we have

|Px [Xt ∈ A]− π(A)| = |Px [Xt ∈ A | τ > t]− π(A)|Px [τ > t] ≤ Px [τ > t] ,

for any A ⊂ I.

We can take supA⊂I to complete the result. �

Lecture 4: Mixing and shuffling 4

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (Xt) with stationary distribution
π is a stopping time τ , possibly depending on the stating state x , such that

Px [t = τ,Xτ = y] = Px [t = τ]πy .

Thus Xτ has distribution π and is independent of τ .

If τ is a strong stationary time then for any x ∈ I,∥∥∥P t
x − π

∥∥∥
tv
≤ P[τ > t | X0 = x] .

Mixing from Strong Stationary Times

Proof: For any A ⊆ I the difference Px [Xt ∈ A]− π(A) is equal to

Px [Xt ∈ A | τ > t] Px [τ > t] + Px [Xt ∈ A | τ ≤ t] (1− Px [τ > t])− π(A)

= (Px [Xt ∈ A | τ > t]− π(A)) Px [τ > t] .

Then since −1 ≤ Px [Xt ∈ A | τ > t]− π(A) ≤ 1 we have

|Px [Xt ∈ A]− π(A)| = |Px [Xt ∈ A | τ > t]− π(A)|Px [τ > t] ≤ Px [τ > t] ,

for any A ⊂ I. We can take supA⊂I to complete the result. �

Lecture 4: Mixing and shuffling 4

Strong Stationary time for Top-to-Random Shuffling

Let B be the card at the bottom of the deck at t = 0.

Let τtop be one step after the first time when B is on
top of the deck.

τtop is a Strong Stationary time for the T-to-R chain.

Strong Stationary time for T-to-R

Proof: At any t ≥ 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t ≥ 0 with k ≥ 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. �

Thus at time τtop − 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P

[
Xτtop | τtop = t

]
= 1/n!. �

Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

Let B be the card at the bottom of the deck at t = 0.

Let τtop be one step after the first time when B is on
top of the deck.

τtop is a Strong Stationary time for the T-to-R chain.

Strong Stationary time for T-to-R

Proof: At any t ≥ 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t ≥ 0 with k ≥ 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. �

Thus at time τtop − 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P

[
Xτtop | τtop = t

]
= 1/n!. �

Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

Let B be the card at the bottom of the deck at t = 0.

Let τtop be one step after the first time when B is on
top of the deck.

τtop is a Strong Stationary time for the T-to-R chain.

Strong Stationary time for T-to-R

Proof: At any t ≥ 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t ≥ 0 with k ≥ 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. �

Thus at time τtop − 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P

[
Xτtop | τtop = t

]
= 1/n!. �

Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

Let B be the card at the bottom of the deck at t = 0.

Let τtop be one step after the first time when B is on
top of the deck.

τtop is a Strong Stationary time for the T-to-R chain.

Strong Stationary time for T-to-R

Proof: At any t ≥ 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t ≥ 0 with k ≥ 0 cards under B.

Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. �

Thus at time τtop − 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P

[
Xτtop | τtop = t

]
= 1/n!. �

Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

Let B be the card at the bottom of the deck at t = 0.

Let τtop be one step after the first time when B is on
top of the deck.

τtop is a Strong Stationary time for the T-to-R chain.

Strong Stationary time for T-to-R

Proof: At any t ≥ 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t ≥ 0 with k ≥ 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. �

Thus at time τtop − 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P

[
Xτtop | τtop = t

]
= 1/n!. �

Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

Let B be the card at the bottom of the deck at t = 0.

Let τtop be one step after the first time when B is on
top of the deck.

τtop is a Strong Stationary time for the T-to-R chain.

Strong Stationary time for T-to-R

Proof: At any t ≥ 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t ≥ 0 with k ≥ 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. �

Thus at time τtop − 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P

[
Xτtop | τtop = t

]
= 1/n!. �

Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

Let B be the card at the bottom of the deck at t = 0.

Let τtop be one step after the first time when B is on
top of the deck.

τtop is a Strong Stationary time for the T-to-R chain.

Strong Stationary time for T-to-R

Proof: At any t ≥ 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t ≥ 0 with k ≥ 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. �

Thus at time τtop − 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P

[
Xτtop | τtop = t

]
= 1/n!. �

Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

Let B be the card at the bottom of the deck at t = 0.

