Outline

Shuffling and Strong Stationary Times

Covertime

$s - t$ Connectivity

2-Sat
Card Shuffling

A *Permutation* σ of $[n] = \{1, \ldots, n\}$ is a bijection $\sigma : [n] \rightarrow [n]$.

Let Σ_n be the set of all $n!$ permutations of $[n]$.

Given an ordered set $[n]$ we wish to sample a permutation of $[n]$ uniformly.

Sampling from uniform.

Given a deck of n cards take the top card and place it at random position in the deck.

Markov chain on Σ_n with π uniform.

Top-to-Random (T-to-R) Shuffling
A *Permutation* σ of $[n] = \{1, \ldots, n\}$ is a bijection $\sigma : [n] \to [n]$.

Let Σ_n be the set of all $n!$ permutations of $[n]$.
A **Permutation** σ of $[n] = \{1, \ldots, n\}$ is a bijection $\sigma : [n] \rightarrow [n]$.

Let Σ_n be the set of all $n!$ permutations of $[n]$.

Sampling from uniform.

Given an ordered set $[n]$ we wish to sample a permutation of $[n]$ uniformly.
Card Shuffling

A *Permutation* σ of $[n] = \{1, \ldots, n\}$ is a bijection $\sigma : [n] \rightarrow [n]$.

Let Σ_n be the set of all $n!$ permutations of $[n]$.

Sampling from uniform.

Given an ordered set $[n]$ we wish to sample a permutation of $[n]$ uniformly.

Top-to-Random (T-to-R) Shuffling

Given a deck of n cards take the top card and place it at random position in the deck.

- Markov chain on Σ_n with π uniform.
Card Shuffling

A *Permutation* σ of $[n] = \{1, \ldots, n\}$ is a bijection $\sigma : [n] \rightarrow [n]$.

Let Σ_n be the set of all $n!$ permutations of $[n]$.

Sampling from uniform.

Given an ordered set $[n]$ we wish to sample a permutation of $[n]$ uniformly.

Top-to-Random (T-to-R) Shuffling

Given a deck of n cards take the top card and place it at random position in the deck.

- Markov chain on Σ_n with π uniform.
Strong Stationary Time

A *Strong Stationary Time* for a Markov Chain \((X_t)\) with stationary distribution \(\pi\) is a stopping time \(\tau\), possibly depending on the starting state \(x\), such that

\[
P_x[t = \tau, X_\tau = y] = P_x[t = \tau] \pi_y.
\]
A *Strong Stationary Time* for a Markov Chain \((X_t)\) with stationary distribution \(\pi\) is a stopping time \(\tau\), possibly depending on the stating state \(x\), such that

\[
P_x[t = \tau, X_\tau = y] = P_x[t = \tau] \pi_y.
\]

- Thus \(X_\tau\) has distribution \(\pi\) and is independent of \(\tau\).
A Strong Stationary Time for a Markov Chain \((X_t)\) with stationary distribution \(\pi\) is a stopping time \(\tau\), possibly depending on the stating state \(x\), such that
\[
P_x[t = \tau, X_\tau = y] = P_x[t = \tau] \pi_y.
\]

- Thus \(X_\tau\) has distribution \(\pi\) and is independent of \(\tau\).

Mixing from Strong Stationary Times

If \(\tau\) is a strong stationary time then for any \(x \in \mathcal{I}\),
\[
\left\| P^t_x - \pi \right\|_{tv} \leq P[\tau > t \mid X_0 = x].
\]
A **Strong Stationary Time** for a Markov Chain \((X_t)\) with stationary distribution \(\pi\) is a stopping time \(\tau\), possibly depending on the stating state \(x\), such that

\[
P_x[t = \tau, X_\tau = y] = P_x[t = \tau] \pi_y.
\]

- Thus \(X_\tau\) has distribution \(\pi\) and is independent of \(\tau\).

Mixing from Strong Stationary Times

If \(\tau\) is a strong stationary time then for any \(x \in I\),

\[
\left\| P^t_x - \pi \right\|_{tv} \leq P[\tau > t \mid X_0 = x].
\]

Proof: For any \(A \subseteq I\) the difference \(P_x[X_t \in A] - \pi(A)\) is equal to

\[
P_x[X_t \in A \mid \tau > t] P_x[\tau > t] + P_x[X_t \in A \mid \tau \leq t] (1 - P_x[\tau > t]) - \pi(A)
\]
A **Strong Stationary Time** for a Markov Chain \((X_t)\) with stationary distribution \(\pi\) is a stopping time \(\tau\), possibly depending on the starting state \(x\), such that

\[
P_x[t = \tau, X_\tau = y] = P_x[t = \tau] \pi_y.
\]

- Thus \(X_\tau\) has distribution \(\pi\) and is independent of \(\tau\).

Mixing from Strong Stationary Times

If \(\tau\) is a strong stationary time then for any \(x \in \mathcal{I}\),

\[
\left\| P^t_x - \pi \right\|_{tv} \leq P[\tau > t \mid X_0 = x].
\]

Proof: For any \(A \subseteq \mathcal{I}\) the difference \(P_x[X_t \in A] - \pi(A)\) is equal to

\[
P_x[X_t \in A \mid \tau > t] P_x[\tau > t] + P_x[X_t \in A \mid \tau \leq t] (1 - P_x[\tau > t]) - \pi(A)
\]

\[
= (P_x[X_t \in A \mid \tau > t] - \pi(A)) P_x[\tau > t].
\]
Strong Stationary Time

A **Strong Stationary Time** for a Markov Chain \((X_t)\) with stationary distribution \(\pi\) is a stopping time \(\tau\), possibly depending on the stating state \(x\), such that

\[
P_x[t = \tau, X_\tau = y] = P_x[t = \tau] \pi_y.
\]

- Thus \(X_\tau\) has distribution \(\pi\) and is independent of \(\tau\).

Mixing from Strong Stationary Times

If \(\tau\) is a strong stationary time then for any \(x \in \mathcal{I}\),

\[
\left\| P^t_x - \pi \right\|_{tv} \leq P[\tau > t \mid X_0 = x].
\]

Proof: For any \(A \subseteq \mathcal{I}\) the difference \(P_x[X_t \in A] - \pi(A)\) is equal to

\[
P_x[X_t \in A \mid \tau > t] P_x[\tau > t] + P_x[X_t \in A \mid \tau \leq t] (1 - P_x[\tau > t]) - \pi(A)
\]

\[
= (P_x[X_t \in A \mid \tau > t] - \pi(A)) P_x[\tau > t].
\]

Then since \(-1 \leq P_x[X_t \in A \mid \tau > t] - \pi(A) \leq 1\) we have

\[
|P_x[X_t \in A] - \pi(A)| = |P_x[X_t \in A \mid \tau > t] - \pi(A)| P_x[\tau > t] \leq P_x[\tau > t],
\]

for any \(A \subseteq \mathcal{I}\).
Strong Stationary Time

A *Strong Stationary Time* for a Markov Chain \((X_t)\) with stationary distribution \(\pi\) is a stopping time \(\tau\), possibly depending on the stating state \(x\), such that

\[P_x[t = \tau, X_\tau = y] = P_x[t = \tau] \pi_y. \]

- Thus \(X_\tau\) has distribution \(\pi\) and is independent of \(\tau\).

