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Stochastic Process

A Stochastic Process X = {Xt : t ∈ T} is a collection of random variables
indexed by time (often T = N) and in this case X = (Xi)

∞
i=0.

A vector µ = (µi)i∈I is a Probability Distribution or Probability Vector on I if
µi ∈ [0, 1] and ∑

i∈I

µi = 1.
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Markov Chains

We say that (Xi)
∞
i=0 is a Markov Chain on State Space I with Initial Dis-

tribution µ and Transition Matrix P if for all t ≥ 0 and i0, · · · ∈ I,

P[X0 = i ] = µi .

The Markov Property holds:

P
[

Xt+1 = it+1

∣∣∣Xt = it , . . . ,X0 = i0
]
= P

[
Xt+1 = it+1

∣∣∣Xt = it
]
:= Pit ,it+1 .

Markov Chain (Discrete Time and State, Time Homogeneous)

From the definition one can deduce that (check!)
P[Xt+1 = it+1,Xt = it , . . . ,X1 = i1,X0 = i0 ] = µi0 · Pi0,i1 · · ·Pit−1,it · Pit ,it+1

P[Xt+m = i ] =
∑

j∈I P[Xt+m = i|Xt = j ]P[Xt = j ]

If the Markov Chain starts from as single state i ∈ I then we use the notation

Pi [Xk = j] := P[Xk = j|X0 = i ] .
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What does a Markov Chain Look Like?

Example : the carbohydrate served with lunch in the college cafeteria.

Rice Pasta

Potato

1/2

1/2

1/4

3/4
2/5

3/5

This has transition matrix:

P =

Rice Pasta Potato 0 1/2 1/2 Rice

1/4 0 3/4 Pasta

3/5 2/5 0 Potato
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Transition Matrices

The Transition Matrix P of a Markov chain (µ,P) on I = {1, . . . n} is given by

P =

P1,1 . . . P1,n
...

. . .
...

Pn,1 . . . Pn,n

 .

pi(t): probability the chain is in state i at time t .

~p(t) = (p0(t), p1(t), . . . , pn(t)): State vector at time t (Row vector).

Multiplying ~p(t) by P corresponds to advancing the chain one step:

pi(t + 1) =
∑
j∈I

pj(t) · Pj,i and thus ~p(t + 1) = ~p(t) · P.

The Markov Property and line above imply that for any k , t ≥ 0

~p(t + k) = ~p(t) · Pk and thus Pk
i,j = P[Xk = j|X0 = i ] .

Thus pi(t) = (µP t)i and so ~p(t) = µP t = ((µP)1, (µP)2, . . . , (µP)n).
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Stopping and Hitting Times

A non-negative integer random variable τ is a Stopping Time for (Xi)i≥0 if for
every n ≥ 0 the event {τ = n} depends only on X0, . . . ,Xn.

Example - College Carbs Stopping times:
X “We had Pasta yesterday”
× “We are having Rice next Thursday”

For two states x , y ∈ I we call hx,y the Hitting Time of y from x :

hx,y := Ex [τy ] = E[ τy |X0 = x ] where τy = inf{t ≥ 0 : Xt = y}.

For x ∈ I the First Return Time Ex
[
τ+x
]

of x is defined

Ex
[
τ+x
]
= E

[
τ+x |X0 = x

]
where τ+x = inf{t ≥ 1 : Xt = x}.

Comments
Notice that hx,x = Ex [τx ] = 0 whereas Ex

[
τ+x
]
≥ 1.

For any y 6= x , hx,y = Ex
[
τ+y
]
.

Hitting times are the solution to the set of linear equations:

Ex
[
τ+y
] Markov Prop.

= 1 +
∑
z∈I

Ez [τy ] · Px,z ∀x , y ∈ V .
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Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

Pij =

{
1

d(i) if ij ∈ E
0 if ij 6∈ E

.
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Irreducible Markov Chains

A Markov chain is Irreducible if for every pair of states (i, j) ∈ I2 there is an
integer m ≥ 0 such that Pm

i,j > 0.

a b

c d

1

1/4

3/4

3/4

2/5

3/5 1/4

X irreducible

a b

c d

1

1/4

3/4
2/5

3/5 1

× not-irreducible (thus reducible)

For any states x and y of a finite irreducible Markov chain Ex
[
τ+y
]
<∞.