Let τtop be one step after the first time when B is on
top of the deck.

τtop is a Strong Stationary time for the T-to-R chain.

Strong Stationary time for T-to-R

Proof: At any t ≥ 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t ≥ 0 with k ≥ 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. �

Thus at time τtop − 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P

[
Xτtop | τtop = t

]
= 1/n!. �

Lecture 4: Mixing and shuffling 5

Top-to-Random Shuffle

Let ε > 0 then for the top to random shuffle, τ(ε) ≤ n ln n + O(n).

Mixing of Top-to-Random Shuffle

Proof: For 1 ≤ k ≤ n − 1 the time between the (k − 1)th and k th cards going
under B is distributed Geo(k/n). This means that τtop is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

P[τ > n ln n + Cn] ≤ P[∃ empty bin after n ln n + Cn balls]
Lecture 1
≤ e−C .

Taking C large enough such that e−C ≤ ε yields the result. �

Since the state space Σn has size n!, we have

tmix ≈ ln (|Σn|) .

Lecture 4: Mixing and shuffling 6

Top-to-Random Shuffle

Let ε > 0 then for the top to random shuffle, τ(ε) ≤ n ln n + O(n).

Mixing of Top-to-Random Shuffle

Proof: For 1 ≤ k ≤ n − 1 the time between the (k − 1)th and k th cards going
under B is distributed Geo(k/n).

This means that τtop is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

P[τ > n ln n + Cn] ≤ P[∃ empty bin after n ln n + Cn balls]
Lecture 1
≤ e−C .

Taking C large enough such that e−C ≤ ε yields the result. �

Since the state space Σn has size n!, we have

tmix ≈ ln (|Σn|) .

Lecture 4: Mixing and shuffling 6

Top-to-Random Shuffle

Let ε > 0 then for the top to random shuffle, τ(ε) ≤ n ln n + O(n).

Mixing of Top-to-Random Shuffle

Proof: For 1 ≤ k ≤ n − 1 the time between the (k − 1)th and k th cards going
under B is distributed Geo(k/n). This means that τtop is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”.

Thus

P[τ > n ln n + Cn] ≤ P[∃ empty bin after n ln n + Cn balls]
Lecture 1
≤ e−C .

Taking C large enough such that e−C ≤ ε yields the result. �

Since the state space Σn has size n!, we have

tmix ≈ ln (|Σn|) .

Lecture 4: Mixing and shuffling 6

Top-to-Random Shuffle

Let ε > 0 then for the top to random shuffle, τ(ε) ≤ n ln n + O(n).

Mixing of Top-to-Random Shuffle

Proof: For 1 ≤ k ≤ n − 1 the time between the (k − 1)th and k th cards going
under B is distributed Geo(k/n). This means that τtop is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

P[τ > n ln n + Cn] ≤ P[∃ empty bin after n ln n + Cn balls]
Lecture 1
≤ e−C .

Taking C large enough such that e−C ≤ ε yields the result. �

Since the state space Σn has size n!, we have

tmix ≈ ln (|Σn|) .

Lecture 4: Mixing and shuffling 6

Top-to-Random Shuffle

Let ε > 0 then for the top to random shuffle, τ(ε) ≤ n ln n + O(n).

Mixing of Top-to-Random Shuffle

Proof: For 1 ≤ k ≤ n − 1 the time between the (k − 1)th and k th cards going
under B is distributed Geo(k/n). This means that τtop is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

P[τ > n ln n + Cn] ≤ P[∃ empty bin after n ln n + Cn balls]
Lecture 1
≤ e−C .

Taking C large enough such that e−C ≤ ε yields the result. �

Since the state space Σn has size n!, we have

tmix ≈ ln (|Σn|) .

Lecture 4: Mixing and shuffling 6

Top-to-Random Shuffle

Let ε > 0 then for the top to random shuffle, τ(ε) ≤ n ln n + O(n).

Mixing of Top-to-Random Shuffle

Proof: For 1 ≤ k ≤ n − 1 the time between the (k − 1)th and k th cards going
under B is distributed Geo(k/n). This means that τtop is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

P[τ > n ln n + Cn] ≤ P[∃ empty bin after n ln n + Cn balls]
Lecture 1
≤ e−C .

Taking C large enough such that e−C ≤ ε yields the result. �

Since the state space Σn has size n!, we have

tmix ≈ ln (|Σn|) .

