Lecture 3: Coupling and Convergence

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Outline

Total Variation Distance

Coupling

Convergence Theorem - Proof and Application

Mixing Times

How Similar are Two Probability Measures?

Loaded Dice

- I present to you three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathrm{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathrm{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathrm{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1 : Which dice is the least fair ?
- Question 2 : Which dice is the most fair ?

Question 1: Most of you choose A. Why?
Question 2: Dice B and C seem "fairer" than A but which is fairest?

Question 3 : What do we mean by "fair"?

Total Variation Distance

The Total Variation Distance between two probability distributions μ and η on a countable state space Ω is given by

$$
\|\mu-\eta\|_{t v}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)| .
$$

- Let $d(\mu, \nu)=\|\mu-\nu\|_{t v}$, then $d(\cdot, \cdot)$ is a metric on the space of measures.

Loaded Dice : let D be a fair dice and observe:

$$
\begin{aligned}
& \|D-A\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{3}\right|+4\left|\frac{1}{6}-\frac{1}{12}\right|\right)=\frac{1}{3} \\
& \|D-B\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{4}\right|+4\left|\frac{1}{6}-\frac{1}{8}\right|\right)=\frac{1}{6} \\
& \|D-C\|_{t v}=\frac{1}{2}\left(3\left|\frac{1}{6}-\frac{1}{8}\right|+\left|\frac{1}{6}-\frac{9}{24}\right|\right)=\frac{1}{6} .
\end{aligned}
$$

Thus

$$
\|D-B\|_{t v}=\|D-C\|_{t v} \quad \text { and } \quad\|D-C\|_{t v},\|D-C\|_{t v}<\|D-A\|_{t v} \text {. }
$$

So A is the least "fair" however B and C are equally "fair" (in TV distance).

Total Variation Distance

Lemma

For any probability distributions μ and η on a countable state space Ω

$$
\|\mu-\eta\|_{t v}:=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)|=\sup _{A \subset \Omega}|\mu(A)-\eta(A)| .
$$

Proof by picture.

TV Distances

Let P be a Markov Chain with stationary distribution π.

- Let μ be a prob. vector on \mathcal{I} (might be just one vertex) and $t \geq 0$. Then

$$
P_{\mu}^{t}:=\mathbf{P}_{\mu}\left[X_{t}=\cdot\right]=\mathbf{P}\left[X_{t}=\cdot \mid X_{0} \sim \mu\right],
$$

is a probability measure on \mathcal{I}.

- For any μ,

$$
\left\|P_{\mu}^{t}-\pi\right\|_{t v} \leq \max _{x \in \mathcal{I}}\left\|P_{x}^{t}-\pi\right\|_{t v} .
$$

Convergence Theorem (rephrased)
For any finite, irreducible, aperiodic Markov Chain

$$
\lim _{t \rightarrow \infty} \max _{x \in \mathcal{I}}\left\|P_{x}^{t}-\pi\right\|_{t v}=0
$$

Outline

Total Variation Distance

Coupling

Convergence Theorem - Proof and Application

Mixing Times

Coupling

Ordered Coins

- Two coins: X is fair, Y achieves heads with probability $2 / 3$. Thus: $X \sim \operatorname{Ber}(1 / 2), Y \sim \operatorname{Ber}(2 / 3)$.
- Question : Can you sample (toss) the coins together so that $Y \geq X$?

Answer: Yes!

- Let $Z \sim \operatorname{Ber}(1 / 3)$.
- Sample X and Z independently and let $Y=\max \{X, Z\}$.
- Because

$$
\begin{aligned}
\mathbf{P}[Y=1] & =\mathbf{P}[X=1]+\mathbf{P}[X=0, Z=1] \\
& =1 / 2+(1 / 2) \cdot(1 / 3)=2 / 3
\end{aligned}
$$

we have $Y \sim \operatorname{Ber}(q)$. However, $Y=\max \{X, Z\} \geq X$.