Finite Hitting Theorem
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Stationary Distribution

A probability distribution π = (π1, . . . , πn) is the Stationary Distribution of a
Markov chain if πP = π, i.e. π is a left eigenvector with eigenvalue 1.

College carbs example:

(
4
13
,

4
13
,

5
13

)
π

·

 0 1/2 1/2
1/4 0 3/4
3/5 2/5 0


P

=

(
4

13
,

4
13
,

5
13

)
π

Rice Pasta

Potato

1/2

1/2

1/4

3/4

2/5

3/5

A Markov chain reaches Equilibrium if ~p(t) = π for some t . If equilibrium is

reached it Persists: If ~p(t) = π then ~p(t + k) = π for all k ≥ 0 since

~p(t + 1) = ~p(t)P = πP = π = ~p(t).

Lecture 2: Markov Chains 12



Existence of a Stationary Distribution

Let P be finite, irreducible M.C., then there is a unique probability distri-
bution π on I such that π = πP and πx = 1/Ex

[
τ+x
]
> 0, ∀x ∈ I.

Existence and uniqueness of a positive stationary distribution

Proof: [Existence] Fix z ∈ I and define µy =
∑∞

t=0 Pz
[
Xt = y , τ+z > t

]
, this is

the expected number of visits to y before returning to z. For any state y , we
have 0 < µy ≤ Ez

[
τ+z
]
<∞ since P is irreducible. To show µP = µ we have

(µP)y =
∑
x∈I

µx · Px,y =
∑
x∈I

∞∑
t=0

Pz
[
Xt = x , τ+z > t

]
· Px,y

=
∑
x∈I

∞∑
t=0

Pz
[
Xt = x ,Xt+1 = y , τ+z > t

]
=
∞∑
t=0

Pz
[
Xt+1 = y , τ+z > t

]
=
∞∑
t=0

Pz
[
Xt+1 = y , τ+z > t + 1

]
+ Pz

[
Xt+1 = y , τ+z = t + 1

]
= µy −

(a)

Pz
[
X0 = y , τ+z > 0

]
+
∞∑
t=0

(b)

Pz
[
Xt+1 = y , τ+z = t + 1

]
= µy .

Where (a) and (b) are 1 if y = z and 0 otherwise so cancel. Divide µ
though by

∑
x∈I µx <∞ to turn it into a probability distribution π. �
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Uniqueness of the Stationary Distribution

Let P be finite, irreducible M.C., then there is a unique probability distri-
bution π on I such that π = πP and πx = 1/Ex

[
τ+x
]
> 0, ∀x ∈ I.

Existence and uniqueness of a positive stationary distribution

Proof: [Uniqueness] Assume P has a stationary distribution µ and let
P[X0 = x ] = µx . We shall show µ is uniquely determined

µx · Ex
[
τ+x
] Hw1
= P[X0 = x ] ·

∑
t≥1

P
[
τ+x ≥ t | X0 = x

]
=
∑
t≥1

P
[
τ+x ≥ t ,X0 = x

]
= P[X0 = x ] +

∑
t≥2

P[X1 6= x , . . . ,Xt−1 6= x ]− P[X0 6= x , . . . ,Xt−1 6= x ]

(a)
= P[X0 = x ] +

∑
t≥2

P[X0 6= x , . . . ,Xt−2 6= x ]− P[X0 6= x , . . . ,Xt−1 6= x ]

(b)
= P[X0 = x ] + P[X0 6= x ]− lim

t→∞
P[X0 6= x , . . . ,Xt−1 6= x ]

(c)
= 1.

Equality (a) follows as µ is stationary, equality (b) since the sum is
telescoping and (c) by Markov’s inequality and the Finite Hitting Theorem. �

A sum S is Telescoping if

S =

n−1∑
i=0

ai −ai+1 = a0−an.
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Periodicity

A Markov chain is Aperiodic if for all x , y ∈ I, gcd{t : P t
x,y > 0} = 1.