Mixing from Strong Stationary Times

If \(\tau\) is a strong stationary time then for any \(x \in \mathcal{I}\),

\[\left\| P_x^t - \pi \right\|_{tv} \leq P[\tau > t | X_0 = x]. \]

Proof: For any \(A \subseteq \mathcal{I}\) the difference \(P_x[X_t \in A] - \pi(A)\) is equal to

\[
P_x[X_t \in A | \tau > t] P_x[\tau > t] + P_x[X_t \in A | \tau \leq t] (1 - P_x[\tau > t]) - \pi(A)
= (P_x[X_t \in A | \tau > t] - \pi(A)) P_x[\tau > t].
\]

Then since \(-1 \leq P_x[X_t \in A | \tau > t] - \pi(A) \leq 1\) we have

\[
|P_x[X_t \in A] - \pi(A)| = |P_x[X_t \in A | \tau > t] - \pi(A)| P_x[\tau > t] \leq P_x[\tau > t],
\]

for any \(A \subset \mathcal{I}\). We can take \(\sup_{A \subset \mathcal{I}}\) to complete the result. \(\square\)
Strong Stationary time for Top-to-Random Shuffling

- Let B be the card at the bottom of the deck at $t = 0$.
- Let τ_{top} be one step after the first time when B is on top of the deck.
Strong Stationary time for Top-to-Random Shuffling

- Let B be the card at the bottom of the deck at $t = 0$.
- Let τ_{top} be one step after the first time when B is on top of the deck.

τ_{top} is a Strong Stationary time for the T-to-R chain.
Strong Stationary time for Top-to-Random Shuffling

- Let B be the card at the bottom of the deck at $t = 0$.
- Let τ_{top} be one step after the first time when B is on top of the deck.

Strong Stationary time for T-to-R

τ_{top} is a Strong Stationary time for the T-to-R chain.

Proof: At any $t \geq 0$ all arrangements of the cards under B are equally likely.
Strong Stationary time for Top-to-Random Shuffling

- Let B be the card at the bottom of the deck at $t = 0$.
- Let τ_{top} be one step after the first time when B is on top of the deck.

τ_{top} is a Strong Stationary time for the T-to-R chain.

Proof: At any $t \geq 0$ all arrangements of the cards under B are equally likely.

Induction: When $t = 0$, there are no cards under B. Suppose that the claim holds at time $t \geq 0$ with $k \geq 0$ cards under B.

Lecture 4: Mixing and shuffling
Strong Stationary time for Top-to-Random Shuffling

- Let B be the card at the bottom of the deck at $t = 0$.
- Let τ_{top} be one step after the first time when B is on top of the deck.

τ_{top} is a Strong Stationary time for the T-to-R chain.

Proof: At any $t \geq 0$ all arrangements of the cards under B are equally likely.

Induction: When $t = 0$, there are no cards under B. Suppose that the claim holds at time $t \geq 0$ with $k \geq 0$ cards under B. Two cases for time $t + 1$: either the top card is placed under B, or it is placed above B.

\[P[X | \tau_{top} = t] = \frac{1}{n!} \]
Strong Stationary time for Top-to-Random Shuffling

- Let B be the card at the bottom of the deck at $t = 0$.
- Let τ_{top} be one step after the first time when B is on top of the deck.

τ_{top} is a Strong Stationary time for the T-to-R chain.

Proof: At any $t \geq 0$ all arrangements of the cards under B are equally likely.

Induction: When $t = 0$, there are no cards under B. Suppose that the claim holds at time $t \geq 0$ with $k \geq 0$ cards under B. Two cases for time $t + 1$: either the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable. Top card is equally likely to be added to any of the $k + 1$ possible locations under B, so each of the $(k + 1)!$ arrangements is equiprobable.
Strong Stationary time for Top-to-Random Shuffling

- Let B be the card at the bottom of the deck at $t = 0$.
- Let τ_{top} be one step after the first time when B is on top of the deck.

τ_{top} is a Strong Stationary time for the T-to-R chain.

Proof: At any $t \geq 0$ all arrangements of the cards under B are equally likely.

Induction: When $t = 0$, there are no cards under B. Suppose that the claim holds at time $t \geq 0$ with $k \geq 0$ cards under B. Two cases for time $t + 1$: either the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable. Top card is equally likely to be added to any of the $k + 1$ possible locations under B, so each of the $(k + 1)!$ arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order. □
Strong Stationary time for Top-to-Random Shuffling

- Let B be the card at the bottom of the deck at $t = 0$.
- Let τ_{top} be one step after the first time when B is on top of the deck.

τ_{top} is a Strong Stationary time for the T-to-R chain.

Proof: At any $t \geq 0$ all arrangements of the cards under B are equally likely.

Induction: When $t = 0$, there are no cards under B. Suppose that the claim holds at time $t \geq 0$ with $k \geq 0$ cards under B. Two cases for time $t + 1$: either the top card is placed under B, or it is placed above B.

Case 1 Hypothesis: all orderings of the k cards already under B are equiprobable. Top card is equally likely to be added to any of the $k + 1$ possible locations under B, so each of the $(k + 1)!$ arrangements is equiprobable.

Case 2 New card goes above B, so cards under B remain in random order.

Thus at time $\tau_{top} - 1$ B sits on the top of a uniform permutation of $[n]\setminus\{B\}$, then we place B in at random so $\Pr[X_{\tau_{top}} \mid \tau_{top} = t] = 1/n!$.

Lecture 4: Mixing and shuffling
Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let $\epsilon > 0$ then for the top to random shuffle, $\tau(\epsilon) \leq n \ln n + O(n)$.

Since the state space Σ_n has size $n!$, we have $t_{\text{mix}} \approx \ln (|\Sigma_n|)$.

Lecture 4: Mixing and shuffling
Top-to-Random Shuffle

<table>
<thead>
<tr>
<th>Mixing of Top-to-Random Shuffle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $\epsilon > 0$ then for the top to random shuffle, $\tau(\epsilon) \leq n \ln n + O(n)$.</td>
</tr>
</tbody>
</table>

Proof: For $1 \leq k \leq n - 1$ the time between the $(k - 1)^{th}$ and k^{th} cards going under B is distributed $\text{Geo}(k/n)$.

Lecture 4: Mixing and shuffling
Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let $\epsilon > 0$ then for the top to random shuffle, $\tau(\epsilon) \leq n \ln n + O(n)$.

Proof: For $1 \leq k \leq n - 1$ the time between the $(k - 1)^{th}$ and k^{th} cards going under B is distributed $\text{Geo}(k/n)$. This means that τ_{top} is distributed the same as the number of balls thrown until no bin is empty in “Balls and Bins”.
Top-to-Random Shuffle

Mixing of Top-to-Random Shuffle

Let $\epsilon > 0$ then for the top to random shuffle, $\tau(\epsilon) \leq n \ln n + O(n)$.

Proof: For $1 \leq k \leq n - 1$ the time between the $(k - 1)^{th}$ and k^{th} cards going under B is distributed $\text{Geo}(k/n)$. This means that τ_{top} is distributed the same as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

$$P[\tau > n \ln n + Cn] \leq P[\exists \text{ empty bin after } n \ln n + Cn \text{ balls}] \leq e^{-C}.$$
Top-to-Random Shuffle

Let $\epsilon > 0$ then for the top to random shuffle, $\tau(\epsilon) \leq n \ln n + O(n)$.

Proof: For $1 \leq k \leq n - 1$ the time between the $(k - 1)^{th}$ and k^{th} cards going under B is distributed $\text{Geo}(k/n)$. This means that τ_{top} is distributed the same as the number of balls thrown until no bin is empty in “Balls and Bins”. Thus

$$\Pr[\tau > n \ln n + Cn] \leq \Pr[\exists \text{ empty bin after } n \ln n + Cn \text{ balls}] \leq e^{-C}.$$

Taking C large enough such that $e^{-C} \leq \epsilon$ yields the result. \qed
Top-to-Random Shuffle

Let $\epsilon > 0$ then for the top to random shuffle, $\tau(\epsilon) \leq n \ln n + O(n)$.

