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Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].
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Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].

Let X, be the set of all n! permutations of [n].

Sampling from uniform.
| Given an ordered set [n] we wish to sample a permutation of [n] uniformly. ]
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Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].

Let X, be the set of all n! permutations of [n].

Sampling from uniform.
| Given an ordered set [n] we wish to sample a permutation of [n] uniformly. ]

Top-to-Random (T-to-R) Shuffling

Given a deck of n cards take the top card and
place it at random position in the deck.

= Markov chain on ¥, with 7 uniform.
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Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].

Let X, be the set of all n! permutations of [n].
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place it at random position in the deck.

= Markov chain on ¥, with 7 uniform.
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Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.
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Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .
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Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;—WHWSP[T>t|X0:x].
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Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;—WHWSP[T>t|X0:x].

Proof: For any A C T the difference Px[X; € A] — n(A) is equal to
P Xt € Al 7> f]Px[Tr > ] + Px[Xt € A| 7 < {](1 — Px[7 > {]) — =(A)
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Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;_wHtng[wuxo:x].

Proof: For any A C T the difference Px[X; € A] — n(A) is equal to
Px[Xi € Al 7> t]Px[T > t] + Px[Xi € A| 7 < ] (1 — Px[r > {]) — n(A)
= (Px[Xt € A| 7> t] — w(A)) Px[T > 1].
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Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;—wHtng[r>t|X0:x].

Proof: For any A C T the difference Px[X; € A] — n(A) is equal to
Px[Xi € Al 7> t]Px[T > t] + Px[Xi € A| 7 < ] (1 — Px[r > {]) — n(A)
= (Px[X: € A| 7 > t] — w(A)) Px[T > 1].
Then since —1 < Px[X; € A| T > t] — m(A) < 1 we have
[Px[X: € Al — w(A)| = |Px[X: € A| 7 > t] — m(A)|Px[T > t] < Px[r > 1],
forany A C 7.
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Strong Stationary Time

A Strong Stationary Time for a Markov Chain (X;) with stationary distribution
w is a stopping time 7, possibly depending on the stating state x, such that

Px[t =7, X; = y] = P«[t = 7] 7y.

= Thus X- has distribution = and is independent of .

Mixing from Strong Stationary Times

If 7 is a strong stationary time then for any x € Z,

P;—wHtng[r>t|X0:x].

Proof: For any A C T the difference Px[X; € A] — n(A) is equal to
Px[Xi € Al 7> t]Px[T > t] + Px[Xi € A| 7 < ] (1 — Px[r > {]) — n(A)
= (Px[Xt € A| 7> t] — w(A)) Px[T > 1].
Then since —1 < Px[X; € A| T > t] — m(A) < 1 we have
[Px[X: € Al — w(A)| = |Px[X; € A| 7 > t] — w(A)|Px[T > t] < Px[T > 1],
for any A C Z. We can take sup,-; to complete the result. O
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Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.
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Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R

Tiop i @ Strong Stationary time for the T-to-R chain.
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Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R

Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.
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Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R

Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B.
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Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R
Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.
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Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R
Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.
Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.
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Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R
Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order.  []
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Strong Stationary time for Top-to-Random Shuffling

= Let B be the card at the bottom of the deck at t = 0.

= Let 110p be one step after the first time when B is on
top of the deck.

Strong Stationary time for T-to-R
Tiop IS @ Strong Stationary time for the T-to-R chain.

Proof: Atany t > 0 all arrangements of the cards under B are equally likely.

Induction: When t = 0, there are no cards under B. Suppose that the claim
holds at time t > 0 with kK > 0 cards under B. Two cases for time t + 1: either
the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable.
Top card is equally likely to be added to any of the k + 1 possible
locations under B, so each of the (k + 1)! arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order.  []

Thus at time 715 — 1 B sits on the top of a uniform permutation of [n]\{B},
then we place B in at random so P[ X, | Tiop = t] = 1/nl.
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Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle
Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).
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Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n).
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Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n). This means that 71 is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”.
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Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n). This means that 71 is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

Lecture 1

P[~ > ninn+ Cn] < P[3 empty bin after ninn+ Cnballs] < e °.
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Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n). This means that 71 is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

Lecture 1

P[T > ninn+ Cn] < P[3 empty bin after ninn+ Cnballs] < e C.

Taking C large enough such that e < ¢ yields the result. O
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Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let e > 0 then for the top to random shuffle, 7(¢) < ninn+ O(n).

