Lecture 3: Coupling and Convergence

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Lent 2019

Coupling

Convergence Theorem - Proof and Application

How Similar are Two Probability Measures?

- Loaded Dice
- I present to you three *loaded* (unfair) dice A, B, C:

				4		
$\mathbf{P}[A=x]$	1/3	1/12	1/12	1/12	1/12	1/3
$\mathbf{P}[B=x]$	1/4	1/8	1/8	1/8	1/8	1/4
$\mathbf{P}[C=x]$	1/6	1/6	1/8	1/8	1/8	9/24

- Question 1 : Which dice is the least fair ?
- Question 2 : Which dice is the most fair ?

Question 1: Most of you choose A. Why?

Question 2: Dice *B* and *C* seem "fairer" than *A* but which is fairest?

Question 3 : What do we mean by "fair"?

The *Total Variation Distance* between two probability distributions μ and η on a countable state space Ω is given by

$$\|\mu - \eta\|_{tv} = \frac{1}{2} \sum_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)|.$$

• Let $d(\mu, \nu) = \|\mu - \nu\|_{tv}$, then $d(\cdot, \cdot)$ is a metric on the space of measures.

Loaded Dice : let *D* be a fair dice and observe:

$$\begin{split} \|D - A\|_{tv} &= \frac{1}{2} \left(2 \left| \frac{1}{6} - \frac{1}{3} \right| + 4 \left| \frac{1}{6} - \frac{1}{12} \right| \right) = \frac{1}{3} \\ \|D - B\|_{tv} &= \frac{1}{2} \left(2 \left| \frac{1}{6} - \frac{1}{4} \right| + 4 \left| \frac{1}{6} - \frac{1}{8} \right| \right) = \frac{1}{6} \\ \|D - C\|_{tv} &= \frac{1}{2} \left(3 \left| \frac{1}{6} - \frac{1}{8} \right| + \left| \frac{1}{6} - \frac{9}{24} \right| \right) = \frac{1}{6}. \end{split}$$

Thus

 $\|D - B\|_{tv} = \|D - C\|_{tv} \quad \text{and} \quad \|D - C\|_{tv}, \|D - C\|_{tv} < \|D - A\|_{tv}.$ So *A* is the least "fair" however *B* and *C* are equally "fair" (in TV distance).

Lemma For any probability distributions μ and η on a countable state space Ω $\|\mu - \eta\|_{tv} := \frac{1}{2} \sum_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)| = \sup_{A \subset \Omega} |\mu(A) - \eta(A)|.$

Proof by picture.

TV Distances

Let *P* be a Markov Chain with stationary distribution π .

• Let μ be a prob. vector on \mathcal{I} (might be just one vertex) and $t \ge 0$. Then

$$\boldsymbol{P}_{\mu}^{t} := \boldsymbol{\mathsf{P}}_{\mu}[\boldsymbol{X}_{t} = \cdot] = \boldsymbol{\mathsf{P}}[\,\boldsymbol{X}_{t} = \cdot \mid \boldsymbol{X}_{0} \sim \mu\,]\,,$$

is a probability measure on \mathcal{I} .

• For any μ ,

$$\left\| \boldsymbol{P}_{\mu}^{t} - \pi \right\|_{tv} \leq \max_{x \in \mathcal{I}} \left\| \boldsymbol{P}_{x}^{t} - \pi \right\|_{tv}.$$

Convergence Theorem (rephrased)
 For any finite, irreducible, aperiodic Markov Chain

$$\lim_{t\to\infty}\max_{x\in\mathcal{I}}\left\|\boldsymbol{P}_x^t-\pi\right\|_{tv}=0.$$

Coupling

Convergence Theorem - Proof and Application

Coupling

Ordered Coins

- Two coins: *X* is fair, *Y* achieves heads with probability 2/3. Thus: $X \sim \text{Ber}(1/2), Y \sim \text{Ber}(2/3).$
- Question : Can you sample (toss) the coins together so that $Y \ge X$?

