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How Similar are Two Probability Measures?

I present to you three loaded (unfair) dice A,B,C:
x 1 2 3 4 5 6

P[ A = x ] 1/3 1/12 1/12 1/12 1/12 1/3
P[ B = x ] 1/4 1/8 1/8 1/8 1/8 1/4
P[ C = x ] 1/6 1/6 1/8 1/8 1/8 9/24

Question 1 : Which dice is the least fair ?

Question 2 : Which dice is the most fair ?

Loaded Dice

Question 1: Most of you choose A. Why?

Question 2: Dice B and C seem “fairer” than A
but which is fairest?

Question 3 : What do we mean by “fair”?
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Total Variation Distance

The Total Variation Distance between two probability distributions µ and η on
a countable state space Ω is given by

‖µ− η‖tv =
1
2

∑
ω∈Ω

|µ(ω)− η(ω)|.

Let d(µ, ν) = ‖µ− ν‖tv , then d(·, ·) is a metric on the space of measures.

Loaded Dice : let D be a fair dice and observe:

‖D − A‖tv =
1
2

(
2
∣∣∣∣16 − 1

3

∣∣∣∣+ 4
∣∣∣∣16 − 1

12

∣∣∣∣) =
1
3

‖D − B‖tv =
1
2

(
2
∣∣∣∣16 − 1

4

∣∣∣∣+ 4
∣∣∣∣16 − 1

8

∣∣∣∣) =
1
6

‖D − C‖tv =
1
2

(
3
∣∣∣∣16 − 1

8

∣∣∣∣+

∣∣∣∣16 − 9
24

∣∣∣∣) =
1
6
.

Thus

‖D − B‖tv = ‖D − C‖tv and ‖D − C‖tv , ‖D − C‖tv < ‖D − A‖tv .

So A is the least “fair” however B and C are equally “fair” (in TV distance).
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Total Variation Distance

For any probability distributions µ and η on a countable state space Ω

‖µ− η‖tv :=
1
2

∑
ω∈Ω

|µ(ω)− η(ω)| = sup
A⊂Ω
|µ(A)− η(A)|.

Lemma

Proof by picture.
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TV Distances

Let P be a Markov Chain with stationary distribution π.

Let µ be a prob. vector on I (might be just one vertex) and t ≥ 0. Then

P t
µ := Pµ[Xt = ·] = P[ Xt = · | X0 ∼ µ ] ,

is a probability measure on I.

For any µ, ∥∥∥P t
µ − π

∥∥∥
tv
≤ max

x∈I

∥∥∥P t
x − π

∥∥∥
tv
.

For any finite, irreducible, aperiodic Markov Chain

lim
t→∞

max
x∈I

∥∥∥P t
x − π

∥∥∥
tv

= 0.

Convergence Theorem (rephrased)
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Coupling

Two coins: X is fair, Y achieves heads with probability 2/3. Thus:
X ∼ Ber(1/2), Y ∼ Ber(2/3).

Question : Can you sample (toss) the coins together so that Y ≥ X?

Ordered Coins

Let Z ∼ Ber(1/3).

Sample X and Z independently and let Y = max {X ,Z}.
Because

P[ Y = 1 ] = P[ X = 1 ] + P[ X = 0,Z = 1 ]

= 1/2 + (1/2) · (1/3) = 2/3,

we have Y ∼ Ber(q). However, Y = max {X ,Z} ≥ X .

Answer: Yes!

Let µ and η be two probability measures on a finite Ω. A probability measure
ν on Ω× Ω is a Coupling of (µ, η) if for every x ∈ Ω,∑

y∈Ω

ν(x , y) = µ(x) and
∑
y∈Ω

ν(y , x) = η(x).
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Let µ and η be two probability measures on a finite Ω and ν be a coupling
of (µ, η) . If (X ,Y ) is distributed according to ν then

‖µ− η‖tv ≤ P[ X 6= Y ] .

Furthermore, there always is a coupling which achieves equality.