Let μ and η be two probability measures on a finite Ω. A probability measure ν on $\Omega \times \Omega$ is a Coupling of (μ, η) if for every $x \in \Omega$,

$$
\sum_{y \in \Omega} \nu(x, y)=\mu(x) \quad \text { and } \quad \sum_{y \in \Omega} \nu(y, x)=\eta(x)
$$

Let μ and η be two probability measures on a finite Ω and ν be a coupling of (μ, η). If (X, Y) is distributed according to ν then

$$
\|\mu-\eta\|_{t v} \leq \mathbf{P}[X \neq Y]
$$

Furthermore, there always is a coupling which achieves equality.

Proof: [Proof of \leq only] For any $\omega \in \Omega$ we have

$$
\begin{aligned}
\mu(\omega) & =\mathbf{P}[X=\omega]=\mathbf{P}[X=\omega, Y=X]+\mathbf{P}[X=\omega, Y \neq X] \\
& =\mathbf{P}[Y=\omega, Y=X]+\mathbf{P}[X=\omega, Y \neq X] \leq \eta(\omega)+\mathbf{P}[X=\omega, Y \neq X]
\end{aligned}
$$

The same calculation with μ and η reversed gives

$$
\eta(\omega) \leq \mu(\omega)+\mathbf{P}[Y=\omega, Y \neq X]
$$

Let $\Omega^{+}=\{\omega: \mu(\omega) \geq \eta(\omega)\}$ and $\Omega^{-}=\{\omega: \mu(\omega)<\eta(\omega)\}$ then observe
$2 \cdot\|\mu-\eta\|_{t v}=\sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)|$

$$
\begin{aligned}
& =\sum_{\omega \in \Omega^{+}}(\mu(\omega)-\eta(\omega))+\sum_{\omega \in \Omega^{-}}(\eta(\omega)-\mu(\omega)) \\
& \leq \sum_{\omega \in \Omega^{+}} \mathbf{P}[X=\omega, Y \neq X]+\sum_{\omega \in \Omega^{-}} \mathbf{P}[Y=\omega, Y \neq X] \leq 2 \mathbf{P}[Y \neq X]
\end{aligned}
$$

Coupling of Markov Chains

A Coupling of a Markov chain P on \mathcal{I} is a M.C. $Z_{t}=\left(X_{t}, Y_{t}\right)$ on $\mathcal{I} \times \mathcal{I}$ s.t.:

$$
\begin{aligned}
& \mathbf{P}\left[X_{t+1}=x^{\prime} \mid Z_{t}=(x, y)\right]=\mathbf{P}\left[X_{t+1}=x^{\prime} \mid X_{t}=x\right] \\
& \mathbf{P}\left[Y_{t+1}=y^{\prime} \mid Z_{t}=(x, y)\right]=\mathbf{P}\left[Y_{t+1}=y^{\prime} \mid Y_{t}=y\right] .
\end{aligned}
$$

Tom \& Jerry Chain

- A house $\mathcal{H}=\{0,1,2\}$ has a ground floor, first floor and a garden.
- Cat (T_{i}) and a Mouse (J_{i}) each move to one of the two adjacent areas with probability $1 / 2$ each time step. (P is SRW on 3 -Cycle)
Question: Can the Mouse avoid the Cat indefinitely? (Provided $T_{0} \neq J_{0}$)
Answer: YES! - Jerry's Coupling
Markov chain $Z_{t}=\left(T_{t}, J_{t}\right)$ on $\mathcal{H} \times \mathcal{H}$:
- Run the Cat T_{t} as normal
- Mouse J_{t} moves according to the rule:

$$
J_{t+1}= \begin{cases}J_{t}+1 \bmod 3 & \text { if } T_{t+1}=T_{t}+1 \bmod 3 \\ J_{t}-1 \bmod 3 & \text { if } T_{t+1}=T_{t}-1 \bmod 3\end{cases}
$$

Mouse never shares a state with Cat, but is it a coupling?

