Lecture 2: Markov Chains

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Outline

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Bonus: Gamblers Ruin

Stochastic Process

A Stochastic Process $X=\left\{X_{t}: t \in T\right\}$ is a collection of random variables indexed by time (often $T=\mathbb{N}$) and in this case $X=\left(X_{i}\right)_{i=0}^{\infty}$.

A vector $\mu=\left(\mu_{i}\right)_{i \in \mathcal{I}}$ is a Probability Distribution or Probability Vector on \mathcal{I} if $\mu_{i} \in[0,1]$ and

$$
\sum_{i \in \mathcal{I}} \mu_{i}=1
$$

Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that $\left(X_{i}\right)_{i=0}^{\infty}$ is a Markov Chain on State Space \mathcal{I} with Initial Distribution μ and Transition Matrix P if for all $t \geq 0$ and $i_{0}, \cdots \in \mathcal{I}$,

- $\mathbf{P}\left[X_{0}=i\right]=\mu_{i}$.
- The Markov Property holds:

$$
\mathbf{P}\left[X_{t+1}=i_{t+1} \mid X_{t}=i_{t}, \ldots, X_{0}=i_{0}\right]=\mathbf{P}\left[X_{t+1}=i_{t+1} \mid X_{t}=i_{t}\right]:=P_{i_{t}, i_{t+1}}
$$

From the definition one can deduce that (check!)

- $\mathbf{P}\left[X_{t+1}=i_{t+1}, X_{t}=i_{t}, \ldots, X_{1}=i_{1}, X_{0}=i_{0}\right]=\mu_{i_{0}} \cdot P_{i_{0}, i_{1}} \cdots P_{i_{t-1}, i_{t}} \cdot P_{i_{t}, i_{t+1}}$
- $\mathbf{P}\left[X_{t+m}=i\right]=\sum_{j \in \mathcal{I}} \mathbf{P}\left[X_{t+m}=i \mid X_{t}=j\right] \mathbf{P}\left[X_{t}=j\right]$

If the Markov Chain starts from as single state $i \in \mathcal{I}$ then we use the notation

$$
\mathbf{P}_{i}\left[X_{k}=j\right]:=\mathbf{P}\left[X_{k}=j \mid X_{0}=i\right] .
$$

What does a Markov Chain Look Like?

Example : the carbohydrate served with lunch in the college cafeteria.

This has transition matrix:

$P=$| Rice | Pasta | Potato |
| :---: | :---: | :---: |
| $\left[\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 4 & 0 & 3 / 4 \\ 3 / 5 & 2 / 5 & 0\end{array}\right]$Rice
 Pasta
 Potato | | |

Transition Matrices

The Transition Matrix P of a Markov chain (μ, P) on $\mathcal{I}=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P_{1,1} & \ldots & P_{1, n} \\
\vdots & \ddots & \vdots \\
P_{n, 1} & \ldots & P_{n, n}
\end{array}\right)
$$

- $p_{i}(t)$: probability the chain is in state i at time t.
- $\vec{p}(t)=\left(p_{0}(t), p_{1}(t), \ldots, p_{n}(t)\right)$: State vector at time t (Row vector).
- Multiplying $\vec{p}(t)$ by P corresponds to advancing the chain one step:

$$
p_{i}(t+1)=\sum_{j \in \mathcal{I}} p_{j}(t) \cdot P_{j, i} \quad \text { and thus } \quad \vec{p}(t+1)=\vec{p}(t) \cdot P .
$$

- The Markov Property and line above imply that for any $k, t \geq 0$

$$
\vec{p}(t+k)=\vec{p}(t) \cdot P^{k} \quad \text { and thus } \quad P_{i, j}^{k}=\mathbf{P}\left[X_{k}=j \mid X_{0}=i\right] .
$$

Thus $p_{i}(t)=\left(\mu P^{t}\right)_{i}$ and so $\vec{p}(t)=\mu P^{t}=\left((\mu P)_{1},(\mu P)_{2}, \ldots,(\mu P)_{n}\right)$.

Outline

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Bonus: Gamblers Ruin

Stopping and Hitting Times

A non-negative integer random variable τ is a Stopping Time for $\left(X_{i}\right)_{i \geq 0}$ if for every $n \geq 0$ the event $\{\tau=n\}$ depends only on X_{0}, \ldots, X_{n}.