Proof: For 1 < k < n— 1 the time between the (k — 1)" and k™ cards going
under B is distributed Geo(k/n). This means that 71 is distributed the same
as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

. Lecture 1 _c
P[7 > ninn+ Cn] < P[3 empty bin after ninn+ Cnballs] < e

Taking C large enough such that e < ¢ yields the result. O

= Since the state space X, has size n!, we have

tmix = In (|Xn]) .
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Realistic Shuffling - Riffle Shuffle
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Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.

y

T

+
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Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.

= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

9

+ y

»\A/{J |
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Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.

= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

Riffle is fast
For the Riffle shuffle tnx < 2log,(4n/3).

-]
y

:E i of
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Realistic Shuffling - Riffle Shuffle

Riffle Shuffle
= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.
= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

Riffle is fast
For the Riffle shuffle tnx < 2log,(4n/3).

¥

+

= Same state space X, as T-to-R however this time Pl ;
tmix ~ Inn (|Zn]) . g? ¥
G A/ A4 \.l
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Realistic Shuffling - Riffle Shuffle

Riffle Shuffle
= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.
= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

Riffle is fast
For the Riffle shuffle tnx < 2log,(4n/3).

¥

+

tmix = Inn (|Zn]) .

] R J
= May have heard “7 riffle shuffles is enough” . »ﬁ/é’ 1

= Same state space X, as T-to-R however this time g y §
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Realistic Shuffling - Riffle Shuffle

Riffle Shuffle
= Split the deck into two piles L, R where L is the first Bin(n, 1/2) cards
and R is the rest.
= Form a new pile iteratively by adding a card from L with probability
£/(r + ¢), where ¢, r sizes of L, R at that time, or otherwise from R
with probability r/(¢ + r).

Riffle is fast
For the Riffle shuffle tnx < 2log,(4n/3).

y

+

to & Inn ([4]). »
= May have heard “7 riffle shuffles is enough”. j/(]’ (

t] <4 5 6 7 8 9
A(t) | 1.00 | .92 | .61 | .33 | .17. | .09

= Same state space X, as T-to-R however this time g » §
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Covertime
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Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where  7oor ::inf{t:uf:o{Xt}:V}.
veV

= Expected time for a walk to visit the whole graph from worst case start.
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Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where  7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

A e
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The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where  7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:
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</ V=6
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Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where  7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:
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Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where  7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

A
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The Cover time tev (G) of a graph G = (V, E) is given by
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Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where  7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

V=6
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Covertime

The Cover time tev (G) of a graph G = (V, E) is given by

tov (G) = maxEy[reor] ~ Where  7oo, := inf {t ULo{X(} = v} .
veV
= Expected time for a walk to visit the whole graph from worst case start.

Example:

V=6
T(;ov(G) =09.
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Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then 7y = d(x) /2|E|.
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Stationary Distribution of a Random walk

Let P be the SRW on a connected graph G, then 7y = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

d(y) 1 _dx)
(TP),=> mPx= > 2E| diy) ~ 2/E|"

yev yedx)
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Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then 7y = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

d(y) 1 _dx)
(TP),=> mPx= > 2E| diy) ~ 2/E|" O
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy, < 2|E]|.
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Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then 7y = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

d(y) 1 _dx)
(TP),=> mPx= > 2E| diy) ~ 2/E|"
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy, < 2|E]|.

Proof: Since the SRW on any connected finite graph is irreducible we know

1 2E
&3] =1 = W;'
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Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then wx = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

a(y) 1 _dx)
(TP),=> mPx= > 211 d(y) ~ 218 O
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy,, < 2|E|.

Proof: Since the SRW on any connected finite graph is irreducible we know

1 2|E|
E/)fr] = — ==—.
=2 = aw)
By the Markov property we have
2|E| hz y
—_ =1+
i Z:y
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Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then wx = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

a(y) 1 _dx)
(TP),=> mPx= > 211 d(y) ~ 218 O
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy,, < 2|E|.

Proof: Since the SRW on any connected finite graph is irreducible we know

1 2|E|
E/)fr] = — ==—.
=2 = aw)
By the Markov property we have
2|E| hz v
—_ =1+
i Z:y

It follows that 3=, hz, < d(y) (Ey[ry] = 1)

i
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Stationary Distribution of a Random walk
Let P be the SRW on a connected graph G, then wx = d(x) /2|E|.

Proof: Note that > = = 1 and that for any x € V
xeV

a(y) 1 _dx)
(TP),=> mPx= > 211 d(y) ~ 218 O
yev yedx)
Crossing time of an edge

Let xy € E(G) where G is any finite connected graph then hy,, < 2|E|.

