Lecture 4: Card Shuffling and Covertime

John Sylvester Nicolas Rivera Luca Zanetti Thomas Sauerwald

Lent 2019

UNIVERSITY OF
CAMBRIDGE

Outline

Shuffling and Strong Stationary Times

Lecture 4: Mixing and shuffling

Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].

i
E:E Lecture 4: Mixing and shuffling

Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].

Let X, be the set of all n! permutations of [n].

Lecture 4: Mixing and shuffling

Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].

Let X, be the set of all n! permutations of [n].

Sampling from uniform.
| Given an ordered set [n] we wish to sample a permutation of [n] uniformly.]

Lecture 4: Mixing and shuffling

Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].

Let X, be the set of all n! permutations of [n].

Sampling from uniform.
| Given an ordered set [n] we wish to sample a permutation of [n] uniformly.]

Top-to-Random (T-to-R) Shuffling

Given a deck of n cards take the top card and
place it at random position in the deck.

= Markov chain on ¥, with 7 uniform.

Lecture 4: Mixing and shuffling

Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].

Let X, be the set of all n! permutations of [n].

Sampling from uniform.
| Given an ordered set [n] we wish to sample a permutation of [n] uniformly.]

Top-to-Random (T-to-R) Shuffling

Given a deck of n cards take the top card and
place it at random position in the deck.

= Markov chain on ¥, with 7 uniform.

_;:E Lecture 4: Mixing and shuffling 3

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

Lecture 4: Mixing and shuffling

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Lecture 4: Mixing and shuffling

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;—WHWSP[T>t|X0:x].

Lecture 4: Mixing and shuffling

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;—WHWSP[T>t|X0:x].

Proof: For any A C T the difference Px[X; € A] — n(A) is equal to
P Xt € Al 7> f]Px[Tr >] + Px[Xt € A| 7 < {](1 — Px[7 > {]) — =(A)

Lecture 4: Mixing and shuffling

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;_wHtng[wuxo:x].

Proof: For any A C T the difference Px[X; € A] — n(A) is equal to
Px[Xi € Al 7> t]Px[T > t] + Px[Xi € A| 7 <] (1 — Px[r > {]) — n(A)
= (Px[Xt € A| 7> t] — w(A)) Px[T > 1].

Lecture 4: Mixing and shuffling

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;—wHtng[r>t|X0:x].

Proof: For any A C T the difference Px[X; € A] — n(A) is equal to
Px[Xi € Al 7> t]Px[T > t] + Px[Xi € A| 7 <] (1 — Px[r > {]) — n(A)
= (Px[X: € A| 7 > t] — w(A)) Px[T > 1].
Then since —1 < Px[X; € A| T > t] — m(A) < 1 we have
[Px[X: € Al — w(A)| = |Px[X: € A| 7 > t] — m(A)|Px[T > t] < Px[r > 1],
forany A C 7.

Lecture 4: Mixing and shuffling

Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;—wHtng[r>t|X0:x].

Proof: For any A C T the difference Px[X; € A] — n(A) is equal to
Px[Xi € Al 7> t]Px[T > t] + Px[Xi € A| 7 <] (1 — Px[r > {]) — n(A)
= (Px[Xt € A| 7> t] — w(A)) Px[T > 1].
Then since —1 < Px[X; € A| T > t] — m(A) < 1 we have
[Px[X: € Al — w(A)| = |Px[X; € A| 7 > t] — w(A)|Px[T > t] < Px[T > 1],
for any A C Z. We can take sup,-; to complete the result. O

Lecture 4: Mixing and shuffling

Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

E:E Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R

Tiop i @ Strong Stationary time for the T-to-R chain.

_;:E Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R

Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R

Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B.

Lecture 4: Mixing and shuffling 5

Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R
Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Lecture 4: Mixing and shuffling

Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R
Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.
Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Lecture 4: Mixing and shuffling

Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R
Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. []

Lecture 4: Mixing and shuffling

Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R
Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. []

Thus at time 715 — 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P[X, | Tiop = t] = 1/nl.

Lecture 4: Mixing and shuffling

Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle
Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

5 Lecture 4: Mixing and shuffling

Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n).

;,! 5 Lecture 4: Mixing and shuffling

Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n). This means that 71 is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”.

_;:E Lecture 4: Mixing and shuffling

Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n). This means that 71 is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

Lecture 1

P[~ > ninn+ Cn] < P[3 empty bin after ninn+ Cnballs] < e °.