Otherwise we say it is Periodic.

a b

d c

1/2

1/4

1/2

1/2 1/2

1/2

1/4

1/21/2

X Aperiodic

a b

d c

1/2

1/2

1/2 1/2

1/2

1/2

1/21/2

× Periodic
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Lazy Random Walks and Periodicity

For some graphs G the simple random walk on G is periodic, as seen below.
The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃i,j =


1

2d(i) if ij ∈ E
1
2 if i = j
0 Otherwise

. P - SRW matrix
I - Identity matrix.

Fact: for any graph G the LRW on G is Aperiodic.

a b

d c

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

SRW on C4, Periodic

a b

d c

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

LRW on C4, Aperiodic
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Convergence

Let P be any finite, aperiodic, irreducible Markov chain with stationary
distribution π. Then for any i, j ∈ I

lim
t→∞

P t
j,i = πi .

Convergence Theorem

Proved : For finite irreducible Markov chains π exists, is unique and

πx =
1

Ex
[
τ+x
] > 0.

If P t
j,i converges for all i, j we say the chain Converges to Stationarity .

The Lazy random walk on any finite connected graph converges to sta-
tionarity.

Corollary
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Convergence to Stationarity for the LRW on C12 from 0

At step t the value at vertex x is P t
0,x .

1.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Step: 0
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Convergence to Stationarity for the LRW on C12 from 0

At step t the value at vertex x is P t
0,x .

0.375

0.250

0.062

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.062

0.250

Step: 2
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Convergence to Stationarity for the LRW on C12 from 0

At step t the value at vertex x is P t
0,x .

0.113

0.109

0.098

0.083

0.069

0.058

0.054

0.058

0.069

0.083

0.098

0.109

Step: 25
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Convergence to Stationarity for the LRW on C12 from 0

At step t the value at vertex x is P t
0,x .

0.089

0.088

0.086

0.083

0.081

0.079

0.078

0.079

0.081

0.083

0.086

0.088

Step: 50
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Gamblers Ruin

A gambler bets $1 repeatedly on a biased coin (P[win ] = a, P[ lose ] =
b=1− a) until they either go broke or have $n. What’s more likely?

Gamblers Ruin

Markov chain on {0, . . . , n} with Pi,i+1 = a and Pi,i−1 = b for each
1 ≤ i ≤ n and P0,0 = Pn,n = 1.

Let Xt be the gambler’s fortune at time t . Then, for any S ⊆ {0, . . . , n},
τS = inf{t : Xt ∈ S} is a stopping time.

If the gambler starts with $s, where 0 ≤ s ≤ n, then

Ps[Gambler reaches $n before going broke] =


1−( a

b )
s

1−( a
b )

n if a 6= b
s
n if a = b = 1/2

.

Proposition
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Gamblers Ruin

Proof: Let τ = inf{t ≥ 0 : Xt ∈ {0, n}} and pi = P[Xτ = n|X0 = i ]. Then by
the Law of total probability and the Markov property we have

pi = api+1 + bpi−1.

Using 1 = a + b and rearranging the above we have

pi+1 − pi =
b
a
(pi − pi−1) = · · · =

(
b
a

)i

(p1 − p0) =

(
b
a

)i

p1. (1)

Expressing pi+1 = (pi+1 − pi) + p1, writing it as a sum and applying (1) yields

pi+1 = p1+
i∑

k=1

(pk+1−pk ) = p1+
i∑

k=1

(
b
a

)k

p1 =

{
1−(b/a)i+1

1−b/a p1 if a 6= b
(i + 1)p1 if a = b

(2)

Since pn = 1 we have the following from (2)

1 = pn =

{
1−(b/a)n

1−b/a p1 if a 6= b
np1 if a = b

thus p1 =

{
1−b/a

1−(b/a)n if a 6= b
1/n if a = b,

inserting the expression for p1 into (1) yields the result. �
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