Proof: For $1 \leq k \leq n - 1$ the time between the $(k - 1)^{th}$ and k^{th} cards going under B is distributed $\text{Geo}(k/n)$. This means that τ_{top} is distributed the same as the number of balls thrown until no bin is empty in "Balls and Bins". Thus

$$P[\tau > n \ln n + Cn] \leq P[\exists \text{ empty bin after } n \ln n + Cn \text{ balls}] \leq e^{-C}.$$

Taking C large enough such that $e^{-C} \leq \epsilon$ yields the result. □

- Since the state space Σ_n has size $n!$, we have

$$t_{\text{mix}} \approx \ln (|\Sigma_n|).$$
Realistic Shuffling - Riffle Shuffle

Split the deck into two piles \(L, R\) where \(L\) is the first \(\frac{n}{2}\) cards and \(R\) is the rest. Form a new pile iteratively by adding a card from \(L\) with probability \(\frac{\ell}{\ell + r}\), where \(\ell, r\) sizes of \(L, R\) at that time, or otherwise from \(R\) with probability \(\frac{r}{\ell + r}\).

For the Riffle shuffle \(t\) mix \(\leq 2 \log_2(\frac{4n}{3})\).

Riffle is fast, same state space \(\Sigma_n\) as T-to-R however this time \(t\) mix \(\approx \ln \ln (|\Sigma_n|)\).

May have heard “7 riffle shuffles is enough”. \(t \leq 4, 5, 6, 7, 8, 9\).
Realistic Shuffling - Riffle Shuffle

- Split the deck into two piles L, R where L is the first $\text{Bin}(n, 1/2)$ cards and R is the rest.
Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

- Split the deck into two piles L, R where L is the first $\text{Bin}(n, 1/2)$ cards and R is the rest.
- Form a new pile iteratively by adding a card from L with probability $\ell/(\ell + r)$, where ℓ, r sizes of L, R at that time, or otherwise from R with probability $r/(\ell + r)$.

Riffle is fast

Same state space Σ_n as T-to-R however this time $t_{\text{mix}} \approx \ln \ln (|\Sigma_n|)$. May have heard “7 riffle shuffles is enough”. $t \leq 4, 5, 6, 7, 8, 9, \Delta(t) = 1.00$. 92. 61. 33. 17. 09.
Realistic Shuffling - Riffle Shuffle

- **Riffle Shuffle**
 - Split the deck into two piles L, R where L is the first $\text{Bin}(n, 1/2)$ cards and R is the rest.
 - Form a new pile iteratively by adding a card from L with probability $\frac{\ell}{\ell + r}$, where ℓ, r sizes of L, R at that time, or otherwise from R with probability $\frac{r}{\ell + r}$.

Riffle is fast
For the Riffle shuffle $t_{\text{mix}} \leq 2 \log_2(4n/3)$.
Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

- Split the deck into two piles L, R where L is the first $\text{Bin}(n, 1/2)$ cards and R is the rest.
- Form a new pile iteratively by adding a card from L with probability $\ell/(r + \ell)$, where ℓ, r sizes of L, R at that time, or otherwise from R with probability $r/(\ell + r)$.

Riffle is fast

For the Riffle shuffle $t_{\text{mix}} \leq 2 \log_2(4n/3)$.

- Same state space Σ_n as T-to-R however this time
 \[t_{\text{mix}} \approx \ln \ln (|\Sigma_n|). \]
Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

- Split the deck into two piles L, R where L is the first $\text{Bin}(n, 1/2)$ cards and R is the rest.
- Form a new pile iteratively by adding a card from L with probability $\frac{\ell}{\ell + r}$, where ℓ, r sizes of L, R at that time, or otherwise from R with probability $\frac{r}{\ell + r}$.

Riffle is fast

For the Riffle shuffle $t_{\text{mix}} \leq 2 \log_2(4n/3)$.

- Same state space Σ_n as T-to-R however this time $t_{\text{mix}} \approx \ln \ln (|\Sigma_n|)$.
- May have heard “7 riffle shuffles is enough”.
Realistic Shuffling - Riffle Shuffle

Riffle Shuffle

- Split the deck into two piles L, R where L is the first $\text{Bin}(n, 1/2)$ cards and R is the rest.
- Form a new pile iteratively by adding a card from L with probability $\ell/(r + \ell)$, where ℓ, r sizes of L, R at that time, or otherwise from R with probability $r/(\ell + r)$.

Riffle is fast

For the Riffle shuffle $t_{\text{mix}} \leq 2 \log_2(4n/3)$.

- Same state space Σ_n as T-to-R however this time

 \[t_{\text{mix}} \approx \ln \ln (|\Sigma_n|). \]

- May have heard “7 riffle shuffles is enough”.

<table>
<thead>
<tr>
<th>t</th>
<th>≤ 4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta(t)$</td>
<td>1.00</td>
<td>.92</td>
<td>.61</td>
<td>.33</td>
<td>.17</td>
<td>.09</td>
</tr>
</tbody>
</table>
Outline

Shuffling and Strong Stationary Times

Covertime

$s - t$ Connectivity

2-Sat
Covertime

The Cover time $t_{\text{cov}}(G)$ of a graph $G = (V, E)$ is given by

$$t_{\text{cov}}(G) = \max_{v \in V} E_v[\tau_{\text{cov}}]$$

where

$$\tau_{\text{cov}} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.
The *Cover time* $t_{\text{cov}}(G)$ of a graph $G = (V, E)$ is given by

$$t_{\text{cov}}(G) = \max_{v \in V} \mathbb{E}_v[\tau_{\text{cov}}] \quad \text{where} \quad \tau_{\text{cov}} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.

Example:

![Graph Image]

$|V| = 6$
The Cover time $t_{cov}(G)$ of a graph $G = (V, E)$ is given by

$$t_{cov}(G) = \max_{v \in V} E_v[\tau_{cov}] \quad \text{where} \quad \tau_{cov} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.

Example:

$$|V| = 6$$
The *Cover time* $t_{\text{cov}}(G)$ of a graph $G = (V, E)$ is given by

$$t_{\text{cov}}(G) = \max_{v \in V} E_v[\tau_{\text{cov}}] \quad \text{where} \quad \tau_{\text{cov}} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.

Example:

![Graph Diagram]

$|V| = 6$
The **Cover time** \(t_{\text{cov}} (G) \) of a graph \(G = (V, E) \) is given by

\[
t_{\text{cov}} (G) = \max_{v \in V} \mathbb{E}_v [\tau_{\text{cov}}] \quad \text{where} \quad \tau_{\text{cov}} := \inf \left\{ t : \bigcup_{i=0}^{t} X_t = V \right\}.
\]

- Expected time for a walk to visit the whole graph from worst case start.

Example:

\[
|V| = 6
\]
Covertime

The **Cover time** $t_{cov}(G)$ of a graph $G = (V, E)$ is given by

$$t_{cov}(G) = \max_{v \in V} \mathbb{E}_v[\tau_{cov}]$$

where

$$\tau_{cov} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.

Example:

![Graph Diagram]

$|V| = 6$
The Cover time $t_{cov}(G)$ of a graph $G = (V, E)$ is given by

$$t_{cov}(G) = \max_{v \in V} E_v[\tau_{cov}]$$

where

$$\tau_{cov} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_i\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.

Example:
The **Cover time** $t_{cov}(G)$ of a graph $G = (V, E)$ is given by

$$t_{cov}(G) = \max_{v \in V} \mathbb{E}_v[\tau_{cov}]$$

where

$$\tau_{cov} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.

Example:

![Graph](image)

$|V| = 6$
The **Cover time** $t_{\text{cov}}(G)$ of a graph $G = (V, E)$ is given by

$$t_{\text{cov}}(G) = \max_{v \in V} \mathbb{E}_v[\tau_{\text{cov}}]$$

where $\tau_{\text{cov}} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}$.

- Expected time for a walk to visit the whole graph from worst case start.