Jerry's Coupling

Is it a coupling? Clearly the Cat's marginal distribution is correct, what about mouse? Let $\mathbf{P}_{(x, y)}[\cdot]:=\mathbf{P}\left[\cdot \mid Z_{t}=(x, y)\right]$, then for $x, y, z \in \mathcal{H}$
$\mathbf{P}_{(x, y)}\left[J_{t+1}=x\right]=\mathbf{P}\left[J_{t+1}=x, T_{t}=y\right]+\mathbf{P}\left[J_{t+1}=x, T_{t}=z\right]=0+1 / 2=1 / 2$
$\mathbf{P}_{(x, y)}\left[J_{t+1}=y\right]=\mathbf{P}\left[J_{t+1}=y, T_{t}=y\right]+\mathbf{P}\left[J_{t+1}=y, T_{t}=z\right]=0+0=0$ $\mathbf{P}_{(x, y)}\left[J_{t+1}=z\right]=\mathbf{P}\left[J_{t+1}=z, T_{t}=y\right]+\mathbf{P}\left[J_{t+1}=z, T_{t}=z\right]=1 / 2+0=1 / 2$.

Outline

Total Variation Distance

Coupling

Convergence Theorem - Proof and Application

Mixing Times

Convergence Theorem

Convergence Theorem (rephrased)

For any finite, irreducible, aperiodic M.C., $\lim _{t \rightarrow \infty} \max _{x \in \mathcal{I}}\left\|P_{x}^{t}-\pi\right\|_{t v}=0$.

Proof: Let $x, y \in \mathcal{I}$ and X_{t}, Y_{t} be copies of P with $X_{0}=x$ and $Y_{0} \sim \pi$. Couple $\left(X_{t}, Y_{t}\right)$ by running X_{t}, Y_{t} independently until the first time (τ) they meet, then they move together. More formally let \widetilde{P} be the chain on $\mathcal{I} \times \mathcal{I}$ where

$$
\widetilde{P}_{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)}=\left\{\begin{array}{ll}
P_{x_{1}, x_{2}} \cdot P_{y_{1}, y_{2}} & \text { if } x_{1} \neq y_{1} \\
P_{x_{1}, x_{2}} & \text { if } x_{1}=y_{1} \text { and } x_{2}=y_{2} \\
0 & \text { otherwise }
\end{array} \quad \begin{array}{c}
\text { This is the } \\
\text { Doblin } \\
\text { Coupling }
\end{array}\right.
$$

As P is finite, aperiodic and irreducible there exists some time $T<\infty$ such that, for every $w, z \in \mathcal{I}, P_{w, z}^{T}>0$. (you will prove this in problem class).
Let $C:=\min _{w, z \in \mathcal{I}} P_{w, z}^{T}>0$ so that $P_{x_{1}, z}^{T} \cdot P_{x_{2}, z}^{T} \geq C^{2}$ for all triples $\left(x_{1}, x_{2}, z\right)$.
Thus after T steps X_{T} and Y_{T} meet with probability at least C^{2}.
Since X_{t}, Y_{t} are independent until they meet

$$
\mathbf{P}[\tau \geq k \cdot T] \leq\left(1-C^{2}\right)^{k}, \quad k \in \mathbb{Z}_{+}
$$

Coupling Lemma: $\max _{x \in \mathcal{I}}\left\|P_{x}^{t}-\pi\right\|_{t v} \leq \mathbf{P}\left[X_{t} \neq Y_{t}\right]=\mathbf{P}[\tau>t] \underset{t \rightarrow \infty}{\longrightarrow} 0$.

Applications of Markov Chain Convergence

Markov Chain Monte Carlo (MCMC): Sampling, Counting, Integration, . . . Example : Markov Chain for Sampling a Matching of G.

Pick some initial matching M (may have no edges)

1. With probability $1 / 2$ stay at M
2. Otherwise pick $u v \in E$ and let

$$
M^{\prime}= \begin{cases}M-\{u v\} & \text { if } u v \in M \\ M \cup\{u v\} & \text { if } u v \text { can be added to } M \\ M \cup\{u v\}-\left\{e^{\prime}\right\} & \text { if either } u \text { or } v \text { is matched by } e^{\prime} \in M \\ M & \text { otherwise }\end{cases}
$$

3. Let $M=M^{\prime}$ and repeat steps $1-3$.

- Markov Chain on Matchings of G.
- Satisfies the Convergence theorem.
- Has uniform stationary distribution.
- Thus run it "long enough" then halt to return a uniform matching on G.

