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How Similar are Two Probability Measures?

——— Loaded Dice
= | present to you three loaded (unfair) dice A, B, C:

= Question 1 : Which dice is the least fair ?

= Question 2 : Which dice is the most fair ?

x| 1] 2 3 4 5 6
PIA—x] | 1/3 | 1A2 | 1A2 | 1A2 | 142 | 173
PIB—x| | /4| 1/8 | 1/8 | 1/8 | 1/8 | /4
PIC—x| | 1/6 | 1/6 | /8 | 1/8 | /8 | 9724

Question 1: Most of you choose A. Why?

Question 2: Dice B and C seem “fairer” than A
but which is fairest?

Question 3 : What do we mean by “fair"?

N&
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Total Variation Distance

The Total Variation Distance between two probability distributions 1 and n on
a countable state space 2 is given by

it =l = 3 7 I) = ().

weN

= Let d(p,v) = ||u — v, then d(-, -) is a metric on the space of measures.

Loaded Dice : let D be a fair dice and observe:

1 1 1 1 1 1
“D‘”M—§<zé‘§+4k ?ﬂ) 3

1 1 1 1 1 1
'W*BM—§(26*1+4%*§D—6

1 1 1 1 9 1
IW—CM*§<36_§+k EZ)’E

Thus
|D-Bll,=ID-Cl, and  [[D-Cl,,[|D-Cl, <|D-Al,-

So Ais the least “fair” however B and C are equally “fair” (in TV distance).
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Total Variation Distance

Lemma
For any probability distributions 1 and n on a countable state space Q

e =mlly = Zlu(w w)l—suplu(A) n(A)l-

wEQ

Proof by picture.
4/10
3/10 \ @ -—-- l/l/
LN -
W4 d
0 1 2 3 4

ol
_;:E Lecture 3: Coupling and convergence




TV Distances

Let P be a Markov Chain with stationary distribution .
= Let u be a prob. vector on Z (might be just one vertex) and t > 0. Then

PL=P,[X=]=P[X = | X~ ul,

is a probability measure on 7.

= For any p,
P —x

o

¢
P,—m

< max’
tv xXeT

tv

Convergence Theorem (rephrased)

For any finite, irreducible, aperiodic Markov Chain

P.— x| =0.

lim max’
tv

t—oo x€I
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Coupling

Ordered Coins
= Two coins: X is fair, Y achieves heads with probability 2/3. Thus:

X ~ Ber(1/2), Y ~ Ber(2/3).
= Question : Can you sample (toss) the coins together so that Y > X?

Answer: Yes!
= Let Z ~ Ber(1/3).
= Sample X and Z independently and let Y = max{X, Z}.

= Because 0
P[Y=1]=P[X=1]+P[X=0,Z2=1] «
= 1/2+(1/2)-(1/3) = 2/3, y

we have Y ~ Ber(q). However, Y = max{X,Z} > X.

Let 1 and n be two probability measures on a finite Q. A probability measure
von Q x Qis a Coupling of (u,n) if for every x € Q,

Yovly)=pn(x) and Y u(y,x) =n(x).

yeQ yeQ
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Coupling Lemma

Let 1 and n be two probability measures on a finite Q and v be a coupling
of (u,n) . If (X, Y) is distributed according to v then

I =nlly, <P[X#Y].

Furthermore, there always is a coupling which achieves equality.

Proof: [Proof of < only] For any w € Q2 we have
ww)=P[X=w]=P[X=w,Y=X]+P[X =w,Y # X]
=P[Y=w,Y=X]+P[X=w,Y#X] <nw)+P[X=w,Y #X].
The same calculation with 1 and » reversed gives
N(w) < plw) +PLY =w, Y # X].
Let Q" = {w: p(w) > n(w)} and Q~ = {w : p(w) < n(w)} then observe

2w =nlly =Y In(w) = n(w)|

= > (uw) = nw) + > (n(w) = pw))
<D P[X=wY#X]+ Y P[Y=uwY#X] <2P[Y#X].

]
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Coupling of Markov Chains

A Coupling of a Markov chain Pon Zisa M.C. Z; = (Xi, Yi) on Z x T s.t.:
P X1 =x'"|Zi=(xy)] =P[Xis1 =x" | Xe = x]
P[Yei =y [ Z=(xy)| =P[ Y=y | i=y].

Tom & Jerry Chain

= Ahouse H = {0, 1,2} has a ground floor, first floor and a garden.

= Cat (T;) and a Mouse (J;) each move to one of the two adjacent areas
with probability 1/2 each time step. (P is SRW on 3-Cycle)

Question : Can the Mouse avoid the Cat indefinitely? (Provided Ty # Jb)

Answer: YES! - Jerry’s Coupling
Markov chain Z; = (Ti, Ji) on H x H:
= Run the Cat T; as normal

= Mouse J; moves according to the rule:
J+1 mod3 if Ty =T+ 1 mod3
Jb—1 mod3 if T,y =T;—1 mod 3

Jry1 =

Mouse never shares a state with Cat, but is it a coupling?
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Jerry’s Coupling

Is it a coupling? Clearly the Cat’s marginal distribution is correct, what about
mouse? Let Py ) []:=P[- | Z = (x,y)], thenforx,y,ze H

Puylds1 =x]| =Pldy1 =x, Te =y +Pld1 =x, 1 =z] =0+1/2=1/2
Puylds1 =yl =Pld1 =y, Ti=y]+Pld1 =y, 1 =2]=0+0=0
P(ny)[JH_1 IZ] = P[Jt+1 :Z,Tz‘zy]—‘rP[JHq =2z, T[:Z] = 1/2+0= 1/2

@ 12 12 @
12 12

12 12 12 12
12 12
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Convergence Theorem - Proof and Application
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Convergence Theorem

Convergence Theorem (rephrased)

For any finite, irreducible, aperiodic M.C., tlim maxxez || Py — ﬂ—Htv =0.