- Answer: Yes! -

- Let Z ~ Ber(1/3).
- Sample X and Z independently and let Y = max {X, Z}.
- Because

$$\mathbf{P}[Y=1] = \mathbf{P}[X=1] + \mathbf{P}[X=0, Z=1]$$

= 1/2 + (1/2) \cdot (1/3) = 2/3,

we have $Y \sim Ber(q)$. However, $Y = max \{X, Z\} \ge X$.

Let μ and η be two probability measures on a finite Ω . A probability measure ν on $\Omega \times \Omega$ is a *Coupling* of (μ, η) if for every $x \in \Omega$,

$$\sum_{y\in\Omega}
u(x,y)=\mu(x)$$
 and $\sum_{y\in\Omega}
u(y,x)=\eta(x).$

Coupling Lemma

Let μ and η be two probability measures on a finite Ω and ν be a coupling of (μ, η) . If (X, Y) is distributed according to ν then

$$\|\mu - \eta\|_{tv} \leq \mathbf{P}[X \neq Y].$$

Furthermore, there always is a coupling which achieves equality.

Proof: [Proof of \leq only] For any $\omega \in \Omega$ we have $\mu(\omega) = \mathbf{P}[X = \omega] = \mathbf{P}[X = \omega, Y = X] + \mathbf{P}[X = \omega, Y \neq X]$ $= \mathbf{P}[Y = \omega, Y = X] + \mathbf{P}[X = \omega, Y \neq X] \leq \eta(\omega) + \mathbf{P}[X = \omega, Y \neq X].$

The same calculation with μ and η reversed gives

$$\begin{split} \eta(\omega) &\leq \mu(\omega) + \mathbf{P}[|Y = \omega, Y \neq X] \,. \\ \text{Let } \Omega^+ &= \{\omega : \mu(\omega) \geq \eta(\omega)\} \text{ and } \Omega^- = \{\omega : \mu(\omega) < \eta(\omega)\} \text{ then observe} \\ 2 \cdot \|\mu - \eta\|_{tv} &= \sum_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)| \\ &= \sum_{\omega \in \Omega^+} (\mu(\omega) - \eta(\omega)) + \sum_{\omega \in \Omega^-} (\eta(\omega) - \mu(\omega)) \\ &\leq \sum_{\omega \in \Omega^+} \mathbf{P}[|X = \omega, Y \neq X] + \sum_{\omega \in \Omega^-} \mathbf{P}[|Y = \omega, Y \neq X] \leq 2\mathbf{P}[|Y \neq X] \,. \end{split}$$

Coupling of Markov Chains

A Coupling of a Markov chain P on \mathcal{I} is a M.C. $Z_t = (X_t, Y_t)$ on $\mathcal{I} \times \mathcal{I}$ s.t.:

$$\begin{aligned} & \mathbf{P} \big[X_{t+1} = x' \mid Z_t = (x, y) \big] = \mathbf{P} \big[X_{t+1} = x' \mid X_t = x \big] \\ & \mathbf{P} \big[Y_{t+1} = y' \mid Z_t = (x, y) \big] = \mathbf{P} \big[Y_{t+1} = y' \mid Y_t = y \big] \end{aligned}$$

Tom & Jerry Chain

- A house $\mathcal{H} = \{0,1,2\}$ has a ground floor, first floor and a garden.
- Cat (*T_i*) and a Mouse (*J_i*) each move to one of the two adjacent areas with probability 1/2 each time step. (*P* is SRW on 3-Cycle)

Question : Can the Mouse avoid the Cat indefinitely? (Provided $T_0 \neq J_0$)

Answer: YES! - Jerry's Coupling Markov chain $Z_t = (T_t, J_t)$ on $\mathcal{H} \times \mathcal{H}$: • Run the Cat T_t as normal • Mouse J_t moves according to the rule: $J_{t+1} = \begin{cases} J_t + 1 \mod 3 & \text{if } T_{t+1} = T_t + 1 \mod 3 \\ J_t - 1 \mod 3 & \text{if } T_{t+1} = T_t - 1 \mod 3 \end{cases}$

Mouse never shares a state with Cat, but is it a coupling?

