Lecture 2: Markov Chains

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Stochastic Process

A *Stochastic Process* $X = \{X_t : t \in T\}$ is a collection of random variables indexed by time (often $T = \mathbb{N}$) and in this case $X = (X_i)_{i=0}^{\infty}$.

A vector $\mu = (\mu_i)_{i \in I}$ is a Probability Distribution or Probability Vector on I if $\mu_i \in [0, 1]$ and

$$\sum_{i\in\mathcal{I}}\mu_i=\mathbf{1}.$$

Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous) —

We say that $(X_i)_{i=0}^{\infty}$ is a *Markov Chain* on *State Space* \mathcal{I} with *Initial Distribution* μ and *Transition Matrix* P if for all $t \ge 0$ and $i_0, \dots \in \mathcal{I}$,

•
$$\mathbf{P}[X_0 = i] = \mu_i.$$

The Markov Property holds:

$$\mathbf{P}\Big[X_{t+1} = i_{t+1} \Big| X_t = i_t, \dots, X_0 = i_0\Big] = \mathbf{P}\Big[X_{t+1} = i_{t+1} \Big| X_t = i_t\Big] := \mathbf{P}_{i_t, i_{t+1}}.$$

From the definition one can deduce that (check!)

•
$$\mathbf{P}[X_{t+1} = i_{t+1}, X_t = i_t, \dots, X_1 = i_1, X_0 = i_0] = \mu_{i_0} \cdot P_{i_0, i_1} \cdots P_{i_{t-1}, i_t} \cdot P_{i_t, i_{t+1}}$$

•
$$\mathbf{P}[X_{t+m} = i] = \sum_{j \in \mathcal{I}} \mathbf{P}[X_{t+m} = i | X_t = j] \mathbf{P}[X_t = j]$$

If the Markov Chain starts from as single state $i \in \mathcal{I}$ then we use the notation

$$\mathbf{P}_{i}[X_{k}=j] := \mathbf{P}[X_{k}=j|X_{0}=i].$$

What does a Markov Chain Look Like?

Example : the carbohydrate served with lunch in the college cafeteria.

This has transition matrix:

	Rice	Pasta	Potato	
P =	Γo	1/2	1/2]	Rice
	1/4	0	3/4	Pasta
	_3/5	2/5	0]	Potato

Transition Matrices

The *Transition Matrix P* of a Markov chain (μ, P) on $\mathcal{I} = \{1, ..., n\}$ is given by

$$P = \begin{pmatrix} P_{1,1} & \dots & P_{1,n} \\ \vdots & \ddots & \vdots \\ P_{n,1} & \dots & P_{n,n} \end{pmatrix}$$

- $p_i(t)$: probability the chain is in state *i* at time *t*.
- $\vec{p}(t) = (p_0(t), p_1(t), \dots, p_n(t))$: *State vector* at time *t* (Row vector).
- Multiplying $\vec{p}(t)$ by *P* corresponds to advancing the chain one step:

$$p_i(t+1) = \sum_{j \in \mathcal{I}} p_j(t) \cdot P_{j,i}$$
 and thus $\vec{p}(t+1) = \vec{p}(t) \cdot P$.

• The Markov Property and line above imply that for any $k, t \ge 0$

$$\vec{p}(t+k) = \vec{p}(t) \cdot P^k$$
 and thus $P_{i,j}^k = \mathbf{P}[X_k = j | X_0 = i]$.

Thus $p_i(t) = (\mu P^t)_i$ and so $\vec{p}(t) = \mu P^t = ((\mu P)_1, (\mu P)_2, \dots, (\mu P)_n).$

Outline

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Stopping and Hitting Times

A non-negative integer random variable τ is a *Stopping Time* for $(X_i)_{i\geq 0}$ if for every $n \geq 0$ the event $\{\tau = n\}$ depends only on X_0, \ldots, X_n .

Example - College Carbs Stopping times:

✓ "We had Pasta yesterday"

× "We are having Rice next Thursday"

For two states $x, y \in \mathcal{I}$ we call $h_{x,y}$ the *Hitting Time* of *y* from *x*:

$$h_{x,y} := \mathbf{E}_x[\tau_y] = \mathbf{E}[\tau_y | X_0 = x]$$
 where $\tau_y = \inf\{t \ge 0 : X_t = y\}$.