_;:E Lecture 4: Mixing and shuffling

Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n). This means that 71 is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

Lecture 1

P[T > ninn+ Cn] < P[3 empty bin after ninn+ Cnballs] < e C.

Taking C large enough such that e < ¢ yields the result. O

i
E:E Lecture 4: Mixing and shuffling

Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n). This means that 71 is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

. Lecture 1 _c
P[7 > ninn+ Cn] < P[3 empty bin after ninn+ Cnballs] < e

Taking C large enough such that e < ¢ yields the result. O

= Since the state space X, has size n!, we have

tmix = In (|Xn]) .

Lecture 4: Mixing and shuffling

Realistic Shuffling - Riffle Shuffle

o5
mﬁm Lecture 4: Mixing and shuffling

Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.

y

T

+

Lecture 4: Mixing and shuffling

Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.

= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

9

+ y

»\A/{J |

Lecture 4: Mixing and shuffling

Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.

= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

Riffle is fast
For the Riffle shuffle tnx < 2log,(4n/3).

-]
y

:E i of

Lecture 4: Mixing and shuffling

Realistic Shuffling - Riffle Shuffle

Riffle Shuffle
= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.
= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

Riffle is fast
For the Riffle shuffle tnx < 2log,(4n/3).

¥

+

= Same state space X, as T-to-R however this time Pl ;
tmix ~ Inn (|Zn]) . g? ¥
G A/ A4 \.l

Lecture 4: Mixing and shuffling

Realistic Shuffling - Riffle Shuffle

Riffle Shuffle
= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.
= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

Riffle is fast
For the Riffle shuffle tnx < 2log,(4n/3).

¥

+

tmix = Inn (|Zn]) .

] R J
= May have heard “7 riffle shuffles is enough” . »ﬁ/é’ 1

= Same state space X, as T-to-R however this time g y §

Lecture 4: Mixing and shuffling

Realistic Shuffling - Riffle Shuffle

Riffle Shuffle
= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.
= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

Riffle is fast
For the Riffle shuffle tnx < 2log,(4n/3).

y

+

to & Inn ([4]). »
= May have heard “7 riffle shuffles is enough”. j/(]’ (

t] <4 5 6 7 8 9
A(t) | 1.00 | .92 | .61 | .33 | .17. | .09

= Same state space X, as T-to-R however this time g » §

Lecture 4: Mixing and shuffling

Outline

Covertime

E:E Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oor ::inf{t:uf:o{Xt}:V}.
veV

= Expected time for a walk to visit the whole graph from worst case start.

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

A e

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

=
</ V=6

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

07/ V| =6

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

V=6

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

V=6

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

V=6

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

V=6

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

Nl
$J

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

A

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

V=6

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

V=6

Lecture 4: Mixing and shuffling

Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where 7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

V=6
T(;ov(G) =09.

Lecture 4: Mixing and shuffling

Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then 7y = d(x) /2|E|.

;,H,, Lecture 4: Mixing and shuffling

Stationary Distribution of a Random walk

Let P be the SRW on a connected graph G, then 7y = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

d(y) 1 _dx)
(TP),=> mPx= > 2E| diy) ~ 2/E|"

yev yedx)

_;:E Lecture 4: Mixing and shuffling

Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then 7y = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

d(y) 1 _dx)
(TP),=> mPx= > 2E| diy) ~ 2/E|" O
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy, < 2|E]|.

_;:E Lecture 4: Mixing and shuffling 10

Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then 7y = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

d(y) 1 _dx)
(TP),=> mPx= > 2E| diy) ~ 2/E|"
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy, < 2|E]|.

Proof: Since the SRW on any connected finite graph is irreducible we know

1 2E
&3] =1 = W;'

_;:E Lecture 4: Mixing and shuffling

Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then wx = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

a(y) 1 _dx)
(TP),=> mPx= > 211 d(y) ~ 218 O
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy,, < 2|E|.

Proof: Since the SRW on any connected finite graph is irreducible we know

1 2|E|
E/)fr] = — ==—.
=2 = aw)
By the Markov property we have
2|E| hz y
—_ =1+
i Z:y

E:E Lecture 4: Mixing and shuffling 10

Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then wx = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

a(y) 1 _dx)
(TP),=> mPx= > 211 d(y) ~ 218 O
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy,, < 2|E|.

Proof: Since the SRW on any connected finite graph is irreducible we know

1 2|E|
E/)fr] = — ==—.
=2 = aw)
By the Markov property we have
2|E| hz v
—_ =1+
i Z:y

It follows that 3=, hz, < d(y) (Ey[ry] = 1)

i
E:E Lecture 4: Mixing and shuffling 10

Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then wx = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

a(y) 1 _dx)
(TP),=> mPx= > 211 d(y) ~ 218 O
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy,, < 2|E|.