Jerry's Coupling

Is it a coupling? Clearly the Cat's marginal distribution is correct, what about mouse? Let $\mathbf{P}_{(x,y)}[\cdot] := \mathbf{P}[\cdot | Z_t = (x, y)]$, then for $x, y, z \in \mathcal{H}$

$$\begin{aligned} \mathbf{P}_{(x,y)}[J_{t+1} = x] &= \mathbf{P}[J_{t+1} = x, T_t = y] + \mathbf{P}[J_{t+1} = x, T_t = z] = 0 + 1/2 = 1/2 \\ \mathbf{P}_{(x,y)}[J_{t+1} = y] &= \mathbf{P}[J_{t+1} = y, T_t = y] + \mathbf{P}[J_{t+1} = y, T_t = z] = 0 + 0 = 0 \\ \mathbf{P}_{(x,y)}[J_{t+1} = z] &= \mathbf{P}[J_{t+1} = z, T_t = y] + \mathbf{P}[J_{t+1} = z, T_t = z] = 1/2 + 0 = 1/2. \end{aligned}$$

Coupling

Convergence Theorem - Proof and Application

Convergence Theorem

Convergence Theorem (rephrased) For any finite, irreducible, aperiodic M.C., $\lim_{t\to\infty} \max_{x\in\mathcal{I}} \|P_x^t - \pi\|_{tv} = 0.$

Proof: Let $x, y \in \mathcal{I}$ and X_t, Y_t be copies of P with $X_0 = x$ and $Y_0 \sim \pi$. Couple (X_t, Y_t) by running X_t, Y_t independently until the first time (τ) they meet, then they move together. More formally let \tilde{P} be the chain on $\mathcal{I} \times \mathcal{I}$ where

$$\widetilde{P}_{(x_1,y_1),(x_2,y_2)} = \begin{cases} P_{x_1,x_2} \cdot P_{y_1,y_2} & \text{if } x_1 \neq y_1 \\ P_{x_1,x_2} & \text{if } x_1 = y_1 \text{ and } x_2 = y_2 \\ 0 & \text{otherwise} \end{cases}$$
This is the Doblin Coupling

As *P* is finite, aperiodic and irreducible there exists some time $T < \infty$ such that, for every $w, z \in \mathcal{I}, P_{w,z}^T > 0$. (you will prove this in problem class). Let $C := \min_{w,z \in \mathcal{I}} P_{w,z}^T > 0$ so that $P_{x_1,z}^T \cdot P_{x_2,z}^T \ge C^2$ for all triples (x_1, x_2, z) . Thus after *T* steps X_T and Y_T meet with probability at least C^2 .

Since X_t , Y_t are independent until they meet

$$\mathbf{P}[\tau \geq k \cdot T] \leq (1 - C^2)^k, \qquad k \in \mathbb{Z}_+.$$

 $\text{Coupling Lemma: } \max_{x \in \mathcal{I}} \left\| \boldsymbol{P}_x^t - \pi \right\|_{tv} \leq \mathbf{P}[\left. X_t \neq \right. Y_t] = \mathbf{P}[\left. \tau > t \right] \underset{t \to \infty}{\longrightarrow} \mathbf{0}. \quad \Box$

Applications of Markov Chain Convergence

Markov Chain Monte Carlo (MCMC): Sampling, Counting, Integration, ... Example : Markov Chain for Sampling a Matching of G. Pick some initial matching M (may have no edges) 1. With probability 1/2 stay at M 2. Otherwise pick $uv \in E$ and let $M' = \begin{cases} M - \{uv\} & \text{if } uv \in M \\ M \cup \{uv\} & \text{if } uv \text{ can be added to } M \\ M \cup \{uv\} - \{e'\} & \text{if either } u \text{ or } v \text{ is matched by } e' \in M \\ M & \text{otherwise} \end{cases}$ 3. Let M = M' and repeat steps 1 - 3.