Example:

```
\begin{center}
\begin{tikzpicture}
  \node[vertex] (a) at (0,0) {a};
  \node[vertex] (b) at (1,1) {b};
  \node[vertex] (c) at (1,-1) {c};
  \node[vertex] (d) at (-1,-1) {d};
  \node[vertex] (e) at (-1,0) {e};
  \node[vertex] (f) at (1,-2) {f};
  \draw (a) -- (b) -- (c) -- (d) -- (e) -- (f) -- (a);
\end{tikzpicture}
\end{center}
```

$|V| = 6$
The **Cover time** $t_{cov}(G)$ of a graph $G = (V, E)$ is given by

$$t_{cov}(G) = \max_{v \in V} E_v[\tau_{cov}]$$

where

$$\tau_{cov} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.

Example:

![Graph diagram]

| V | 6 |
The *Cover time* $t_{\text{cov}}(G)$ of a graph $G = (V, E)$ is given by

$$t_{\text{cov}}(G) = \max_{v \in V} \mathbf{E}_v[\tau_{\text{cov}}]$$

where

$$\tau_{\text{cov}} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_i\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.

Example:

\[|V| = 6 \]
Covertime

The **Cover time** $t_{cov}(G)$ of a graph $G = (V, E)$ is given by

$$t_{cov}(G) = \max_{v \in V} E_v[\tau_{cov}] \quad \text{where} \quad \tau_{cov} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}.$$

- Expected time for a walk to visit the whole graph from worst case start.

Example:

![Graph example](image)

$|V| = 6$
The Cover time $t_{cov}(G)$ of a graph $G = (V, E)$ is given by

$$t_{cov}(G) = \max_{v \in V} E_v[\tau_{cov}]$$

where $\tau_{cov} := \inf \left\{ t : \bigcup_{i=0}^{t} \{X_t\} = V \right\}$.

- Expected time for a walk to visit the whole graph from worst case start.

Example:

$|V| = 6$

$\tau_{cov}(G) = 9$.
Let P be the SRW on a connected graph G, then $\pi_x = d(x)/2|E|$.
Let \(P \) be the SRW on a connected graph \(G \), then \(\pi_x = \frac{d(x)}{2|E|} \).

Proof: Note that \(\sum_{x \in V} \pi = 1 \) and that for any \(x \in V \)

\[
(\pi P)_x = \sum_{y \in V} \pi_y P_{y,x} = \sum_{y \in d(x)} \frac{d(y)}{2|E|} \frac{1}{d(y)} = \frac{d(x)}{2|E|}.
\]
Let P be the SRW on a connected graph G, then $\pi_x = \frac{d(x)}{2|E|}$.

Proof: Note that $\sum_{x \in V} \pi = 1$ and that for any $x \in V$

$$(\pi P)_x = \sum_{y \in V} \pi_y P_{y,x} = \sum_{y \in d(x)} \frac{d(y)}{2|E|} \frac{1}{d(y)} = \frac{d(x)}{2|E|}.$$

Crossing time of an edge

Let $xy \in E(G)$ where G is any finite connected graph then $h_{x,y} \leq 2|E|$.

Lecture 4: Mixing and shuffling
Let P be the SRW on a connected graph G, then $\pi_x = d(x) / 2|E|$.

Proof: Note that $\sum_{x \in V} \pi = 1$ and that for any $x \in V$

$$(\pi P)_x = \sum_{y \in V} \pi_y P_{y,x} = \sum_{y \in d(x)} \frac{d(y)}{2|E|} \frac{1}{d(y)} = \frac{d(x)}{2|E|}.$$

Crossing time of an edge

Let $xy \in E(G)$ where G is any finite connected graph then $h_{x,y} \leq 2|E|$.

Proof: Since the SRW on any connected finite graph is irreducible we know

$$E_y[\tau^+_y] = \frac{1}{\pi_y} = \frac{2|E|}{d(y)}.$$

Lecture 4: Mixing and shuffling
Let \(P \) be the SRW on a connected graph \(G \), then \(\pi_x = d(x) / 2|E| \).

Proof: Note that \(\sum_{x \in V} \pi_x = 1 \) and that for any \(x \in V \)

\[
(\pi P)_x = \sum_{y \in V} \pi_y P_{y,x} = \sum_{y \in d(x)} \frac{d(y)}{2|E|} \frac{1}{d(y)} = \frac{d(x)}{2|E|}.
\]

Crossing time of an edge

Let \(xy \in E(G) \) where \(G \) is any finite connected graph then \(h_{x,y} \leq 2|E| \).

Proof: Since the SRW on any connected finite graph is irreducible we know

\[
E_y[\tau_y^+] = \frac{1}{\pi_y} = \frac{2|E|}{d(y)}.
\]

By the Markov property we have

\[
\frac{2|E|}{d(y)} = E_y[\tau_y^+] = 1 + \sum_{z \sim y} \frac{h_{z,y}}{d(y)}.
\]
Let P be the SRW on a connected graph G, then $\pi_x = d(x) / 2|E|$.

Proof: Note that $\sum_{x \in V} \pi_x = 1$ and that for any $x \in V$

$$\left(\pi P\right)_x = \sum_{y \in V} \pi_y P_{y,x} = \sum_{y \in d(x)} \frac{d(y)}{2|E|} \frac{1}{d(y)} = \frac{d(x)}{2|E|}. \quad \square$$

Crossing time of an edge

Let $xy \in E(G)$ where G is any finite connected graph then $h_{x,y} \leq 2|E|$.

Proof: Since the SRW on any connected finite graph is irreducible we know

$$E_y[\tau_y^+] = \frac{1}{\pi_y} = \frac{2|E|}{d(y)}.$$

By the Markov property we have

$$\frac{2|E|}{d(y)} = E_y[\tau_y^+] = 1 + \sum_{z \sim y} \frac{h_{z,y}}{d(y)}.$$

It follows that $\sum_{z \sim y} h_{z,y} \leq d(y) \left(E_y[\tau_y^+] - 1\right)$.
Let P be the SRW on a connected graph G, then $\pi_x = d(x)/2|E|$.

Proof: Note that $\sum_{x \in V} \pi = 1$ and that for any $x \in V$

$$(\pi P)_x = \sum_{y \in V} \pi_y P_{y,x} = \sum_{y \in d(x)} \frac{d(y)}{2|E|} \frac{1}{d(y)} = \frac{d(x)}{2|E|}.$$

Crossing time of an edge

Let $xy \in E(G)$ where G is any finite connected graph then $h_{x,y} \leq 2|E|$.

Proof: Since the SRW on any connected finite graph is irreducible we know

$$\mathbb{E}_y [\tau^+_y] = \frac{1}{\pi_y} = \frac{2|E|}{d(y)}.$$

By the Markov property we have

$$\frac{2|E|}{d(y)} = \mathbb{E}_y [\tau^+_y] = 1 + \sum_{z \sim y} \frac{h_{z,y}}{d(y)}.$$

It follows that $\sum_{z \sim y} h_{z,y} \leq d(y) \left(\mathbb{E}_y [\tau^+_y] - 1 \right)$ and thus

$$h_{x,y} \leq \sum_{z \sim y} h_{z,y} \leq d(y) \cdot \left(\frac{2|E|}{d(y)} - 1 \right) \leq 2|E|.$$

For any connected graph $t_{cov}(G) \leq 4n|E| \leq 2n^3$.

Proof: Any connected graph has a spanning tree T with $n-1$ edges. Choose any root v_0 for T and fix a tour v_0, \ldots, v_{2n-2} on T which visits every vertex and returns to the root. The Covertime of G is at most the expected length of this tour (from worst case start vertex). Thus $t_{cov}(G) \leq 2n-3 \sum_{i=0}^{n-2} h_{v_i, v_{i+1}} \leq \sum_{xy \in E(T)} (h_{xy} + h_{yx}) \leq 2 \sum_{xy \in E(T)} 2|E| \leq 4n|E|$, since for any $xy \in E$ we have $h_{x,y} \leq 2|E|$. □
For any connected graph $t_{cov}(G) \leq 4n|E| \leq 2n^3$.

Proof: Any connected graph has a spanning tree T with $n - 1$ edges.
For any connected graph $t_{cov}(G) \leq 4n|E| \leq 2n^3$.