Example - College Carbs Stopping times:
\checkmark "We had Pasta yesterday"
\times "We are having Rice next Thursday"
For two states $x, y \in \mathcal{I}$ we call $h_{x, y}$ the Hitting Time of y from x :

$$
h_{x, y}:=\mathbf{E}_{x}\left[\tau_{y}\right]=\mathbf{E}\left[\tau_{y} \mid X_{0}=x\right] \quad \text { where } \tau_{y}=\inf \left\{t \geq 0: X_{t}=y\right\} .
$$

For $x \in \mathcal{I}$ the First Return Time $\mathbf{E}_{x}\left[\tau_{x}^{+}\right]$of x is defined

$$
\mathbf{E}_{x}\left[\tau_{x}^{+}\right]=\mathbf{E}\left[\tau_{x}^{+} \mid X_{0}=x\right] \quad \text { where } \tau_{x}^{+}=\inf \left\{t \geq 1: X_{t}=x\right\} .
$$

Comments

- Notice that $h_{x, x}=\mathbf{E}_{x}\left[\tau_{x}\right]=0$ whereas $\mathbf{E}_{x}\left[\tau_{x}^{+}\right] \geq 1$.
- For any $y \neq x, h_{x, y}=\mathbf{E}_{x}\left[\tau_{y}^{+}\right]$.
- Hitting times are the solution to the set of linear equations:

$$
\mathbf{E}_{x}\left[\tau_{y}^{+}\right] \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \mathcal{I}} \mathbf{E}_{z}\left[\tau_{y}\right] \cdot P_{x, z} \quad \forall x, y \in V .
$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P_{i j}=\left\{\begin{array}{ll}
\frac{1}{d(i)} & \text { if } i j \in E \\
0 & \text { if } i j \notin E
\end{array} .\right.
$$

Outline

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Bonus: Gamblers Ruin

Irreducible Markov Chains

A Markov chain is Irreducible if for every pair of states $(i, j) \in \mathcal{I}^{2}$ there is an integer $m \geq 0$ such that $P_{i, j}^{m}>0$.

\checkmark irreducible

\times not-irreducible (thus reducible)

Finite Hitting Theorem
For any states x and y of a finite irreducible Markov chain $\mathbf{E}_{x}\left[\tau_{y}^{+}\right]<\infty$.

Stationary Distribution

A probability distribution $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is the Stationary Distribution of a Markov chain if $\pi P=\pi$, i.e. π is a left eigenvector with eigenvalue 1 .

College carbs example:
$\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{\pi}\right) \cdot\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 4 & 0 & 3 / 4 \\ 3 / 5 & 2 / 5 & 0\end{array}\right)=\left(\frac{4}{13}, \frac{4}{\frac{4}{3}}, \frac{5}{13}\right)$

A Markov chain reaches Equilibrium if $\vec{p}(t)=\pi$ for some t. If equilibrium is reached it Persists: If $\vec{p}(t)=\pi$ then $\vec{p}(t+k)=\pi$ for all $k \geq 0$ since

$$
\vec{p}(t+1)=\vec{p}(t) P=\pi P=\pi=\vec{p}(t) .
$$

Existence of a Stationary Distribution

Existence and uniqueness of a positive stationary distribution

Let P be finite, irreducible M.C., then there is a unique probability distribution π on \mathcal{I} such that $\pi=\pi P$ and $\pi_{x}=1 / \mathbf{E}_{x}\left[\tau_{x}^{+}\right]>0, \forall x \in \mathcal{I}$.

Proof: [Existence] Fix $z \in \mathcal{I}$ and define $\mu_{y}=\sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t}=y, \tau_{z}^{+}>t\right]$, this is the expected number of visits to y before returning to z. For any state y, we have $0<\mu_{y} \leq \mathbf{E}_{z}\left[\tau_{z}^{+}\right]<\infty$ since P is irreducible. To show $\mu P=\mu$ we have

$$
\begin{aligned}
(\mu P)_{y} & =\sum_{x \in \mathcal{I}} \mu_{x} \cdot P_{x, y}=\sum_{x \in \mathcal{I}} \sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t}=x, \tau_{z}^{+}>t\right] \cdot P_{x, y} \\
& =\sum_{x \in \mathcal{I}} \sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t}=x, X_{t+1}=y, \tau_{z}^{+}>t\right]=\sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t+1}=y, \tau_{z}^{+}>t\right] \\
& =\sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t+1}=y, \tau_{z}^{+}>t+1\right]+\mathbf{P}_{z}\left[X_{t+1}=y, \tau_{z}^{+}=t+1\right] \\
& =\mu_{y}-\mathbf{P}_{z}\left[X_{0}=y, \tau_{z}^{+}>0\right]+\sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t+1}=y, \tau_{z}^{+}=t+1\right]=\mu_{y}
\end{aligned}
$$