Proof: Since the SRW on any connected finite graph is irreducible we know

1 2|E|
E/)fr] = — ==—.
=2 = aw)
By the Markov property we have
2|E| hzy
—_ =1+
i ;
It follows that >~ h,, < d(y)(E,[r,f] — 1) and thus
z~y y y L'y
2|E
My <> hsy <d(y)- (H)g2\5|. O
z~y y

Lecture 4: Mixing and shuffling 10

Covertime bdd

For any connected graph teov(G) < 4n|E| < 2r°.

;,E 5 Lecture 4: Mixing and shuffling

Covertime bdd

For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.

E:E Lecture 4: Mixing and shuffling

Covertime bdd
For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.

Choose any root v, for T and fix a tour vy, ..., vop—2 on T which visits every
vertex and returns to the root.

E:E Lecture 4: Mixing and shuffling

Covertime bdd
For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.
Choose any root v, for T and fix a tour vy, ..., vop—2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex).

Lecture 4: Mixing and shuffling

Covertime bdd
For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.
Choose any root v, for T and fix a tour vy, ..., vop—2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst

case start vertex). Thus
2n—3

toov (G) <D v = > (hy+hx)<2 > 2|E|<4nlE|,

i=0 xy€E(T) xy€E(T)

since for any xy € E we have hy, < 2|E]|.

Lecture 4: Mixing and shuffling

Covertime bdd

For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.

Choose any root v, for T and fix a tour vy, ..., vop—2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex). Thus

2n—-3
o (G) < D Ay = D (hy +ha) <2 > 2(E|<4n|E|,
i=0 xy€E(T) xy€E(T)
since for any xy € E we have hy, < 2|E]|. a

Matthews bound
For any graph G we have

n—1
teov (G) < (r1n> - max hyy = (Inn) - max hy,y.

x,yeVv x,yeV
m=1

il
E:E Lecture 4: Mixing and shuffling 11

Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

_;:E Lecture 4: Mixing and shuffling

Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0.

_;:E Lecture 4: Mixing and shuffling 12

Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0. By the Markov property

h=1+f and :‘k=14r"k7—‘+fk7+1 fori1<k<n-—1.

E:E Lecture 4: Mixing and shuffling

Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0. By the Markov property

h=1+f and fk=1+fk7—‘+fk7+1 fori1<k<n-—1.

System of n independent equations in n unknowns so has a unique solution.

Lecture 4: Mixing and shuffling

Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0. By the Markov property

h=1+f and fk:1+fk7—‘+fk7+1 fori1<k<n-—1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that f, = n? — k? satisfies the above.

Lecture 4: Mixing and shuffling

Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0. By the Markov property

h=1+f and fk:1+fk7—‘+fk7+1 fori1<k<n-—1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that f, = n? — k? satisfies the above. Indeed

h=r?—n?=0, fo=1+h=1+m-12=0?

and forany 1 < k < n—1 we have,

(k=1 (k1) e

2
5 > K°. O

f =1+

Lecture 4: Mixing and shuffling 12

Covertime of the Path
For the path P, on n vertices we have

n? < toou(Pa) < 27°.

Covertime of the Path
For the path P, on n vertices we have

n? < toou(Pn) < 21°.

Proof: For the lower bound, take the random walk from the left hand end
point (vertex 0). To cover the path we must at reach the righthand end point
(vertex n), this takes time n? in expectation.

3

OO0

i
E:E Lecture 4: Mixing and shuffling 13

Covertime of the Path

For the path P, on n vertices we have

n? < teov(Pn) < 21°.

Proof: For the lower bound, take the random walk from the left hand end
point (vertex 0). To cover the path we must at reach the righthand end point
(vertex n), this takes time n? in expectation.

For the upper bound the max time to reach one end point from any start point
is at most n®. Now from this end point if we reach the opposite end point we
must have visited every vertex, this takes an additional n® expected time. [J

A
g

O3 O

Lecture 4: Mixing and shuffling 13

Outline

s — t Connectivity

E:E Lecture 4: Mixing and shuffling

s — t Connectivity

s — t Connectivity Problem

;,n 5 Lecture 4: Mixing and shuffling

s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V

;,! 5 Lecture 4: Mixing and shuffling

s — t Connectivity

s — t Connectivity Problem
= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

;,H,, Lecture 4: Mixing and shuffling

s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm

_;:E Lecture 4: Mixing and shuffling

s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm

= Start a random walk from s.