Proof: Since the SRW on any connected finite graph is irreducible we know

1 2|E|
E/)fr] = — ==—.
=2 = aw)
By the Markov property we have
2|E| hzy
—_ =1+
i ;
It follows that >~ h,, < d(y)(E,[r,f] — 1) and thus
z~y y y L'y
2|E
My <> hsy <d(y)- ( H )g2\5|. O
z~y y
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Covertime bdd

For any connected graph teov(G) < 4n|E| < 2r°.
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Covertime bdd

For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.
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Covertime bdd
For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.

Choose any root v, for T and fix a tour vy, ..., vop—2 on T which visits every
vertex and returns to the root.
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Covertime bdd
For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.
Choose any root v, for T and fix a tour vy, ..., vop—2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex).
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Covertime bdd
For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.
Choose any root v, for T and fix a tour vy, ..., vop—2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst

case start vertex). Thus
2n—3

toov (G) <D v = > (hy+hx)<2 > 2|E|<4nlE|,

i=0 xy€E(T) xy€E(T)

since for any xy € E we have hy, < 2|E]|.
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Covertime bdd

For any connected graph teov(G) < 4n|E| < 2r°.

Proof: Any connected graph has a spanning tree T with n — 1 edges.

Choose any root v, for T and fix a tour vy, ..., vop—2 on T which visits every
vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst
case start vertex). Thus

2n—-3
o (G) < D Ay = D (hy +ha) <2 > 2(E|<4n|E|,
i=0 xy€E(T) xy€E(T)
since for any xy € E we have hy, < 2|E]|. a

Matthews bound
For any graph G we have

n—1
teov (G) < ( r1n> - max hyy = (Inn) - max hy,y.

x,yeVv x,yeV
m=1

il
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Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

_;:E Lecture 4: Mixing and shuffling



Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0.
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Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0. By the Markov property

h=1+f and :‘k=14r"k7—‘+fk7+1 fori1<k<n-—1.
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Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0. By the Markov property

h=1+f and fk=1+fk7—‘+fk7+1 fori1<k<n-—1.

System of n independent equations in n unknowns so has a unique solution.
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Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0. By the Markov property

h=1+f and fk:1+fk7—‘+fk7+1 fori1<k<n-—1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that f, = n? — k? satisfies the above.
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Random Walk on a path

The n-path P, is the graph with V(P,) = [n]and E(P,) = {ijj: j=i+1}.

Proposition

For the SRW on P, we have hx, = n* — k® forany 0 < k < n.

Proof: Let fx = hk,, and observe that f, = 0. By the Markov property

h=1+f and fk:1+fk7—‘+fk7+1 fori1<k<n-—1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that f, = n? — k? satisfies the above. Indeed

h=r?—n?=0, fo=1+h=1+m-12=0?

and forany 1 < k < n—1 we have,

(k=1 (k1) e

2
5 > K°. O

f =1+
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Covertime of the Path
For the path P, on n vertices we have

n? < toou(Pa) < 27°.




Covertime of the Path
For the path P, on n vertices we have

n? < toou(Pn) < 21°.

Proof: For the lower bound, take the random walk from the left hand end
point (vertex 0). To cover the path we must at reach the righthand end point
(vertex n), this takes time n? in expectation.

3

OO0

i
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Covertime of the Path

For the path P, on n vertices we have

n? < teov(Pn) < 21°.

Proof: For the lower bound, take the random walk from the left hand end
point (vertex 0). To cover the path we must at reach the righthand end point
(vertex n), this takes time n? in expectation.

For the upper bound the max time to reach one end point from any start point
is at most n®. Now from this end point if we reach the opposite end point we
must have visited every vertex, this takes an additional n® expected time. [J

A
g

O3 O
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s — t Connectivity

s — t Connectivity Problem
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s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V
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s — t Connectivity

s — t Connectivity Problem
= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.
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s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm
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s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm

= Start a random walk from s.
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s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm

= Start a random walk from s.

= |f the walk hits t within 4n® steps, return True. O/W return False.
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s — t Connectivity

s — t Connectivity Problem

= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm

= Start a random walk from s.
= |f the walk hits t within 4n® steps, return True. O/W return False.

Proposition

The s— t Connectivity Algorithm runs in time 4n® and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.
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s — t Connectivity

s — t Connectivity Problem
= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm
= Start a random walk from s.
= |f the walk hits t within 4n® steps, return True. O/W return False.