Where (a) and (b) are 1 if $y=z$ and 0 otherwise so cancel. Divide μ though by $\sum_{x \in \mathcal{I}} \mu_{x}<\infty$ to turn it into a probability distribution π.

Uniqueness of the Stationary Distribution

Existence and uniqueness of a positive stationary distribution

Let P be finite, irreducible M.C., then there is a unique probability distribution π on \mathcal{I} such that $\pi=\pi P$ and $\pi_{x}=1 / \mathbf{E}_{x}\left[\tau_{x}^{+}\right]>0, \forall x \in \mathcal{I}$.

Proof: [Uniqueness] Assume P has a stationary distribution μ and let $\mathbf{P}\left[X_{0}=x\right]=\mu_{x}$. We shall show μ is uniquely determined

$$
\begin{aligned}
\mu_{x} & \cdot \mathbf{E}_{x}\left[\tau_{x}^{+}\right] \stackrel{H \text { ww } 1}{=} \mathbf{P}\left[X_{0}=x\right] \cdot \sum_{t \geq 1} \mathbf{P}\left[\tau_{x}^{+} \geq t \mid X_{0}=x\right] \quad \begin{array}{l}
\text { A sum } S \text { is Telescopin } \\
S=\sum_{i=0}^{n-1} a_{i}-a_{i+1}=a_{0}
\end{array} \\
& =\sum_{t \geq 1} \mathbf{P}\left[\tau_{x}^{+} \geq t, X_{0}=x\right] \\
& =\mathbf{P}\left[X_{0}=x\right]+\sum_{t \geq 2} \mathbf{P}\left[X_{1} \neq x, \ldots, X_{t-1} \neq x\right]-\mathbf{P}\left[X_{0} \neq x, \ldots, X_{t-1} \neq x\right] \\
& \stackrel{(a)}{=} \mathbf{P}\left[X_{0}=x\right]+\sum_{t \geq 2} \mathbf{P}\left[X_{0} \neq x, \ldots, X_{t-2} \neq x\right]-\mathbf{P}\left[X_{0} \neq x, \ldots, X_{t-1} \neq x\right] \\
& \stackrel{(b)}{=} \mathbf{P}\left[X_{0}=x\right]+\mathbf{P}\left[X_{0} \neq x\right]-\lim _{t \rightarrow \infty} \mathbf{P}\left[X_{0} \neq x, \ldots, X_{t-1} \neq x\right] \stackrel{\text { (c) }}{=} 1 .
\end{aligned}
$$

Equality (a) follows as μ is stationary, equality (b) since the sum is telescoping and (c) by Markov's inequality and the Finite Hitting Theorem.

Outline

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Bonus: Gamblers Ruin

Periodicity

- A Markov chain is Aperiodic if for all $x, y \in \mathcal{I}, \operatorname{gcd}\left\{t: P_{x, y}^{t}>0\right\}=1$.
- Otherwise we say it is Periodic.

\checkmark Aperiodic

\times Periodic

Lazy Random Walks and Periodicity

For some graphs G the simple random walk on G is periodic, as seen below. The Lazy Random Walk (LRW) on G given by $\widetilde{P}=(P+I) / 2$,

$$
\widetilde{P}_{i, j}=\left\{\begin{array}{ll}
\frac{1}{2 d(i)} & \text { if } i j \in E \\
\frac{1}{2} & \text { if } i=j \\
0 & \text { Otherwise }
\end{array} .\right.
$$

$$
P-\text { SRW matrix }
$$

I - Identity matrix.

Fact: for any graph G the LRW on G is Aperiodic.