Coupling Lemma

Proof: [Proof of ≤ only] For any ω ∈ Ω we have

µ(ω) = P[ X = ω ] = P[ X = ω,Y = X ] + P[ X = ω,Y 6= X ]

= P[ Y = ω,Y = X ] + P[ X = ω,Y 6= X ] ≤ η(ω) + P[ X = ω,Y 6= X ] .

The same calculation with µ and η reversed gives

η(ω) ≤ µ(ω) + P[ Y = ω,Y 6= X ] .

Let Ω+ = {ω : µ(ω) ≥ η(ω)} and Ω− = {ω : µ(ω) < η(ω)} then observe

2 · ‖µ− η‖tv =
∑
ω∈Ω

|µ(ω)− η(ω)|

=
∑
ω∈Ω+

(µ(ω)− η(ω)) +
∑
ω∈Ω−

(η(ω)− µ(ω))

≤
∑
ω∈Ω+

P[ X = ω,Y 6= X ] +
∑
ω∈Ω−

P[ Y = ω,Y 6= X ] ≤ 2P[ Y 6= X ] .
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Coupling of Markov Chains

A Coupling of a Markov chain P on I is a M.C. Zt = (Xt ,Yt ) on I × I s.t.:

P
[

Xt+1 = x ′ | Zt = (x , y)
]

= P
[

Xt+1 = x ′ | Xt = x
]

P
[

Yt+1 = y ′ | Zt = (x , y)
]

= P
[

Yt+1 = y ′ | Yt = y
]
.

A house H = {0, 1, 2} has a ground floor, first floor and a garden.

Cat (Ti ) and a Mouse (Ji ) each move to one of the two adjacent areas
with probability 1/2 each time step. (P is SRW on 3-Cycle)

Question : Can the Mouse avoid the Cat indefinitely? (Provided T0 6= J0)

Tom & Jerry Chain

Markov chain Zt = (Tt , Jt ) on H×H:

Run the Cat Tt as normal

Mouse Jt moves according to the rule:

Jt+1 =

{
Jt + 1 mod 3 if Tt+1 = Tt + 1 mod 3
Jt − 1 mod 3 if Tt+1 = Tt − 1 mod 3

Answer: YES! - Jerry’s Coupling

Mouse never shares a state with Cat, but is it a coupling?
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Jerry’s Coupling

Is it a coupling? Clearly the Cat’s marginal distribution is correct, what about
mouse? Let P(x,y)[·] := P[ · | Zt = (x , y) ], then for x , y , z ∈ H

P(x,y)[Jt+1 = x ] = P[ Jt+1 = x ,Tt = y ] + P[ Jt+1 = x ,Tt = z ] = 0 + 1/2 = 1/2

P(x,y)[Jt+1 = y ] = P[ Jt+1 = y ,Tt = y ] + P[ Jt+1 = y ,Tt = z ] = 0 + 0 = 0

P(x,y)[Jt+1 = z] = P[ Jt+1 = z,Tt = y ] + P[ Jt+1 = z,Tt = z ] = 1/2 + 0 = 1/2.

(2,1)

(0,2)

(1,0)

(1,2)

(2,0)

(0,1)

(1,1) (0,0) (2,2)

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2 1/2

1/2

1/2
111
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Convergence Theorem

For any finite, irreducible, aperiodic M.C., lim
t→∞

maxx∈I
∥∥P t

x − π
∥∥

tv = 0.

Convergence Theorem (rephrased)

Proof: Let x , y ∈ I and Xt ,Yt be copies of P with X0 = x and Y0 ∼ π. Couple
(Xt ,Yt ) by running Xt ,Yt independently until the first time (τ ) they meet, then
they move together. More formally let P̃ be the chain on I × I where

P̃(x1,y1),(x2,y2) =


Px1,x2 · Py1,y2 if x1 6= y1

Px1,x2 if x1 = y1 and x2 = y2

0 otherwise
.

As P is finite, aperiodic and irreducible there exists some time T <∞ such
that, for every w , z ∈ I, PT

w,z > 0. (you will prove this in problem class ).

Let C := minw,z∈I PT
w,z > 0 so that PT

x1,z · P
T
x2,z ≥ C2 for all triples (x1, x2, z).