Lecture 4: Mixing and shuffling 6

Realistic Shuffling - Riffle Shuffle

Split the deck into two piles L,R where L is the first Bin(n, 1/2) cards
and R is the rest.

Form a new pile iteratively by adding a card from L with probability
`/(r + `), where `, r sizes of L,R at that time, or otherwise from R
with probability r/(`+ r).

Riffle Shuffle

For the Riffle shuffle tmix ≤ 2 log2(4n/3).
Riffle is fast

Same state space Σn as T-to-R however this time

tmix ≈ ln ln (|Σn|) .

May have heard “7 riffle shuffles is enough” .

t ≤ 4 5 6 7 8 9
∆(t) 1.00 .92 .61 .33 .17. .09

Lecture 4: Mixing and shuffling 7

Realistic Shuffling - Riffle Shuffle

Split the deck into two piles L,R where L is the first Bin(n, 1/2) cards
and R is the rest.

Form a new pile iteratively by adding a card from L with probability
`/(r + `), where `, r sizes of L,R at that time, or otherwise from R
with probability r/(`+ r).

Riffle Shuffle

For the Riffle shuffle tmix ≤ 2 log2(4n/3).
Riffle is fast

Same state space Σn as T-to-R however this time

tmix ≈ ln ln (|Σn|) .

May have heard “7 riffle shuffles is enough” .

t ≤ 4 5 6 7 8 9
∆(t) 1.00 .92 .61 .33 .17. .09

Lecture 4: Mixing and shuffling 7

Realistic Shuffling - Riffle Shuffle

Split the deck into two piles L,R where L is the first Bin(n, 1/2) cards
and R is the rest.

Form a new pile iteratively by adding a card from L with probability
`/(r + `), where `, r sizes of L,R at that time, or otherwise from R
with probability r/(`+ r).

Riffle Shuffle

For the Riffle shuffle tmix ≤ 2 log2(4n/3).
Riffle is fast

Same state space Σn as T-to-R however this time

tmix ≈ ln ln (|Σn|) .

May have heard “7 riffle shuffles is enough” .

t ≤ 4 5 6 7 8 9
∆(t) 1.00 .92 .61 .33 .17. .09

Lecture 4: Mixing and shuffling 7

Realistic Shuffling - Riffle Shuffle

Split the deck into two piles L,R where L is the first Bin(n, 1/2) cards
and R is the rest.

Form a new pile iteratively by adding a card from L with probability
`/(r + `), where `, r sizes of L,R at that time, or otherwise from R
with probability r/(`+ r).

Riffle Shuffle

For the Riffle shuffle tmix ≤ 2 log2(4n/3).
Riffle is fast

Same state space Σn as T-to-R however this time

tmix ≈ ln ln (|Σn|) .

May have heard “7 riffle shuffles is enough” .

t ≤ 4 5 6 7 8 9
∆(t) 1.00 .92 .61 .33 .17. .09

Lecture 4: Mixing and shuffling 7

Realistic Shuffling - Riffle Shuffle

Split the deck into two piles L,R where L is the first Bin(n, 1/2) cards
and R is the rest.

Form a new pile iteratively by adding a card from L with probability
`/(r + `), where `, r sizes of L,R at that time, or otherwise from R
with probability r/(`+ r).

Riffle Shuffle

For the Riffle shuffle tmix ≤ 2 log2(4n/3).
Riffle is fast

Same state space Σn as T-to-R however this time

tmix ≈ ln ln (|Σn|) .

May have heard “7 riffle shuffles is enough” .

t ≤ 4 5 6 7 8 9
∆(t) 1.00 .92 .61 .33 .17. .09

Lecture 4: Mixing and shuffling 7

Realistic Shuffling - Riffle Shuffle

Split the deck into two piles L,R where L is the first Bin(n, 1/2) cards
and R is the rest.

Form a new pile iteratively by adding a card from L with probability
`/(r + `), where `, r sizes of L,R at that time, or otherwise from R
with probability r/(`+ r).

Riffle Shuffle

For the Riffle shuffle tmix ≤ 2 log2(4n/3).
Riffle is fast

Same state space Σn as T-to-R however this time

tmix ≈ ln ln (|Σn|) .