For $x \in \mathcal{I}$ the *First Return Time* $\mathbf{E}_x[\tau_x^+]$ of *x* is defined

$$\mathbf{E}_{x}[\tau_{x}^{+}] = \mathbf{E}[\tau_{x}^{+}|X_{0} = x] \quad \text{where } \tau_{x}^{+} = \inf\{t \geq 1 : X_{t} = x\}.$$

Comments

- Notice that $h_{x,x} = \mathbf{E}_x[\tau_x] = 0$ whereas $\mathbf{E}_x[\tau_x^+] \ge 1$.
- For any $y \neq x$, $h_{x,y} = \mathbf{E}_x[\tau_y^+]$.
- Hitting times are the solution to the set of linear equations:

$$\mathbf{E}_{x}[\tau_{y}^{+}] \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \mathcal{I}} \mathbf{E}_{z}[\tau_{y}] \cdot P_{x,z} \qquad \forall x, y \in V.$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

$$\mathbf{P}_{ij} = \begin{cases} \frac{1}{d(i)} & \text{if } ij \in E\\ 0 & \text{if } ij \notin E \end{cases}$$

Outline

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Irreducible Markov Chains

A Markov chain is *Irreducible* if for every pair of states $(i, j) \in \mathcal{I}^2$ there is an integer $m \ge 0$ such that $P_{i,j}^m > 0$.

Stationary Distribution

A probability distribution $\pi = (\pi_1, ..., \pi_n)$ is the *Stationary Distribution* of a Markov chain if $\pi P = \pi$, i.e. π is a left eigenvector with eigenvalue 1.

College carbs example:

$$\begin{pmatrix} \frac{4}{13}, \frac{4}{13}, \frac{5}{13} \\ \pi \end{pmatrix} \cdot \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 0 & 3/4 \\ 3/5 & 2/5 & 0 \end{pmatrix} = \begin{pmatrix} \frac{4}{13}, \frac{4}{13}, \frac{5}{13} \\ \pi \end{pmatrix}$$
Rice
$$\begin{pmatrix} 1/4 \\ 1/2 \\ Pasta \\ \pi \end{pmatrix}$$
Potato
Potato

A Markov chain reaches *Equilibrium* if $\vec{p}(t) = \pi$ for some *t*. If equilibrium is

reached it *Persists*: If $\vec{p}(t) = \pi$ then $\vec{p}(t+k) = \pi$ for all $k \ge 0$ since

$$\vec{p}(t+1) = \vec{p}(t)P = \pi P = \pi = \vec{p}(t).$$

Existence of a Stationary Distribution

Existence and uniqueness of a positive stationary distribution -

Let *P* be finite, irreducible M.C., then there is a unique probability distribution π on \mathcal{I} such that $\pi = \pi P$ and $\pi_x = 1/\mathbf{E}_x [\tau_x^+] > 0, \forall x \in \mathcal{I}$.

Proof: [Existence] Fix $z \in \mathcal{I}$ and define $\mu_y = \sum_{t=0}^{\infty} \mathbf{P}_z [X_t = y, \tau_z^+ > t]$, this is the expected number of visits to *y* before returning to *z*. For any state *y*, we have $0 < \mu_y \le \mathbf{E}_z [\tau_z^+] < \infty$ since *P* is irreducible. To show $\mu P = \mu$ we have $(\mu P) = \sum_{t=0}^{\infty} \mathbf{P}_z [X_t = y, \tau_z^+ > t]$

$$\mu P)_{y} = \sum_{x \in \mathcal{I}} \mu_{x} \cdot P_{x,y} = \sum_{x \in \mathcal{I}} \sum_{t=0}^{\infty} \mathbf{P}_{z} [X_{t} = x, \tau_{z}^{+} > t] \cdot P_{x,y}$$

$$= \sum_{x \in \mathcal{I}} \sum_{t=0}^{\infty} \mathbf{P}_{z} [X_{t} = x, X_{t+1} = y, \tau_{z}^{+} > t] = \sum_{t=0}^{\infty} \mathbf{P}_{z} [X_{t+1} = y, \tau_{z}^{+} > t]$$