Thus after T steps XT and YT meet with probability at least C2.
Since Xt ,Yt are independent until they meet

P[ τ ≥ k · T ] ≤ (1− C2)k , k ∈ Z+.

Coupling Lemma: maxx∈I
∥∥P t

x − π
∥∥

tv ≤ P[ Xt 6= Yt ] = P[ τ > t ] −→
t→∞

0. �

This is the
Doblin

Coupling
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Applications of Markov Chain Convergence

Markov Chain Monte Carlo (MCMC): Sampling, Counting, Integration, . . .

Pick some initial matching M (may have no edges)

1. With probability 1/2 stay at M

2. Otherwise pick uv ∈ E and let

M ′ =


M − {uv} if uv ∈ M
M ∪ {uv} if uv can be added to M
M ∪ {uv} − {e′} if either u or v is matched by e′ ∈ M
M otherwise

3. Let M = M ′ and repeat steps 1− 3.

Example : Markov Chain for Sampling a Matching of G.

Markov Chain on Matchings of G.

Satisfies the Convergence theorem.

Has uniform stationary distribution.

Thus run it “long enough” then halt to
return a uniform matching on G.

A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0



A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov chains converge to stationarity.

Question How fast do they converge?

The Mixing time τ(ε) of a Markov chain P with stationary distribution π is

τ(ε) = min
{

t : max
x

∥∥∥P t
x − π

∥∥∥
TV
≤ ε
}
.

This is how long we need to wait until we are “ε close” to stationarity .
We often take ε = 1/4, indeed let tmix := τ(1/4).

For any fixed 0 < ε < δ < 1/2 we have

τ(ε) ≤
⌈

ln ε

ln 2δ

⌉
τ(δ).

Thus for any ε < 1/4
τ(ε) ≤

⌈
log2 ε

−1
⌉

tmix .
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Bounding Mixing Times Using a Coupling

Let Zt = (Xt ,Yt ) be a coupling for a Markov chain P on I. Suppose that
there exists a T such that, for every x , y ∈ I,

P[ XT 6= YT | X0 = x ,Y0 = y ] ≤ ε.

Then τ(ε) ≤ T .

Coupling Lemma for Mixing

Proof: Let Xi ,Yi be coupled (e.g. Doblin coupling) copies of P starting from
x ∈ I and π respectively. Now for any A ⊆ I and T , ε as above we have

P[ XT ∈ A ] ≥ P[ YT ∈ A,YT = XT ]

(Complementry events) = 1− P[ {XT 6= YT} ∪ {YT /∈ A} ]

(Union bound) ≥ 1− P[ YT /∈ A ]− P[ XT 6= YT ]

(Hypothesis) ≥ P[ YT ∈ A ]− ε
(Y stationary) = π(A)− ε.

The same steps show P[ XT /∈ A ] ≥ π(A)− ε thus P[ XT ∈ A ] ≤ π(A) + ε.
We now observe that τ(ε) is at most T since

max
x∈I

∥∥∥PT
x − π

∥∥∥
tv

:= max
x∈I,A⊆I

|P t
x (A)− π(A)| ≤ ε.
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Card Shuffling

A Permutation σ of [n] = {1, . . . , n} is a bijection σ : [n]→ [n].

Let Σn be the set of all n! permutations of [n].

Given an ordered set [n] we wish to sample a permutation of [n] uniformly.
Sampling from uniform.

Given a deck of n cards take the top card and
place it at random position in the deck.

Markov chain on Σn with π uniform.

Top-to-Random (T-to-R) Shuffling
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Prisoner Problem

There are 100 numbered prisoners in room A.

Room B has a cupboard with 100 numbered drawers.

The warden places each prisoners number an empty draw at random.

The prisoners must go into room B alone and open at most 50 draws.

Once finished they close the draws and return to their own cell.

If all find their numbers then all survive, otherwise they all die.

Prisoners fix a strategy pre-game, no communication after room B.

Prisoner Problem

Question : What is the best strategy?

Question : What is P[ Success ] for this strategy?
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