May have heard “7 riffle shuffles is enough” .

t ≤ 4 5 6 7 8 9
∆(t) 1.00 .92 .61 .33 .17. .09

Lecture 4: Mixing and shuffling 7

Realistic Shuffling - Riffle Shuffle

Split the deck into two piles L,R where L is the first Bin(n, 1/2) cards
and R is the rest.

Form a new pile iteratively by adding a card from L with probability
`/(r + `), where `, r sizes of L,R at that time, or otherwise from R
with probability r/(`+ r).

Riffle Shuffle

For the Riffle shuffle tmix ≤ 2 log2(4n/3).
Riffle is fast

Same state space Σn as T-to-R however this time

tmix ≈ ln ln (|Σn|) .

May have heard “7 riffle shuffles is enough” .

t ≤ 4 5 6 7 8 9
∆(t) 1.00 .92 .61 .33 .17. .09

Lecture 4: Mixing and shuffling 7

Outline

Shuffling and Strong Stationary Times

Covertime

s − t Connectivity

2-Sat

Lecture 4: Mixing and shuffling 8

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

ed f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

ed f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a

b

c

ed f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

ed f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

ed f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

e

d f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

e

d f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

e

d f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

ed

f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

ed

f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

ed

f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

ed f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Covertime

The Cover time tcov (G) of a graph G = (V ,E) is given by

tcov (G) = max
v∈V

Ev [τcov] where τcov := inf
{

t : ∪t
i=0{Xt} = V

}
.

Expected time for a walk to visit the whole graph from worst case start.

Example:

a
b

c

d e
f

a
b

c

ed f

|V | = 6

τcov (G) = 9.

Lecture 4: Mixing and shuffling 9

Let P be the SRW on a connected graph G, then πx = d(x) /2|E |.
Stationary Distribution of a Random walk

Proof: Note that
∑

x∈V
π = 1 and that for any x ∈ V

(πP)x =
∑
y∈V

πy Py,x =
∑

y∈d(x)

d(y)

2|E |
1

d(y)
=

d(x)

2|E | .

Let xy ∈ E(G) where G is any finite connected graph then hx,y ≤ 2|E |.
Crossing time of an edge

Proof: Since the SRW on any connected finite graph is irreducible we know

Ey
[
τ+y
]

=
1
πy

=
2|E |
d(y)

.

By the Markov property we have
2|E |
d(y)

= Ey
[
τ+y
]

= 1 +
∑
z∼y

hz,y

d(y)
.

It follows that
∑

z∼y hz,y ≤ d(y) (Ey
[
τ+y
]
− 1) and thus

hx,y ≤
∑
z∼y

hz,y ≤ d(y) ·
(

2|E |
d(y)

− 1
)
≤ 2|E |.

Lecture 4: Mixing and shuffling 10

Let P be the SRW on a connected graph G, then πx = d(x) /2|E |.
Stationary Distribution of a Random walk

Proof: Note that
∑

x∈V
π = 1 and that for any x ∈ V

(πP)x =
∑
y∈V

πy Py,x =
∑

y∈d(x)

d(y)

2|E |
1

d(y)
=

d(x)

2|E | .

Let xy ∈ E(G) where G is any finite connected graph then hx,y ≤ 2|E |.
Crossing time of an edge

Proof: Since the SRW on any connected finite graph is irreducible we know

Ey
[
τ+y
]

=
1
πy

=
2|E |
d(y)

.

By the Markov property we have
2|E |
d(y)

= Ey
[
τ+y
]

= 1 +
∑
z∼y

hz,y

d(y)
.

It follows that
∑

z∼y hz,y ≤ d(y) (Ey
[
τ+y
]
− 1) and thus

hx,y ≤
∑
z∼y

hz,y ≤ d(y) ·
(

2|E |
d(y)

− 1
)
≤ 2|E |.

Lecture 4: Mixing and shuffling 10

Let P be the SRW on a connected graph G, then πx = d(x) /2|E |.
Stationary Distribution of a Random walk

Proof: Note that
∑

x∈V
π = 1 and that for any x ∈ V

(πP)x =
∑
y∈V

πy Py,x =
∑

y∈d(x)

d(y)

2|E |
1

d(y)
=

d(x)

2|E | .

Let xy ∈ E(G) where G is any finite connected graph then hx,y ≤ 2|E |.
Crossing time of an edge

Proof: Since the SRW on any connected finite graph is irreducible we know

Ey
[
τ+y
]

=
1
πy

=
2|E |
d(y)

.