_;:E Lecture 4: Mixing and shuffling

s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm

= Start a random walk from s.

= |f the walk hits t within 4n® steps, return True. O/W return False.

E:E Lecture 4: Mixing and shuffling

s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm

= Start a random walk from s.
= |f the walk hits t within 4n® steps, return True. O/W return False.

Proposition

The s— t Connectivity Algorithm runs in time 4n® and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

_;:E Lecture 4: Mixing and shuffling

s — t Connectivity

s — t Connectivity Problem
= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm
= Start a random walk from s.
= |f the walk hits t within 4n® steps, return True. O/W return False.

Proposition

The s— t Connectivity Algorithm runs in time 4n® and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proof: By Markov inequality if there is a path to t we will find it w.p. > 1/2. O

_;:E Lecture 4: Mixing and shuffling 15

s — t Connectivity

s — t Connectivity Problem
= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm
= Start a random walk from s.
= If the walk hits t within 4n° steps, return True. O/W return False.

Proposition

The s — t Connectivity Algorithm runs in time 4n° and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proof: By Markov inequality if there is a path to t we will find it w.p. > 1/2. O

= Running this T times gives the correct answer with probability > 1 — 1/2T.

Lecture 4: Mixing and shuffling

s — t Connectivity

s — t Connectivity Problem
= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm
= Start a random walk from s.
= If the walk hits t within 4n° steps, return True. O/W return False.

Proposition

The s — t Connectivity Algorithm runs in time 4n° and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proof: By Markov inequality if there is a path to t we will find it w.p. > 1/2. O

= Running this T times gives the correct answer with probability > 1 — 1/2T.
= Only uses logspace.

Lecture 4: Mixing and shuffling

Outline

2-Sat

E:E Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)

Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.

Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:
SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)

Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard
= In practice solvers are fast and used to great effect

Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:

S R
Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:
— Model Checking and hardware/software verification

S R
Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard
= In practice solvers are fast and used to great effect

= A huge amount of problems can be posed as a SAT:

— Model Checking and hardware/software verification
— Design of experiments

S R
Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:

— Model Checking and hardware/software verification
— Design of experiments
— Classical planning

e
Lecture 4: Mixing and shuffling

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:
— Model Checking and hardware/software verification
— Design of experiments
— Classical planning
- ...

e
Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

2l
E:E Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

2l
E:E Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to 21 times, terminating if all clauses are satisfied:

Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied

Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

S R
Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Siep. Let A; be the variable assignment at step /.

Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Siep. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.

S R
Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71) S= (T T.F T).

F F T F T

@

©) (O——®

' Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/Xg)/\(X4 VYa)A(X4V71) S= (T T.F T).

F F T F T

@

©) (O——®

' Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71) S= (T T.F T).

F F T F T

@

©) (O——®

' Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

S=(T,T,F,T).
F F T T F T F T F T

O—E—00—®

5 Lecture 4: Mixing and shuffling

aa(o)

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xig)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

S=(T,T,F,T).
F F T T F T F T F T

O—E—00—®

5 Lecture 4: Mixing and shuffling

aa(o)

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

S=(T,T,F,T).
F F T T F T F T F T

O—E—00—®

5 Lecture 4: Mixing and shuffling

aa(o)

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

T F F T T T F F

S=(T,T,F,T).
[f [x [[x[x]
F
F
F

F T
O| F| F|F
1| F | T]|F
O—@® O

(==

S R
Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

T F F T T T F F

S=(T,T,F,T).
[f [x [[x[x]
F
F
F

F T
O| F| F|F
1| F | T]|F
O—@® O

(==

S R
Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

T F F T T T F F

S=(T,T,F,T).
[f [x [[x[x]
F
F
F

F T
O| F| F|F
1| F | T]|F
O—@® O

(==

S R
Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

S=(T,T,F,T).
T F F T T T T T T F

[t x| xe][x][x

0| F F F F

1| F|T|F|F

O=0=0=0=0 IEAEAEAE

e
Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 : Solution Found

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

S=(T,T,F,T).
T F F T T T T T T F

[t x| xe][x][x

0| F F F F

1| F|T|F|F

O=0=0=0=0 IEAEAEAE

S R
Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.