Outline

Total Variation Distance

Coupling

Convergence Theorem - Proof and Application

Mixing Times

Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov chains converge to stationarity.
Question How fast do they converge?
The Mixing time $\tau(\epsilon)$ of a Markov chain P with stationary distribution π is

$$
\tau(\epsilon)=\min \left\{t: \max _{x}\left\|P_{x}^{t}-\pi\right\|_{T V} \leq \epsilon\right\} .
$$

- This is how long we need to wait until we are " ε close" to stationarity .
- We often take $\varepsilon=1 / 4$, indeed let $t_{\text {mix }}:=\tau(1 / 4)$.
- For any fixed $0<\epsilon<\delta<1 / 2$ we have

$$
\tau(\epsilon) \leq\left\lceil\frac{\ln \epsilon}{\ln 2 \delta}\right\rceil \tau(\delta) .
$$

Thus for any $\epsilon<1 / 4$

$$
\tau(\epsilon) \leq\left\lceil\log _{2} \epsilon^{-1}\right\rceil t_{\text {mix }}
$$

Bounding Mixing Times Using a Coupling

_ Coupling Lemma for Mixing
Let $Z_{t}=\left(X_{t}, Y_{t}\right)$ be a coupling for a Markov chain P on \mathcal{I}. Suppose that there exists a T such that, for every $x, y \in \mathcal{I}$,

$$
\mathbf{P}\left[X_{T} \neq Y_{T} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon
$$

Then $\tau(\epsilon) \leq T$.

Proof: Let X_{i}, Y_{i} be coupled (e.g. Doblin coupling) copies of P starting from $x \in \mathcal{I}$ and π respectively. Now for any $A \subseteq \mathcal{I}$ and T, ϵ as above we have

$$
\begin{aligned}
\mathbf{P}\left[X_{T} \in A\right] & \geq \mathbf{P}\left[Y_{T} \in A, Y_{T}=X_{T}\right] \\
(\text { Complementry events }) & =1-\mathbf{P}\left[\left\{X_{T} \neq Y_{T}\right\} \cup\left\{Y_{T} \notin A\right\}\right] \\
(\text { Union bound }) & \geq 1-\mathbf{P}\left[Y_{T} \notin A\right]-\mathbf{P}\left[X_{T} \neq Y_{T}\right] \\
(\text { Hypothesis }) & \geq \mathbf{P}\left[Y_{T} \in A\right]-\epsilon \\
(Y \text { stationary }) & =\pi(A)-\epsilon .
\end{aligned}
$$

The same steps show $\mathbf{P}\left[X_{T} \notin A\right] \geq \pi(A)-\epsilon$ thus $\mathbf{P}\left[X_{T} \in A\right] \leq \pi(A)+\epsilon$. We now observe that $\tau(\epsilon)$ is at most T since

$$
\max _{x \in \mathcal{I}}\left\|P_{x}^{T}-\pi\right\|_{t v}:=\max _{x \in \mathcal{I}, A \subseteq \mathcal{I}}\left|P_{x}^{t}(A)-\pi(A)\right| \leq \epsilon
$$

Card Shuffling

A Permutation σ of $[n]=\{1, \ldots, n\}$ is a bijection $\sigma:[n] \rightarrow[n]$.
Let Σ_{n} be the set of all $n!$ permutations of $[n]$.

Sampling from uniform.

Given an ordered set $[n]$ we wish to sample a permutation of $[n]$ uniformly.

Top-to-Random (T-to-R) Shuffling

Given a deck of n cards take the top card and place it at random position in the deck.

- Markov chain on Σ_{n} with π uniform.

Prisoner Problem

Prisoner Problem

- There are 100 numbered prisoners in room A.
- Room B has a cupboard with 100 numbered drawers.
- The warden places each prisoners number an empty draw at random.
- The prisoners must go into room B alone and open at most 50 draws.
- Once finished they close the draws and return to their own cell.
- If all find their numbers then all survive, otherwise they all die.
- Prisoners fix a strategy pre-game, no communication after room B.

Question : What is the best strategy?
Question : What is \mathbf{P} [Success] for this strategy?