By the Markov property we have
2|E |
d(y)

= Ey
[
τ+y
]

= 1 +
∑
z∼y

hz,y

d(y)
.

It follows that
∑

z∼y hz,y ≤ d(y) (Ey
[
τ+y
]
− 1) and thus

hx,y ≤
∑
z∼y

hz,y ≤ d(y) ·
(

2|E |
d(y)

− 1
)
≤ 2|E |.

Lecture 4: Mixing and shuffling 10

Let P be the SRW on a connected graph G, then πx = d(x) /2|E |.
Stationary Distribution of a Random walk

Proof: Note that
∑

x∈V
π = 1 and that for any x ∈ V

(πP)x =
∑
y∈V

πy Py,x =
∑

y∈d(x)

d(y)

2|E |
1

d(y)
=

d(x)

2|E | .

Let xy ∈ E(G) where G is any finite connected graph then hx,y ≤ 2|E |.
Crossing time of an edge

Proof: Since the SRW on any connected finite graph is irreducible we know

Ey
[
τ+y
]

=
1
πy

=
2|E |
d(y)

.

By the Markov property we have
2|E |
d(y)

= Ey
[
τ+y
]

= 1 +
∑
z∼y

hz,y

d(y)
.

It follows that
∑

z∼y hz,y ≤ d(y) (Ey
[
τ+y
]
− 1) and thus

hx,y ≤
∑
z∼y

hz,y ≤ d(y) ·
(

2|E |
d(y)

− 1
)
≤ 2|E |.

Lecture 4: Mixing and shuffling 10

Let P be the SRW on a connected graph G, then πx = d(x) /2|E |.
Stationary Distribution of a Random walk

Proof: Note that
∑

x∈V
π = 1 and that for any x ∈ V

(πP)x =
∑
y∈V

πy Py,x =
∑

y∈d(x)

d(y)

2|E |
1

d(y)
=

d(x)

2|E | .

Let xy ∈ E(G) where G is any finite connected graph then hx,y ≤ 2|E |.
Crossing time of an edge

Proof: Since the SRW on any connected finite graph is irreducible we know

Ey
[
τ+y
]

=
1
πy

=
2|E |
d(y)

.

By the Markov property we have
2|E |
d(y)

= Ey
[
τ+y
]

= 1 +
∑
z∼y

hz,y

d(y)
.

It follows that
∑

z∼y hz,y ≤ d(y) (Ey
[
τ+y
]
− 1) and thus

hx,y ≤
∑
z∼y

hz,y ≤ d(y) ·
(

2|E |
d(y)

− 1
)
≤ 2|E |.

Lecture 4: Mixing and shuffling 10

Let P be the SRW on a connected graph G, then πx = d(x) /2|E |.
Stationary Distribution of a Random walk

Proof: Note that
∑

x∈V
π = 1 and that for any x ∈ V

(πP)x =
∑
y∈V

πy Py,x =
∑

y∈d(x)

d(y)

2|E |
1

d(y)
=

d(x)

2|E | .

Let xy ∈ E(G) where G is any finite connected graph then hx,y ≤ 2|E |.
Crossing time of an edge

Proof: Since the SRW on any connected finite graph is irreducible we know

Ey
[
τ+y
]

=
1
πy

=
2|E |
d(y)

.

By the Markov property we have
2|E |
d(y)

= Ey
[
τ+y
]

= 1 +
∑
z∼y

hz,y

d(y)
.

It follows that
∑

z∼y hz,y ≤ d(y) (Ey
[
τ+y
]
− 1)

and thus

hx,y ≤
∑
z∼y

hz,y ≤ d(y) ·
(

2|E |
d(y)

− 1
)
≤ 2|E |.

Lecture 4: Mixing and shuffling 10

Let P be the SRW on a connected graph G, then πx = d(x) /2|E |.
Stationary Distribution of a Random walk

Proof: Note that
∑

x∈V
π = 1 and that for any x ∈ V

(πP)x =
∑
y∈V

πy Py,x =
∑

y∈d(x)

d(y)

2|E |
1

d(y)
=

d(x)

2|E | .

Let xy ∈ E(G) where G is any finite connected graph then hx,y ≤ 2|E |.
Crossing time of an edge

Proof: Since the SRW on any connected finite graph is irreducible we know

Ey
[
τ+y
]

=
1
πy

=
2|E |
d(y)

.