Proof: Any connected graph has a spanning tree T with $n - 1$ edges. Choose any root v_0 for T and fix a tour v_0, \ldots, v_{2n-2} on T which visits every vertex and returns to the root.
For any connected graph \(t_{\text{cov}}(G) \leq 4n|E| \leq 2n^3 \).

Proof: Any connected graph has a spanning tree \(T \) with \(n - 1 \) edges. Choose any root \(v_0 \) for \(T \) and fix a tour \(v_0, \ldots, v_{2n-2} \) on \(T \) which visits every vertex and returns to the root.

The Covertime of \(G \) is at most the expected length of this tour (from worst case start vertex).
For any connected graph \(t_{\text{cov}}(G) \leq 4n|E| \leq 2n^3 \).

Proof: Any connected graph has a spanning tree \(T \) with \(n - 1 \) edges. Choose any root \(v_0 \) for \(T \) and fix a tour \(v_0, \ldots, v_{2n-2} \) on \(T \) which visits every vertex and returns to the root.

The Covertime of \(G \) is at most the expected length of this tour (from worst case start vertex). Thus

\[
t_{\text{cov}}(G) \leq \sum_{i=0}^{2n-3} h_{v_i, v_{i+1}} = \sum_{xy \in E(T)} (h_{xy} + h_{yx}) \leq 2 \sum_{xy \in E(T)} 2|E| \leq 4n|E|,
\]

since for any \(xy \in E \) we have \(h_{x,y} \leq 2|E| \).

\(\square \)
For any connected graph $t_{\text{cov}}(G) \leq 4n|E| \leq 2n^3$.

Proof: Any connected graph has a spanning tree T with $n - 1$ edges. Choose any root v_0 for T and fix a tour v_0, \ldots, v_{2n-2} on T which visits every vertex and returns to the root.

The Covertime of G is at most the expected length of this tour (from worst case start vertex). Thus

$$t_{\text{cov}}(G) \leq \sum_{i=0}^{2n-3} h_{v_i, v_{i+1}} = \sum_{xy \in E(T)} (h_{xy} + h_{yx}) \leq 2 \sum_{xy \in E(T)} 2|E| \leq 4n|E|,$$

since for any $xy \in E$ we have $h_{x,y} \leq 2|E|$.

Matthews bound

For any graph G we have

$$t_{\text{cov}}(G) \leq \left(\sum_{m=1}^{n-1} \frac{1}{m} \right) \cdot \max_{x,y \in V} h_{x,y} \approx (\ln n) \cdot \max_{x,y \in V} h_{x,y}.$$
The n-path P_n is the graph with $V(P_n) = [n]$ and $E(P_n) = \{ij : j = i + 1\}$.

Proposition

For the SRW on P_n we have $h_{k,n} = n^2 - k^2$, for any $0 \leq k \leq n$.

The cover time of the path on n vertices is n^2.

Lecture 4: Mixing and shuffling
Random Walk on a path

The n-path P_n is the graph with $V(P_n) = [n]$ and $E(P_n) = \{ij : j = i + 1\}$.

Proposition

For the SRW on P_n we have $h_{k,n} = n^2 - k^2$, for any $0 \leq k \leq n$.

Proof: Let $f_k = h_{k,n}$ and observe that $f_n = 0$.
Random Walk on a path

The n-path P_n is the graph with $V(P_n) = [n]$ and $E(P_n) = \{ij : j = i + 1\}$.

Proposition

For the SRW on P_n we have $h_{k,n} = n^2 - k^2$, for any $0 \leq k \leq n$.

Proof: Let $f_k = h_{k,n}$ and observe that $f_n = 0$. By the Markov property

$$f_0 = 1 + f_1 \quad \text{and} \quad f_k = 1 + \frac{f_{k-1}}{2} + \frac{f_{k+1}}{2} \quad \text{for} \ 1 \leq k \leq n - 1.$$
Random Walk on a path

The n-path P_n is the graph with $V(P_n) = [n]$ and $E(P_n) = \{ij : j = i + 1\}$.

Proposition

For the SRW on P_n we have $h_{k,n} = n^2 - k^2$, for any $0 \leq k \leq n$.

Proof: Let $f_k = h_{k,n}$ and observe that $f_n = 0$. By the Markov property

$$f_0 = 1 + f_1 \quad \text{and} \quad f_k = 1 + \frac{f_{k-1}}{2} + \frac{f_{k+1}}{2} \quad \text{for } 1 \leq k \leq n - 1.$$

System of n independent equations in n unknowns so has a unique solution.
Random Walk on a path

The n-path P_n is the graph with $V(P_n) = [n]$ and $E(P_n) = \{ij : j = i + 1\}$.

Proposition

For the SRW on P_n we have $h_{k,n} = n^2 - k^2$, for any $0 \leq k \leq n$.

Proof: Let $f_k = h_{k,n}$ and observe that $f_n = 0$. By the Markov property

$$f_0 = 1 + f_1 \quad \text{and} \quad f_k = 1 + \frac{f_{k-1}}{2} + \frac{f_{k+1}}{2} \quad \text{for } 1 \leq k \leq n-1.$$

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that $f_k = n^2 - k^2$ satisfies the above.
Random Walk on a path

The n-path P_n is the graph with $V(P_n) = [n]$ and $E(P_n) = \{ij : j = i + 1\}$.

Proposition

For the SRW on P_n we have $h_{k,n} = n^2 - k^2$, for any $0 \leq k \leq n$.

Proof: Let $f_k = h_{k,n}$ and observe that $f_n = 0$. By the Markov property

$$f_0 = 1 + f_1 \quad \text{and} \quad f_k = 1 + \frac{f_{k-1}}{2} + \frac{f_{k+1}}{2} \quad \text{for } 1 \leq k \leq n - 1.$$

System of n independent equations in n unknowns so has a unique solution. Thus it suffices to check that $f_k = n^2 - k^2$ satisfies the above. Indeed

$$f_n = n^2 - n^2 = 0, \quad f_0 = 1 + f_1 = 1 + n^2 - 1^2 = n^2,$$

and for any $1 \leq k \leq n - 1$ we have,

$$f_k = 1 + \frac{n^2 - (k - 1)^2}{2} + \frac{n^2 - (k + 1)^2}{2} = n^2 - k^2.$$

\[\square \]
Random Walk on a path

The n-path P_n is the graph with $V(P_n) = [n]$ and $E(P_n) = \{ij : j = i + 1\}$.

Proposition

For the SRW on P_n we have $h_{k,n} = n^2 - k^2$, for any $0 \leq k \leq n$.

Proof: Let $f_k = h_{k,n}$ and observe that $f_n = 0$. By the Markov property

$$f_0 = 1 + f_1 \quad \text{and} \quad f_k = 1 + \frac{f_{k-1}}{2} + \frac{f_{k+1}}{2} \quad \text{for} \ 1 \leq k \leq n-1.$$

System of n independent equations in n unknowns so has a unique solution. Thus it suffices to check that $f_k = n^2 - k^2$ satisfies the above. Indeed

$$f_n = n^2 - n^2 = 0, \quad f_0 = 1 + f_1 = 1 + n^2 - 1^2 = n^2,$$

and for any $1 \leq k \leq n-1$ we have,

$$f_k = 1 + \frac{n^2 - (k - 1)^2}{2} + \frac{n^2 - (k + 1)^2}{2} = n^2 - k^2.$$

Covertime of the Path

The cover time of the path on n vertices is n^2.

Outline

Shuffling and Strong Stationary Times

Covertime

$s - t$ Connectivity

2-Sat
Given: Undirected graph $G = (V, E)$ and $s, t \in V$

Goal: Determine if s is connected by a path to t.

$s - t$ Connectivity Problem

Start a random walk from s.
If the walk hits t within $4n^3$ steps, return True. O/W return False.