Proof: Let x,y € Z and X;, Y; be copies of P with Xo = x and Y, ~ «. Couple
(Xt, Y) by running X;, Y; independently until the first time (7) they meet, then
they move together. More formally let P be the chain on Z x 7 where

Pxie  Prye i X1 # ¥ This is the
P(X1 Y1)s(Xa,y0) = PX1 X2 ifxi=yrand xg = yz . Doblin
0 otherwise Coupling

As P is finite, aperiodic and irreducible there exists some time T < oo such
that, for every w,z € 7, P.,C,z > 0. (you will prove this in problem class ).

Let C := minw,zez Py, > 0 so that Py, , - Py, , > C? for all triples (xi, Xz, Z).

Thus after T steps X7 and Y7 meet with probability at least C2.
Since X:, Y; are independent until they meet

Pl[r>k-T]<(1-C%", kez,.
Coupling Lemma: maxxez ||Py — 7|, <P[Xi # Yi] =P[7 > ] — 0. O
—00

o
5 5
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Applications of Markov Chain Convergence

Markov Chain Monte Carlo (MCMC): Sampling, Counting, Integration, . ..
Example : Markov Chain for Sampling a Matching of G.

Pick some initial matching M (may have no edges)
1. With probability 1/2 stay at M
2. Otherwise pick uv € E and let

M — {uv} ifuve M

M — Mu{uv} if uv can be added to M
MU {uv} — {€'} if either uor vis matchedby ¢ € M
M otherwise

3. Let M = M’ and repeat steps 1 — 3.

Markov Chain on Matchings of G.
Satisfies the Convergence theorem.
Has uniform stationary distribution.

Thus run it “long enough” then halt to
return a uniform matching on G.

>
u
~ocoM-cococoo
“o--cocococoo
c-oc-Hoocooo
od-o-coco0o0o
cococcof-oc-o

cocococo-E-oco
cocococo-ocoma

o
5 B
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov chains converge to stationarity.
Question How fast do they converge?

The Mixing time 7(e) of a Markov chain P with stationary distribution = is

T(e) = min{t: mXax’ P)t(_ﬂ-HTV < e}.

= This is how long we need to wait until we are “c close” to stationarity .
= We often take ¢ = 1/4, indeed let tyix := 7(1/4).
= For any fixed 0 < e < § < 1/2 we have

SCHIEARO)

Thus forany e < 1/4
7(€) < [IogZ 671—‘ tmix -

Sl
5 R
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Bounding Mixing Times Using a Coupling

Coupling Lemma for Mixing

Let Z: = (X, Y:) be a coupling for a Markov chain P on Z. Suppose that
there exists a T such that, for every x,y € Z,

PIXr#Yr [ Xo=x,Yo=y]<e.
Thenr(e) < T.

Proof: Let X;, Y; be coupled (e.g. Doblin coupling) copies of P starting from
Xx € Z and = respectively. Now for any A C 7 and T, € as above we have

P[Xr € A] > P[Yr €A Yr = Xr]
(Complementry events) =1 —P[{Xt # Yr}U{Yr ¢ A}]
(Union bound) > 1 —P[Yr ¢ A] — P[ X7t # Y7]
(Hypothesis) > P[ YT € A] — ¢
(Y stationary) = w(A) —e.
The same steps show P[ X7 ¢ A] > w(A) — e thus P[ X7 € A] < w(A) +e.
We now observe that 7(e) is at most T since

= max_|Pi(A) —m(A)| < e O

-
P, —m
tv XET,ACT

max ‘
XeT
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Card Shuffling

A Permutation o of [n] = {1,..., n} is a bijection ¢ : [n] — [n].

Let X, be the set of all n! permutations of [n].

Sampling from uniform.
| Given an ordered set [n] we wish to sample a permutation of [n] uniformly. ]

Top-to-Random (T-to-R) Shuffling

Given a deck of n cards take the top card and
place it at random position in the deck.

= Markov chain on X, with = uniform.

5l
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Prisoner Problem

——— Prisoner Problem \
= There are 100 numbered prisoners in room A.

= Room B has a cupboard with 100 numbered drawers.

= The warden places each prisoners number an empty draw at random.
= The prisoners must go into room B alone and open at most 50 draws.
= Once finished they close the draws and return to their own cell.

If all find their numbers then all survive, otherwise they all die.
= Prisoners fix a strategy pre-game, no communication after room B.

Question : What is the best strategy?

Question : What is P[ Success]| for this strategy?
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