Proposition

The s— t Connectivity Algorithm runs in time 4n® and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proof: By Markov inequality if there is a path to t we will find it w.p. > 1/2. O
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s — t Connectivity

s — t Connectivity Problem
= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm
= Start a random walk from s.
= If the walk hits t within 4n° steps, return True. O/W return False.

Proposition

The s — t Connectivity Algorithm runs in time 4n° and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proof: By Markov inequality if there is a path to t we will find it w.p. > 1/2. O

= Running this T times gives the correct answer with probability > 1 — 1/2T.
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s — t Connectivity

s — t Connectivity Problem
= Given: Undirected graph G= (V,E)and s,t € V
= Goal: Determine if s is connected by a path to t.

~—— 5 — t Connectivity Algorithm
= Start a random walk from s.
= If the walk hits t within 4n° steps, return True. O/W return False.

Proposition

The s — t Connectivity Algorithm runs in time 4n° and returns the correct
answer w.p. at least 1/2 and never returns True incorrectly.

Proof: By Markov inequality if there is a path to t we will find it w.p. > 1/2. O

= Running this T times gives the correct answer with probability > 1 — 1/2T.
= Only uses logspace.

Lecture 4: Mixing and shuffling



Outline

2-Sat

E:E Lecture 4: Mixing and shuffling



SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

Lecture 4: Mixing and shuffling



SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:
SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)

Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard
= In practice solvers are fast and used to great effect
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:
— Model Checking and hardware/software verification
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard
= In practice solvers are fast and used to great effect

= A huge amount of problems can be posed as a SAT:

— Model Checking and hardware/software verification
— Design of experiments
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:

— Model Checking and hardware/software verification
— Design of experiments
— Classical planning
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and xy; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:
— Model Checking and hardware/software verification
— Design of experiments
— Classical planning
- ...
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2-SAT

RAND 2-SAT Algorithm
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to 21 times, terminating if all clauses are satisfied:
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Siep. Let A; be the variable assignment at step /.
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 21 times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Siep. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.
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2-SAT

RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71) S= (T T.F T).

F F T F T
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(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
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(b) Choose one of it's literals UAR and switch the variables value.
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

S=(T,T,F,T).
F F T T F T F T F T
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(1) Start with an arbitrary truth assignment.
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

T F F T T T F F

S=(T,T,F,T).
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RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)

T F F T T T F F

S=(T,T,F,T).
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(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
Example 1 :

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)
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RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
= Let S be any solution and X; = |variable values shared by A; and S|.

Example 2 :
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RAND 2-SAT Algorithm
(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.
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RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.
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RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.
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RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let S be any solution and X; = |variable values shared by A; and S|.
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2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.
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Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,
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Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,
(i) P[Xi1 =1 Xi=0] =1
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2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,
(i) P[Xi1 =1 Xi=0] =1
(i) P[Xijn =k+1 | Xi=k]>1/2
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2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,
(i) P[Xipn =1 X;=0] =1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[ X =k =1 Xi=k] < 1/2.
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2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,
(i) P[Xipn =1 X;=0] =1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[ X =k =1 Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).
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2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,

(i) P[Xipr =1]X=0]=1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[Xip1 =k —1| Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (we get non of our initial guesses right).
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2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,

(i) P[Xipr =1]X=0]=1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[Xip1 =k —1| Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (we get non of our initial guesses right).

The stochastic process X; is complicated to describe in full however by
(f) — (iii) we can couple it with Y;- the SRW on the n-path from 0.
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Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.
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(i) P[Xin =k +1| Xi=k]>1/2

(i) P[Xip1 =k —1| Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (we get non of our initial guesses right).

The stochastic process X; is complicated to describe in full however by
(f) — (iii) we can couple it with Y;- the SRW on the n-path from 0. This gives

E[time to find S| < Eq[inf{t: X; = n}] < Eq[inf{t: Yi=n}] =hopn=n". O
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2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution S, thenforanyi>0and1 <k <n-1,

(i) P[Xipr =1]X=0]=1

(i) P[Xijn =k+1 | Xi=k]>1/2

(i) P[Xip1 =k —1| Xi=k] < 1/2.

Notice that if X; = nthen A; = S thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (we get non of our initial guesses right).

The stochastic process X; is complicated to describe in full however by
(f) — (iii) we can couple it with Y;- the SRW on the n-path from 0. This gives

E[time to find S| < Eq[inf{t: X; = n}] < Eq[inf{t: Yi=n}] =hopn=n". O

Proposition

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in time 2n? with probability at least 1/2.
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