$s - t$ Connectivity Algorithm
The $s - t$ Connectivity Algorithm runs in time $4n^3$ and returns the correct answer w.p. at least $1/2$ and never returns True incorrectly.

Proposition
Proof: By Markov inequality if there is a path to t we will find it w.p. $\geq 1/2$.

Running this T times gives the correct answer with probability $\geq 1 - 1/2^T$.

Only uses logspace.
s \rightarrow t \text{ Connectivity}

\textbf{s \rightarrow t Connectivity Problem}

- Given: Undirected graph \(G = (V, E) \) and \(s, t \in V \)
s − t Connectivity

s − t Connectivity Problem
- **Given:** Undirected graph \(G = (V, E) \) and \(s, t \in V \)
- **Goal:** Determine if \(s \) is connected by a path to \(t \).
$s - t$ Connectivity

$s - t$ Connectivity Problem

- **Given:** Undirected graph $G = (V, E)$ and $s, t \in V$
- **Goal:** Determine if s is connected by a path to t.

$s - t$ Connectivity Algorithm

"Start a random walk from s.
If the walk hits t within $4n^3$ steps, return True. O/W return False."
s − t Connectivity

s − t Connectivity Problem

- **Given**: Undirected graph $G = (V, E)$ and $s, t \in V$
- **Goal**: Determine if s is connected by a path to t.

s − t Connectivity Algorithm

- Start a random walk from s.

$s - t$ Connectivity

$s - t$ Connectivity Problem

- **Given:** Undirected graph $G = (V, E)$ and $s, t \in V$
- **Goal:** Determine if s is connected by a path to t.

$s - t$ Connectivity Algorithm

- Start a random walk from s.
- If the walk hits t within $4n^3$ steps, return True. O/W return False.
s – t Connectivity

s – t Connectivity Problem

- **Given:** Undirected graph \(G = (V, E) \) and \(s, t \in V \)
- **Goal:** Determine if \(s \) is connected by a path to \(t \).

s – t Connectivity Algorithm

- Start a random walk from \(s \).
- If the walk hits \(t \) within \(4n^3 \) steps, return \text{True}\. O/W return \text{False}\.

Proposition

The **s – t Connectivity Algorithm** runs in time \(4n^3 \) and returns the correct answer w.p. at least 1/2 and never returns \text{True} incorrectly.
s − t Connectivity

s − t Connectivity Problem

- **Given:** Undirected graph $G = (V, E)$ and $s, t \in V$
- **Goal:** Determine if s is connected by a path to t.

s − t Connectivity Algorithm

- Start a random walk from s.
- If the walk hits t within $4n^3$ steps, return **True**. O/W return **False**.

Proposition

The **s − t Connectivity Algorithm** runs in time $4n^3$ and returns the correct answer w.p. at least $1/2$ and never returns **True** incorrectly.

Proof: By Markov inequality if there is a path to t we will find it w.p. $\geq 1/2$. □
s − t Connectivity

s − t Connectivity Problem
- **Given:** Undirected graph $G = (V, E)$ and $s, t \in V$
- **Goal:** Determine if s is connected by a path to t.

s − t Connectivity Algorithm
- Start a random walk from s.
- If the walk hits t within $4n^3$ steps, return **True**. O/W return **False**.

Proposition
The *s − t Connectivity Algorithm* runs in time $4n^3$ and returns the correct answer w.p. at least $1/2$ and never returns **True** incorrectly.

Proof: By Markov inequality if there is a path to t we will find it w.p. $\geq 1/2$. □
- Running this T times gives the correct answer with probability $\geq 1 − 1/2^T$.

Lecture 4: Mixing and shuffling
s – t Connectivity

s – t Connectivity Problem

- **Given:** Undirected graph \(G = (V, E) \) and \(s, t \in V \)
- **Goal:** Determine if \(s \) is connected by a path to \(t \).

s – t Connectivity Algorithm

- Start a random walk from \(s \).
- If the walk hits \(t \) within \(4n^3 \) steps, return **True**. O/W return **False**.

Proposition

The **s – t Connectivity Algorithm** runs in time \(4n^3 \) and returns the correct answer w.p. at least \(1/2 \) and never returns **True** incorrectly.

Proof: By Markov inequality if there is a path to \(t \) we will find it w.p. \(\geq 1/2 \). ☐

- Running this \(T \) times gives the correct answer with probability \(\geq 1 – 1/2^T \).
- Only uses logspace.
Outline

Shuffling and Strong Stationary Times

Covertime

$s - t$ Connectivity

2-Sat
A *Satisfiability (SAT)* formula is a logical expression that’s the conjunction (AND) of a set of *Clauses*, where a clause is the disjunction (OR) of *Literals*.

Example:

SAT:

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor x_3) \land (x_4 \lor x_1)\]

Solution:

\[x_1 = \text{True}, \quad x_2 = \text{False}, \quad x_3 = \text{False}, \quad \text{and} \quad x_4 = \text{True}.\]
A Satisfiability (SAT) formula is a logical expression that’s the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.
A *Satisfiability (SAT)* formula is a logical expression that’s the conjunction (AND) of a set of *Clauses*, where a clause is the disjunction (OR) of *Literals*.

A *Solution* to a SAT formula is an assignment of the variables to the values *True* and *False* so that all the clauses are satisfied.

Example:

\[
\text{SAT: } (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_3) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)
\]
A **Satisfiability (SAT)** formula is a logical expression that’s the conjunction (AND) of a set of **Clauses**, where a clause is the disjunction (OR) of **Literals**.

A **Solution** to a SAT formula is an assignment of the variables to the values **True** and **False** so that all the clauses are satisfied.

Example:

\[
\text{SAT: } (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})
\]

Solution: \(x_1 = \text{True}, \ x_2 = \text{False}, \ x_3 = \text{False} \) and \(x_4 = \text{True} \).
SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

\[
\text{SAT: } \left(x_1 \lor \overline{x_2} \lor \overline{x_3} \right) \land \left(\overline{x_1} \lor x_3 \right) \land \left(x_1 \lor x_2 \lor x_4 \right) \land \left(x_4 \lor \overline{x_3} \right) \land \left(x_4 \lor \overline{x_1} \right)
\]

\[
\text{Solution: } x_1 = \text{True, } x_2 = \text{False, } x_3 = \text{False } \text{and } x_4 = \text{True.}
\]

- If each clause has \(k \) literals we call the problem \(k\text{-SAT} \).
A **Satisfiability (SAT)** formula is a logical expression that’s the conjunction (AND) of a set of **Clauses**, where a clause is the disjunction (OR) of **Literals**.

A **Solution** to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

\[
\text{SAT: } (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_3) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)
\]

Solution: \(x_1 = \text{True}, \ x_2 = \text{False}, \ x_3 = \text{False} \) and \(x_4 = \text{True}\).

- If each clause has \(k\) literals we call the problem **\(k\)-SAT**.
- In general, determining if a SAT formula has a solution is NP-hard.
SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

\[
\text{SAT: } (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_3) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)
\]

\[
\text{Solution: } x_1 = \text{True}, \quad x_2 = \text{False}, \quad x_3 = \text{False} \quad \text{and} \quad x_4 = \text{True}.
\]

- If each clause has \(k \) literals we call the problem \(k\text{-SAT} \).
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
SAT Problems

A **Satisfiability (SAT)** formula is a logical expression that’s the conjunction (AND) of a set of **Clauses**, where a clause is the disjunction (OR) of **Literals**.

A **Solution** to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

\[
\text{SAT: } (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})
\]

Solution: \(x_1 = \text{True, } \ x_2 = \text{False, } \ x_3 = \text{False} \) and \(x_4 = \text{True.}\)

- If each clause has \(k\) literals we call the problem **\(k\)-SAT**.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
A **Satisfiability (SAT)** formula is a logical expression that’s the conjunction (AND) of a set of **Clauses**, where a clause is the disjunction (OR) of **Literals**.