By the Markov property we have
2|E |
d(y)

= Ey
[
τ+y
]

= 1 +
∑
z∼y

hz,y

d(y)
.

It follows that
∑

z∼y hz,y ≤ d(y) (Ey
[
τ+y
]
− 1) and thus

hx,y ≤
∑
z∼y

hz,y ≤ d(y) ·
(

2|E |
d(y)

− 1
)
≤ 2|E |.

Lecture 4: Mixing and shuffling 10

For any connected graph tcov (G) ≤ 4n|E | ≤ 2n3.

Covertime bdd

Proof: Any connected graph has a spanning tree T with n − 1 edges.

Choose any root v0 for T and fix a tour v0, . . . , v2n−2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex). Thus

tcov (G) ≤
2n−3∑
i=0

hvi ,vi+1 =
∑

xy∈E(T)

(hxy + hyx) ≤ 2
∑

xy∈E(T)

2|E | ≤ 4n|E |,

since for any xy ∈ E we have hx,y ≤ 2|E |. �

For any graph G we have

tcov (G) ≤

(
n−1∑
m=1

1
m

)
· max

x,y∈V
hx,y ≈ (ln n) · max

x,y∈V
hx,y .

Matthews bound

Lecture 4: Mixing and shuffling 11

For any connected graph tcov (G) ≤ 4n|E | ≤ 2n3.

Covertime bdd

Proof: Any connected graph has a spanning tree T with n − 1 edges.

Choose any root v0 for T and fix a tour v0, . . . , v2n−2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex). Thus

tcov (G) ≤
2n−3∑
i=0

hvi ,vi+1 =
∑

xy∈E(T)

(hxy + hyx) ≤ 2
∑

xy∈E(T)

2|E | ≤ 4n|E |,

since for any xy ∈ E we have hx,y ≤ 2|E |. �

For any graph G we have

tcov (G) ≤

(
n−1∑
m=1

1
m

)
· max

x,y∈V
hx,y ≈ (ln n) · max

x,y∈V
hx,y .

Matthews bound

Lecture 4: Mixing and shuffling 11

For any connected graph tcov (G) ≤ 4n|E | ≤ 2n3.

Covertime bdd

Proof: Any connected graph has a spanning tree T with n − 1 edges.

Choose any root v0 for T and fix a tour v0, . . . , v2n−2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex). Thus

tcov (G) ≤
2n−3∑
i=0

hvi ,vi+1 =
∑

xy∈E(T)

(hxy + hyx) ≤ 2
∑

xy∈E(T)

2|E | ≤ 4n|E |,

since for any xy ∈ E we have hx,y ≤ 2|E |. �

For any graph G we have

tcov (G) ≤

(
n−1∑
m=1

1
m

)
· max

x,y∈V
hx,y ≈ (ln n) · max

x,y∈V
hx,y .

Matthews bound

Lecture 4: Mixing and shuffling 11

For any connected graph tcov (G) ≤ 4n|E | ≤ 2n3.

Covertime bdd

Proof: Any connected graph has a spanning tree T with n − 1 edges.

Choose any root v0 for T and fix a tour v0, . . . , v2n−2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex).

Thus

tcov (G) ≤
2n−3∑
i=0

hvi ,vi+1 =
∑

xy∈E(T)

(hxy + hyx) ≤ 2
∑

xy∈E(T)

2|E | ≤ 4n|E |,

since for any xy ∈ E we have hx,y ≤ 2|E |. �

For any graph G we have

tcov (G) ≤

(
n−1∑
m=1

1
m

)
· max

x,y∈V
hx,y ≈ (ln n) · max

x,y∈V
hx,y .

Matthews bound

Lecture 4: Mixing and shuffling 11

For any connected graph tcov (G) ≤ 4n|E | ≤ 2n3.

Covertime bdd

Proof: Any connected graph has a spanning tree T with n − 1 edges.

Choose any root v0 for T and fix a tour v0, . . . , v2n−2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex). Thus

tcov (G) ≤
2n−3∑
i=0

hvi ,vi+1 =
∑

xy∈E(T)

(hxy + hyx) ≤ 2
∑

xy∈E(T)

2|E | ≤ 4n|E |,

since for any xy ∈ E we have hx,y ≤ 2|E |. �

For any graph G we have

tcov (G) ≤

(
n−1∑
m=1

1
m

)
· max

x,y∈V
hx,y ≈ (ln n) · max

x,y∈V
hx,y .