Example 2 :

(X1 V Xg) A (X1 V X3) A\ (X1 \Y X2) A (X4 V Xa) N (X4 V X1) S= (T, F,F,T).
F T T T F F F F F T

O—E—00—®

aa(o)

5 Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.

Example 2 :

(X1 V X2) A (X1 V X3) A\ (X1 \Y Xg) A (X4 \Y X3) N (X4 V X1) S= (T, F,F,T).
F T T T F F F T

F F
% 0| F F F

On0 OO

S R
Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.

Example 2 :

(X1 \Y Xg) A (X1 V X3) A\ (X1 \Y X2) A (X4 \Y X3) N (X4 V X1) S= (T, F,F,T).
F T T T F F F F F T

O—E—00—®

aa(o)

5 Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.

Example 2 :

(X1 V Xg) A (X1 V X3) A\ (X1 \Y X2) A (X4 V Xa) N (X4 V X1) S= (T, F,F,T).
F T T T F F F F F T

O—E—00—®

aa(o)

5 Lecture 4: Mixing and shuffling

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.
Example 2 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)

S = (T,F,F,T).
F T T T F F T T

T F
0| F F F
1 F F F

(==

S R
Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.
Example 2 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 VXQ)A(X4VX3)A(X4V71)

S = (T,F,F,T).
F T T T F F T T

T F
0| F F F
1 F F F

(==

S R
Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.
Example 2 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)

S = (T,F,F,T).
F T T T F F T T

T F
0| F F F
1 F F F

(==

S R
Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 2 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)

S = (T,F,F,T).
F F T T F T T F T T

6@ T

5 Lecture 4: Mixing and shuffling

aa(o)

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 2 :

(X1 \/Xig)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)

S = (T,F,F,T).
F F T T F T T F T T

6@ T

5 Lecture 4: Mixing and shuffling

aa(o)

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 2 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)

S = (T,F,F,T).
F F T T F T T F T T

6@ T

5 Lecture 4: Mixing and shuffling

aa(o)

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 2 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)

S = (T,F,F,T).
T F F T T T T F

T F
[t x| xe][x][x
A ofrfelelr
() —(2) SEAEREAE

S R
Lecture 4: Mixing and shuffling

an

2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 2 : Solution Found

(X1 \/Xiz)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)

S = (T,F,F,T).
T F F T T T T F

T F
[t x| xe][x][x
A ofrfelelr
() —(2) SEAEREAE

S R
Lecture 4: Mixing and shuffling

an

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

E:E Lecture 4: Mixing and shuffling

20

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,

i
E:E Lecture 4: Mixing and shuffling

20

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,
(i) P[Xi1 =1 Xi=0] =1

i
E:E Lecture 4: Mixing and shuffling

20

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,
(i) P[Xi1 =1 Xi=0] =1
(i) P[Xijn =k+1 | Xi=k]>1/2

Lecture 4: Mixing and shuffling

20

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,
(i) P[Xipn =1 X;=0] =1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[X =k =1 Xi=k] < 1/2.

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,
(i) P[Xipn =1 X;=0] =1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[X =k =1 Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,

(i) P[Xipr =1]X=0]=1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[Xip1 =k —1| Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (we get non of our initial guesses right).

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,

(i) P[Xipr =1]X=0]=1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[Xip1 =k —1| Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (we get non of our initial guesses right).

The stochastic process X; is complicated to describe in full however by
(f) — (iii) we can couple it with Y;- the SRW on the n-path from 0.

Lecture 4: Mixing and shuffling

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,

(i) P[Xipr =1]X=0]=1

(i) P[Xin =k +1| Xi=k]>1/2

(i) P[Xip1 =k —1| Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (we get non of our initial guesses right).

The stochastic process X; is complicated to describe in full however by
(f) — (iii) we can couple it with Y;- the SRW on the n-path from 0. This gives

E[time to find S| < Eq[inf{t: X; = n}] < Eq[inf{t: Yi=n}] =hopn=n". O

Lecture 4: Mixing and shuffling 20

2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,

(i) P[Xipr =1]X=0]=1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[Xip1 =k —1| Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (we get non of our initial guesses right).

The stochastic process X; is complicated to describe in full however by
(f) — (iii) we can couple it with Y;- the SRW on the n-path from 0. This gives

E[time to find S| < Eq[inf{t: X; = n}] < Eq[inf{t: Yi=n}] =hopn=n". O

Proposition

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n? with probability at least 1/2.

Lecture 4: Mixing and shuffling 20

	Shuffling and Strong Stationary Times
	Covertime
	s-t Connectivity
	2-Sat