A **Solution** to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

\[
\text{SAT: } (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_3) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)
\]

Solution: \(x_1 = \text{True, } x_2 = \text{False, } x_3 = \text{False and } x_4 = \text{True.}\)

- If each clause has \(k\) literals we call the problem **\(k\)-SAT**.
- In general, determining if a SAT formula has a solution is NP-hard.
- In practice solvers are fast and used to great effect.
- A huge amount of problems can be posed as a SAT:
 - \(\rightarrow\) Model Checking and hardware/software verification
A *Satisfiability (SAT)* formula is a logical expression that’s the conjunction (AND) of a set of *Clauses*, where a clause is the disjunction (OR) of *Literals*.

A *Solution* to a SAT formula is an assignment of the variables to the values *True* and *False* so that all the clauses are satisfied.

Example:

SAT: \((x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})\)

Solution: \(x_1 = \text{True}, \ x_2 = \text{False}, \ x_3 = \text{False} \quad \text{and} \quad x_4 = \text{True}.

- If each clause has \(k\) literals we call the problem *\(k\)-SAT*.
- In general, determining if a SAT formula has a solution is NP-hard.
- In practice solvers are fast and used to great effect.
- A huge amount of problems can be posed as a SAT:
 - Model Checking and hardware/software verification
 - Design of experiments
SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

\[
\text{SAT: } (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})
\]

Solution: \(x_1 = \text{True}, \ x_2 = \text{False}, \ x_3 = \text{False} \text{ and } x_4 = \text{True}.\)

- If each clause has \(k\) literals we call the problem \(k\)-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
 \(\rightarrow\) Model Checking and hardware/software verification
 \(\rightarrow\) Design of experiments
 \(\rightarrow\) Classical planning
A *Satisfiability (SAT)* formula is a logical expression that’s the conjunction (AND) of a set of *Clauses*, where a clause is the disjunction (OR) of *Literals*.

A *Solution* to a SAT formula is an assignment of the variables to the values *True* and *False* so that all the clauses are satisfied.

Example:

\[
\text{SAT: } (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})
\]

Solution: \(x_1 = \text{True}, \ x_2 = \text{False}, \ x_3 = \text{False} \) and \(x_4 = \text{True} \).

- If each clause has \(k \) literals we call the problem *\(k \)-SAT*.
- In general, determining if a SAT formula has a solution is NP-hard.
- In practice solvers are fast and used to great effect.
- A huge amount of problems can be posed as a SAT:
 - Model Checking and hardware/software verification
 - Design of experiments
 - Classical planning
 - …
RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to 2^n times, terminating if all clauses are satisfied:
 a. Choose an arbitrary clause that is not satisfied
 b. Choose one of its literals and switch the variable's value.
3. If a valid solution is found return it. Otherwise return unsatisfiable.

Example 1:
Solution Found

\[(x_1 \lor x_2) \land (x_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor x_1)\]

<table>
<thead>
<tr>
<th>F</th>
<th>T</th>
<th>T</th>
<th>F</th>
<th>F</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

$S = (T, T, F, T)$.

t_1, t_2, t_3, t_4.

Lecture 4: Mixing and shuffling
RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:

Example 1: Solution Found

$(x_1 \lor x_2) \land (x_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor x_1)$

F T T F F T F

$S = (T, T, F, T)$.

Lecture 4: Mixing and shuffling
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of it’s literals UAR and switch the variables value.

Example 1:
Solution Found

$(x_1 \lor x_2) \land (x_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor x_1)$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$S = (T, T, F, T)$.

Lecture 4: Mixing and shuffling
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of it’s literals UAR and switch the variables value.
(3) If a valid solution is found return it. O/W return unsatisfiable
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 - Choose an arbitrary clause that is not satisfied
 - Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.

Example 1:

Solution Found

$(x_1 \lor x_2) \land (x_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor x_1)$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$S = (T, T, F, T)$.
x_1 x_2 x_3 x_4
0 F F F

Lecture 4: Mixing and shuffling
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to \(2n^2\) times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of its literals \(UAR\) and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let \(A_i\) be the variable assignment at step \(i\).
- Let \(S\) be any solution and \(X_i = |\text{variable values shared by } A_i \text{ and } S|\).
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of its literals UAR and switch the variables value.
(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 1:

\[(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)\]

F T T T F F F T T T

$S = (T, T, F, T)$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 1 :

$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$

$S = (T, T, F, T)$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
(1) Start with an arbitrary truth assignment.
(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of its literals UAR and switch the variables value.
(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 1:

$$\left(x_1 \lor \overline{x_2}\right) \land \left(\overline{x_1} \lor x_3\right) \land \left(x_1 \lor x_2\right) \land \left(x_4 \lor \overline{x_3}\right) \land \left(x_4 \lor \overline{x_1}\right)$$

$$\begin{array}{cccc}
F & T & T & T \\
F & F & F & F \\
F & T & F & T \\
\end{array}$$

$$S = (T, T, F, T).$$

0 F F F F F
RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to \(2n^2\) times, terminating if all clauses are satisfied:
 - (a) Choose an arbitrary clause that is not satisfied
 - (b) Choose one of its literals \(\overline{U}A\) and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let \(A_i\) be the variable assignment at step \(i\).
- Let \(S\) be any solution and \(X_i = |\text{variable values shared by } A_i \text{ and } S|\).

Example 1:

\[
(x_1 \lor \overline{x}_2) \land (x_1 \lor \overline{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor x_1) \\
F \quad F \quad T \quad T \quad F \quad T \quad T \quad F \quad T \quad T
\]

\[S = (T, T, F, T).\]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of its literals UAR and switch the variables value.
(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|.$

Example 1:

\[
(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)
\]

\[
F \quad F \quad T \quad T \quad F \quad T \quad F \quad T \quad F \quad T
\]

\[S = (T, T, F, T)\]

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 a. Choose an arbitrary clause that is not satisfied
 b. Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 1:

$$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$$

$F \ F \ T \ T \ F \ T \ F \ T \ F \ T$

$S = (T, T, F, T)$.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.

2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 a. Choose an arbitrary clause that is not satisfied
 b. Choose one of its literals and switch the variables value.

3. If a valid solution is found return it. O/W return unsatisfiable.

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 1:

$$(\overline{x}_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1)$$

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$S = (T, T, F, T)$.

Lecture 4: Mixing and shuffling
RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 1:

\[(x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_3}) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})\]

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$S = (T, T, F, T)$.

Lecture 4: Mixing and shuffling
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 - (a) Choose an arbitrary clause that is not satisfied
 - (b) Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |$variable values shared by A_i and $S|$.

Example 1:

$$((x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1}))$$

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$S = (T, T, F, T)$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to \(2n^2\) times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of its literals \(\overline{A}\) or \(\overline{\overline{A}}\) and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let \(A_i\) be the variable assignment at step \(i\).
- Let \(S\) be any solution and \(X_i = |\text{variable values shared by } A_i \text{ and } S|\).

Example 1:

\[
(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x}_1)
\]

\[
\begin{array}{cccc}
T & F & F & T \\
T & T & T & T \\
T & T & T & T \\
\end{array}
\]

\[
S = (T, T, F, T).
\]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 a. Choose an arbitrary clause that is not satisfied
 b. Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 1: Solution Found

\[(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})\]

T F F T T T T T T

$S = (T, T, F, T)$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to \(2n^2\) times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of it's literals UAR and switch the variables value.
(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let \(A_i\) be the variable assignment at step \(i\).
- Let \(S\) be any solution and \(X_i = |\text{variable values shared by } A_i \text{ and } S|\).

Example 2:

\[(x_1 \lor \overline{x_2}) \land (x_1 \lor \overline{x_3}) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x_1})\]

\[
\begin{array}{cccc}
F & T & T & T \\
F & F & F & F \\
F & F & F & T \\
\end{array}
\]

\[S = (T, F, F, T).\]
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 a. Choose an arbitrary clause that is not satisfied
 b. Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |variable values shared by A_i and S|.