Matthews bound

Lecture 4: Mixing and shuffling 11

For any connected graph tcov (G) ≤ 4n|E | ≤ 2n3.

Covertime bdd

Proof: Any connected graph has a spanning tree T with n − 1 edges.

Choose any root v0 for T and fix a tour v0, . . . , v2n−2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex). Thus

tcov (G) ≤
2n−3∑
i=0

hvi ,vi+1 =
∑

xy∈E(T)

(hxy + hyx) ≤ 2
∑

xy∈E(T)

2|E | ≤ 4n|E |,

since for any xy ∈ E we have hx,y ≤ 2|E |. �

For any graph G we have

tcov (G) ≤

(
n−1∑
m=1

1
m

)
· max

x,y∈V
hx,y ≈ (ln n) · max

x,y∈V
hx,y .

Matthews bound

Lecture 4: Mixing and shuffling 11

Random Walk on a path

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {ij : j = i + 1}.

For the SRW on Pn we have hk,n = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Proof: Let fk = hk,n and observe that fn = 0. By the Markov property

f0 = 1 + f1 and fk = 1 +
fk−1

2
+

fk+1

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that fk = n2 − k2 satisfies the above. Indeed

fn = n2 − n2 = 0, f0 = 1 + f1 = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

fk = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Lecture 4: Mixing and shuffling 12

Random Walk on a path

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {ij : j = i + 1}.

For the SRW on Pn we have hk,n = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Proof: Let fk = hk,n and observe that fn = 0.

By the Markov property

f0 = 1 + f1 and fk = 1 +
fk−1

2
+

fk+1

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that fk = n2 − k2 satisfies the above. Indeed

fn = n2 − n2 = 0, f0 = 1 + f1 = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

fk = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Lecture 4: Mixing and shuffling 12

Random Walk on a path

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {ij : j = i + 1}.

For the SRW on Pn we have hk,n = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Proof: Let fk = hk,n and observe that fn = 0. By the Markov property

f0 = 1 + f1 and fk = 1 +
fk−1

2
+

fk+1

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that fk = n2 − k2 satisfies the above. Indeed

fn = n2 − n2 = 0, f0 = 1 + f1 = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

fk = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Lecture 4: Mixing and shuffling 12

Random Walk on a path

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {ij : j = i + 1}.

For the SRW on Pn we have hk,n = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Proof: Let fk = hk,n and observe that fn = 0. By the Markov property

f0 = 1 + f1 and fk = 1 +
fk−1

2
+

fk+1

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that fk = n2 − k2 satisfies the above. Indeed

fn = n2 − n2 = 0, f0 = 1 + f1 = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

fk = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Lecture 4: Mixing and shuffling 12

Random Walk on a path

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {ij : j = i + 1}.

For the SRW on Pn we have hk,n = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Proof: Let fk = hk,n and observe that fn = 0. By the Markov property

f0 = 1 + f1 and fk = 1 +
fk−1

2
+

fk+1

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that fk = n2 − k2 satisfies the above.

Indeed

fn = n2 − n2 = 0, f0 = 1 + f1 = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

fk = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Lecture 4: Mixing and shuffling 12

Random Walk on a path

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {ij : j = i + 1}.

For the SRW on Pn we have hk,n = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Proof: Let fk = hk,n and observe that fn = 0. By the Markov property

f0 = 1 + f1 and fk = 1 +
fk−1

2
+

fk+1

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that fk = n2 − k2 satisfies the above. Indeed

fn = n2 − n2 = 0, f0 = 1 + f1 = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

fk = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Lecture 4: Mixing and shuffling 12

For the path Pn on n vertices we have

n2 ≤ tcov (Pn) ≤ 2n2.

Covertime of the Path

Proof: For the lower bound, take the random walk from the left hand end
point (vertex 0). To cover the path we must at reach the righthand end point
(vertex n), this takes time n2 in expectation.

For the upper bound the max time to reach one end point from any start point
is at most n2. Now from this end point if we reach the opposite end point we
must have visited every vertex, this takes an additional n2 expected time.