- Markov Chain on Matchings of *G*.
- Satisfies the Convergence theorem.
- Has uniform stationary distribution.
- Thus run it "long enough" then halt to return a uniform matching on *G*.

Coupling

Convergence Theorem - Proof and Application

Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov chains converge to stationarity.

Question How fast do they converge?

The *Mixing time* $\tau(\epsilon)$ of a Markov chain *P* with stationary distribution π is

$$\tau(\epsilon) = \min\left\{t: \max_{x} \left\| \boldsymbol{P}_{x}^{t} - \pi \right\|_{TV} \leq \epsilon\right\}.$$

- This is how long we need to wait until we are " ε close" to stationarity .
- We often take $\varepsilon = 1/4$, indeed let $t_{mix} := \tau(1/4)$.
- For any fixed $0 < \epsilon < \delta < 1/2$ we have

$$au(\epsilon) \leq \left\lceil \frac{\ln \epsilon}{\ln 2\delta} \right\rceil au(\delta).$$

Thus for any $\epsilon < 1/4$

$$\tau(\epsilon) \leq \left\lceil \log_2 \epsilon^{-1} \right\rceil t_{mix}.$$

Bounding Mixing Times Using a Coupling

Coupling Lemma for Mixing -

Let $Z_t = (X_t, Y_t)$ be a coupling for a Markov chain P on \mathcal{I} . Suppose that there exists a T such that, for every $x, y \in \mathcal{I}$,

$$\mathbf{P}[X_T \neq Y_T \mid X_0 = x, Y_0 = y] \leq \varepsilon.$$

Then $\tau(\epsilon) \leq T$.

Proof: Let X_i , Y_i be coupled (e.g. Doblin coupling) copies of P starting from $x \in \mathcal{I}$ and π respectively. Now for any $A \subseteq \mathcal{I}$ and T, ϵ as above we have

$$\mathbf{P}[X_T \in A] \ge \mathbf{P}[Y_T \in A, Y_T = X_T]$$
(Complementry events) = 1 - $\mathbf{P}[\{X_T \neq Y_T\} \cup \{Y_T \notin A\}]$
(Union bound) $\ge 1 - \mathbf{P}[Y_T \notin A] - \mathbf{P}[X_T \neq Y_T]$
(Hypothesis) $\ge \mathbf{P}[Y_T \in A] - \epsilon$
(Y stationary) = $\pi(A) - \epsilon$.

The same steps show $\mathbf{P}[X_T \notin A] \ge \pi(A) - \epsilon$ thus $\mathbf{P}[X_T \in A] \le \pi(A) + \epsilon$. We now observe that $\tau(\epsilon)$ is at most *T* since

$$\max_{x\in\mathcal{I}}\left\| oldsymbol{P}_x^{ au} - \pi
ight\|_{t_V} := \max_{x\in\mathcal{I}, A\subseteq\mathcal{I}}\left| oldsymbol{P}_x^t(A) - \pi(A)
ight| \leq \epsilon.$$

Card Shuffling

A *Permutation* σ of $[n] = \{1, \ldots, n\}$ is a bijection $\sigma : [n] \rightarrow [n]$.

Let Σ_n be the set of all n! permutations of [n].

Sampling from uniform.

Given an ordered set [n] we wish to sample a permutation of [n] uniformly.

Given a deck of *n* cards take the top card and place it at random position in the deck.

• Markov chain on Σ_n with π uniform.

Prisoner Problem

- Prisoner Problem

- There are 100 numbered prisoners in room A.
- Room *B* has a cupboard with 100 numbered drawers.
- The warden places each prisoners number an empty draw at random.
- The prisoners must go into room *B* alone and open at most 50 draws.
- Once finished they close the draws and return to their own cell.
- If all find their numbers then all survive, otherwise they all die.
- Prisoners fix a strategy pre-game, no communication after room B.

Question : What is the best strategy?

Question : What is P[Success] for this strategy?