Example 2:

$$(x_1 \lor \overline{x_2}) \land (x_1 \lor x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_3) \land (x_4 \lor x_1)$$

$S = (T, F, F, T)$.
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 a. Choose an arbitrary clause that is not satisfied
 b. Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 2:

\[
(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x_1})
\]

F T T T T F F F F F T

$S = (T, F, F, T)$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 a. Choose an arbitrary clause that is not satisfied
 b. Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |variable\ values\ shared\ by\ A_i\ and\ S|$.

Example 2:

\[
(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x}_1)
\]

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$S = (T, F, F, T)$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 - (a) Choose an arbitrary clause that is not satisfied
 - (b) Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable.

- Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |$variable values shared by A_i and $S|$

Example 2:

\[
(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x_1})
\]

\[
\begin{array}{cccc}
F & T & T & T \\
T & F & F & T \\
F & F & T & F \\
T & F & T & T
\end{array}
\]

\[S = (T, F, F, T).\]

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 a. Choose an arbitrary clause that is not satisfied
 b. Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 2:

$$(x_1 \lor \overline{x}_2) \land (x_1 \lor \overline{x}_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x}_1)$$

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

$S = (T, F, F, T)$.

0 1 2 3 4
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 - (a) Choose an arbitrary clause that is not satisfied
 - (b) Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 2:

$$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x_1})$$

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

$S = (T, F, F, T)$.

Lecture 4: Mixing and shuffling
RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |$variable values shared by A_i and $S|$.

Example 2:

\[
(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x}_1)
\]

\[
\begin{array}{cccccc}
F & F & T & T & F & T \\
F & F & T & T & F & T \\
F & T & F & T & F & T \\
F & T & F & T & T & T \\
\end{array}
\]

\[
S = (T, F, F, T).
\]

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

1. Start with an arbitrary truth assignment.
2. Repeat up to \(2n^2\) times, terminating if all clauses are satisfied:
 - (a) Choose an arbitrary clause that is not satisfied
 - (b) Choose one of its literals UAR and switch the variables value.
3. If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let \(A_i\) be the variable assignment at step \(i\).
- Let \(S\) be any solution and \(X_i = |\text{variable values shared by } A_i \text{ and } S|\).

Example 2:

\[(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x}_1)\]

\[F\ F\ T\ T\ T\ F\ T\ T\ T\ T\]

\[S = (T, F, F, T).\]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to \(2n^2\) times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of it's literals UAR and switch the variables value.
(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let \(A_i\) be the variable assignment at step \(i\).
- Let \(S\) be any solution and \(X_i = |\text{variable values shared by } A_i \text{ and } S|\).

Example 2:

\[
(x_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x}_1)
\]

\[
F \quad F \quad T \quad T \quad F \quad T \quad T \quad T \quad T
\]

\[
S = (T, F, F, T).
\]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of its literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 2:

$$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x_1})$$

$S = (T, F, F, T)$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.
(2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 (a) Choose an arbitrary clause that is not satisfied
 (b) Choose one of its literals UAR and switch the variables value.
(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a Step. Let A_i be the variable assignment at step i.
- Let S be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } S|$.

Example 2: Solution Found

$$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_3) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x_1})$$

$S = (T, F, F, T)$.

<table>
<thead>
<tr>
<th>t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

T F F T T T T F T F

Lecture 4: Mixing and shuffling
If a valid solution S exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2.
If a valid solution S exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2.

Proof: Fix any solution S, then for any $i \geq 0$ and $1 \leq k \leq n - 1$,
2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2.

Proof: Fix any solution S, then for any $i \geq 0$ and $1 \leq k \leq n - 1$,

(i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2.

Proof: Fix any solution S, then for any $i \geq 0$ and $1 \leq k \leq n - 1$,

(i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$

(ii) $P[X_{i+1} = k + 1 \mid X_i = k] \geq 1/2$
2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2.

Proof: Fix any solution S, then for any $i \geq 0$ and $1 \leq k \leq n - 1$,

(i) $\Pr[X_{i+1} = 1 \mid X_i = 0] = 1$

(ii) $\Pr[X_{i+1} = k + 1 \mid X_i = k] \geq 1/2$

(iii) $\Pr[X_{i+1} = k - 1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = S$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (we get none of our initial guesses right).

The stochastic process X_i is complicated to describe in full however by (i)−(iii) we can couple it with Y_i - the SRW on the n-path from 0.

This gives $\mathbb{E}[\text{time to find } S] \leq \mathbb{E}_0[\inf \{t: X_t = n\}] \leq \mathbb{E}_0[\inf \{t: Y_t = n\}] = h_0(n) = n^2$.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid solution in time $2n^2$ with probability at least $1/2$.

Lecture 4: Mixing and shuffling
2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2.

Proof: Fix any solution S, then for any $i \geq 0$ and $1 \leq k \leq n - 1$,

(i) $P[X_{i+1} = 1 | X_i = 0] = 1$

(ii) $P[X_{i+1} = k + 1 | X_i = k] \geq 1/2$

(iii) $P[X_{i+1} = k - 1 | X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = S$ thus solution found (may find another first).
If a valid solution S exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2.

Proof: Fix any solution S, then for any $i \geq 0$ and $1 \leq k \leq n - 1$,

(i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
(ii) $P[X_{i+1} = k + 1 \mid X_i = k] \geq 1/2$
(iii) $P[X_{i+1} = k - 1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = S$ thus solution found (may find another first). Assume (pessimistically) that $X_0 = 0$ (we get none of our initial guesses right).
2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2.

Proof: Fix any solution S, then for any $i \geq 0$ and $1 \leq k \leq n - 1$,

(i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
(ii) $P[X_{i+1} = k + 1 \mid X_i = k] \geq 1/2$
(iii) $P[X_{i+1} = k - 1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = S$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (we get non of our initial guesses right).

The stochastic process X_i is complicated to describe in full however by (i) – (iii) we can couple it with Y_i- the SRW on the n-path from 0.
2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution S exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2.

Proof: Fix any solution S, then for any $i \geq 0$ and $1 \leq k \leq n - 1$,

(i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$

(ii) $P[X_{i+1} = k + 1 \mid X_i = k] \geq 1/2$

(iii) $P[X_{i+1} = k - 1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = S$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (we get non of our initial guesses right).

The stochastic process X_i is complicated to describe in full however by (i) – (iii) we can couple it with Y_t- the SRW on the n-path from 0. This gives

$E[\text{time to find } S] \leq E_0[\inf\{t : X_t = n\}] \leq E_0[\inf\{t : Y_t = n\}] = h_{0,n} = n^2$. □
2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution \(S \) exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most \(n^2 \).

Proof: Fix any solution \(S \), then for any \(i \geq 0 \) and \(1 \leq k \leq n - 1 \),

(i) \(\mathbb{P}[X_{i+1} = 1 \mid X_i = 0] = 1 \)

(ii) \(\mathbb{P}[X_{i+1} = k + 1 \mid X_i = k] \geq 1/2 \)

(iii) \(\mathbb{P}[X_{i+1} = k - 1 \mid X_i = k] \leq 1/2 \).

Notice that if \(X_i = n \) then \(A_i = S \) thus solution found (may find another first).

Assume (pessimistically) that \(X_0 = 0 \) (we get non of our initial guesses right).

The stochastic process \(X_i \) is complicated to describe in full however by (i) – (iii) we can couple it with \(Y_i \)- the SRW on the \(n \)-path from 0. This gives

\[
\mathbb{E}[\text{time to find } S] \leq \mathbb{E}_0[\inf \{ t : X_t = n \}] \leq \mathbb{E}_0[\inf \{ t : Y_t = n \}] = h_{0,n} = n^2. \quad \square
\]

Proposition

Provided a solution exists the RAND 2-SAT Algorithm will return a valid solution in time \(2n^2 \) with probability at least \(1/2 \).