0 1 2 3 4

Lecture 4: Mixing and shuffling 13

For the path Pn on n vertices we have

n2 ≤ tcov (Pn) ≤ 2n2.

Covertime of the Path

Proof: For the lower bound, take the random walk from the left hand end
point (vertex 0). To cover the path we must at reach the righthand end point
(vertex n), this takes time n2 in expectation.

For the upper bound the max time to reach one end point from any start point
is at most n2. Now from this end point if we reach the opposite end point we
must have visited every vertex, this takes an additional n2 expected time.

0 1 2 3 4

Lecture 4: Mixing and shuffling 13

For the path Pn on n vertices we have

n2 ≤ tcov (Pn) ≤ 2n2.

Covertime of the Path

Proof: For the lower bound, take the random walk from the left hand end
point (vertex 0). To cover the path we must at reach the righthand end point
(vertex n), this takes time n2 in expectation.

For the upper bound the max time to reach one end point from any start point
is at most n2. Now from this end point if we reach the opposite end point we
must have visited every vertex, this takes an additional n2 expected time.

0 1 2 3 4

Lecture 4: Mixing and shuffling 13

Outline

Shuffling and Strong Stationary Times

Covertime

s − t Connectivity

2-Sat

Lecture 4: Mixing and shuffling 14

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .
Only uses logspace.

Lecture 4: Mixing and shuffling 15

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .
Only uses logspace.

Lecture 4: Mixing and shuffling 15

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .
Only uses logspace.

Lecture 4: Mixing and shuffling 15

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .
Only uses logspace.

Lecture 4: Mixing and shuffling 15

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .
Only uses logspace.

Lecture 4: Mixing and shuffling 15

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .
Only uses logspace.

Lecture 4: Mixing and shuffling 15

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .
Only uses logspace.

Lecture 4: Mixing and shuffling 15

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .
Only uses logspace.

Lecture 4: Mixing and shuffling 15

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .

Only uses logspace.

Lecture 4: Mixing and shuffling 15

s − t Connectivity

Given: Undirected graph G = (V ,E) and s, t ∈ V

Goal: Determine if s is connected by a path to t .

s − t Connectivity Problem

Start a random walk from s.

If the walk hits t within 4n3 steps, return True. O/W return False.

s − t Connectivity Algorithm

The s− t Connectivity Algorithm runs in time 4n3 and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proposition

Proof: By Markov inequality if there is a path to t we will find it w.p. ≥ 1/2. �

Running this T times gives the correct answer with probability ≥ 1− 1/2T .
Only uses logspace.

Lecture 4: Mixing and shuffling 15

Outline

Shuffling and Strong Stationary Times

Covertime

s − t Connectivity

2-Sat

Lecture 4: Mixing and shuffling 16

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect

A huge amount of problems can be posed as a SAT:

→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:
→ Model Checking and hardware/software verification

→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:
→ Model Checking and hardware/software verification
→ Design of experiments

→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:
→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning

→ . . .

Lecture 4: Mixing and shuffling 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:
→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 4: Mixing and shuffling 17

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .

Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .

Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .

Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied

(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .

Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .

Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .

Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .

Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .

Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F T F T

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F T F T

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F T F T

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T F T F T

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T F T F T

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T F T F T

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T F T F F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T F T F F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T F T F F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T T T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F
3 T T F T

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 1 : Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T T T F

0 1 2 3 4

S = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F
3 T T F T

Lecture 4: Mixing and shuffling 18

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F F F T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F F F T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F F F T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F F F T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F T F T T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F T F T T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F T F T T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T T F T T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T T F T T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T T F T T

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T F T F

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T
3 T T F T

Lecture 4: Mixing and shuffling 19

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let S be any solution and Xi = |variable values shared by Ai and S|.

Example 2 : Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T F T F

0 1 2 3 4

S = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T
3 T T F T

Lecture 4: Mixing and shuffling 19

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,

(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0. This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,

(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0. This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P[Xi+1 = 1 | Xi = 0] = 1

(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0. This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2

(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0. This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0. This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0. This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0. This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0.

This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0. This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution S, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = S thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can couple it with Yi - the SRW on the n-path from 0. This gives

E[time to find S] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n2 with probability at least 1/2.

Proposition

Lecture 4: Mixing and shuffling 20

	Shuffling and Strong Stationary Times
	Covertime
	s-t Connectivity
	2-Sat