SRW on C_{4}, Periodic

LRW on C_{4}, Aperiodic

Convergence

Convergence Theorem

Let P be any finite, aperiodic, irreducible Markov chain with stationary distribution π. Then for any $i, j \in \mathcal{I}$

$$
\lim _{t \rightarrow \infty} P_{j, i}^{t}=\pi_{i}
$$

- Proved : For finite irreducible Markov chains π exists, is unique and

$$
\pi_{x}=\frac{1}{\mathbf{E}_{x}\left[\tau_{x}^{+}\right]}>0
$$

- If $P_{j, i}^{t}$ converges for all i, j we say the chain Converges to Stationarity.

Corollary

The Lazy random walk on any finite connected graph converges to stationarity.

Convergence to Stationarity for the LRW on C_{12} from 0

At step t the value at vertex x is $P_{0, x}^{t}$.

Convergence to Stationarity for the LRW on C_{12} from 0
At step t the value at vertex x is $P_{0, x}^{t}$.

Convergence to Stationarity for the LRW on C_{12} from 0
At step t the value at vertex x is $P_{0, x}^{t}$.

Convergence to Stationarity for the LRW on C_{12} from 0
At step t the value at vertex x is $P_{0, x}^{t}$.

Outline

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Bonus: Gamblers Ruin

Gamblers Ruin

Gamblers Ruin

A gambler bets $\$ 1$ repeatedly on a biased coin $(\mathbf{P}[$ win $]=a, \mathbf{P}[$ lose $]=$ $b=1-a$) until they either go broke or have $\$ n$. What's more likely?

- Markov chain on $\{0, \ldots, n\}$ with $P_{i, i+1}=a$ and $P_{i, i-1}=b$ for each $1 \leq i \leq n$ and $P_{0,0}=P_{n, n}=1$.
- Let X_{t} be the gambler's fortune at time t. Then, for any $S \subseteq\{0, \ldots, n\}$, $\tau_{S}=\inf \left\{t: X_{t} \in S\right\}$ is a stopping time.

Proposition
If the gambler starts with $\$ s$, where $0 \leq s \leq n$, then
$\mathbf{P}_{s}[$ Gambler reaches $\$ n$ before going broke $]= \begin{cases}\frac{1-\left(\frac{a}{b}\right)^{s}}{1-\left(\frac{a}{b}\right)^{n}} & \text { if } a \neq b \\ \frac{s}{n} & \text { if } a=b=1 / 2\end{cases}$

Gamblers Ruin

Proof: Let $\tau=\inf \left\{t \geq 0: X_{t} \in\{0, n\}\right\}$ and $p_{i}=\mathbf{P}\left[X_{\tau}=n \mid X_{0}=i\right]$. Then by the Law of total probability and the Markov property we have

$$
p_{i}=a p_{i+1}+b p_{i-1}
$$

Using $1=a+b$ and rearranging the above we have

$$
\begin{equation*}
p_{i+1}-p_{i}=\frac{b}{a}\left(p_{i}-p_{i-1}\right)=\cdots=\left(\frac{b}{a}\right)^{i}\left(p_{1}-p_{0}\right)=\left(\frac{b}{a}\right)^{i} p_{1} . \tag{1}
\end{equation*}
$$

Expressing $p_{i+1}=\left(p_{i+1}-p_{i}\right)+p_{1}$, writing it as a sum and applying (1) yields

$$
p_{i+1}=p_{1}+\sum_{k=1}^{i}\left(p_{k+1}-p_{k}\right)=p_{1}+\sum_{k=1}^{i}\left(\frac{b}{a}\right)^{k} p_{1}= \begin{cases}\frac{1-(b / a)^{i+1}}{1-b / a} p_{1} & \text { if } a \neq b \tag{2}\\ (i+1) p_{1} & \text { if } a=b\end{cases}
$$

Since $p_{n}=1$ we have the following from (2)

$$
1=p_{n}=\left\{\begin{array}{ll}
\frac{1-(b / a)^{n}}{1-b / a} p_{1} & \text { if } a \neq b \\
n p_{1} & \text { if } a=b
\end{array} \text { thus } p_{1}= \begin{cases}\frac{1-b / a}{1-(b / a)^{n}} & \text { if } a \neq b \\
1 / n & \text { if } a=b\end{cases}\right.
$$

inserting the expression for p_{1} into (1) yields the result.