$$= \sum_{x \in \mathcal{I}} \sum_{t=0}^{\infty} \mathbf{P}_{z} [X_{t+1} = y, \tau_{z}^{+} > t+1] + \mathbf{P}_{z} [X_{t+1} = y, \tau_{z}^{+} = t+1]$$

$$= \mu_{y} - \mathbf{P}_{z} \big[X_{0} = \overset{(a)}{y}, \tau_{z}^{+} > 0 \big] + \sum_{t=0}^{\infty} \mathbf{P}_{z} \big[X_{t+1} = \overset{(b)}{y}, \tau_{z}^{+} = t+1 \big] = \mu_{y}.$$

Where (a) and (b) are 1 if y = z and 0 otherwise so cancel. Divide μ though by $\sum_{x \in \mathcal{I}} \mu_x < \infty$ to turn it into a probability distribution π .

t=0

Uniqueness of the Stationary Distribution

Existence and uniqueness of a positive stationary distribution -

Let *P* be finite, irreducible M.C., then there is a unique probability distribution π on \mathcal{I} such that $\pi = \pi P$ and $\pi_x = 1/\mathbf{E}_x[\tau_x^+] > 0, \forall x \in \mathcal{I}$.

Proof: [Uniqueness] Assume *P* has a stationary distribution μ and let $\mathbf{P}[X_0 = x] = \mu_x$. We shall show μ is uniquely determined

$$\mu_{x} \cdot \mathbf{E}_{x} [\tau_{x}^{+}] \stackrel{\text{Hw1}}{=} \mathbf{P}[X_{0} = x] \cdot \sum_{t \ge 1} \mathbf{P}[\tau_{x}^{+} \ge t \mid X_{0} = x]$$

$$= \sum_{t \ge 1} \mathbf{P}[\tau_{x}^{+} \ge t, X_{0} = x]$$

$$S = \sum_{i=0}^{n-1} a_{i} - a_{i+1} = a_{0} - a_{n}.$$

$$= \mathbf{P}[X_0 = x] + \sum_{t \ge 2} \mathbf{P}[X_1 \neq x, \dots, X_{t-1} \neq x] - \mathbf{P}[X_0 \neq x, \dots, X_{t-1} \neq x]$$

$$\stackrel{(a)}{=} \mathbf{P}[X_0 = x] + \sum_{t \ge 2} \mathbf{P}[X_0 \neq x, \dots, X_{t-2} \neq x] - \mathbf{P}[X_0 \neq x, \dots, X_{t-1} \neq x]$$

$$\stackrel{\text{(b)}}{=} \mathbf{P}[X_0 = x] + \mathbf{P}[X_0 \neq x] - \lim_{t \to \infty} \mathbf{P}[X_0 \neq x, \dots, X_{t-1} \neq x] \stackrel{\text{(c)}}{=} 1.$$

Equality (a) follows as μ is stationary, equality (b) since the sum is telescoping and (c) by Markov's inequality and the Finite Hitting Theorem. \Box

Outline

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Periodicity

- A Markov chain is *Aperiodic* if for all $x, y \in \mathcal{I}$, $gcd\{t : P_{x,y}^t > 0\} = 1$.
- Otherwise we say it is *Periodic*.

Lazy Random Walks and Periodicity

For some graphs *G* the simple random walk on *G* is periodic, as seen below. The *Lazy Random Walk (LRW)* on *G* given by $\tilde{P} = (P + I)/2$,

$$\widetilde{P}_{i,j} = \begin{cases} \frac{1}{2d(i)} & \text{if } ij \in E \\ \frac{1}{2} & \text{if } i = j \\ 0 & \text{Otherwise} \end{cases}$$

Fact: for any graph G the LRW on G is Aperiodic.

LRW on C4, Aperiodic

Convergence

Convergence Theorem

Let *P* be any finite, aperiodic, irreducible Markov chain with stationary distribution π . Then for any $i, j \in \mathcal{I}$

$$\lim_{t\to\infty} P_{j,i}^t = \pi_i.$$

• **Proved** : For finite irreducible Markov chains π exists, is unique and

$$\pi_x = \frac{1}{\mathbf{E}_x \big[\tau_x^+ \big]} > 0.$$

• If $P_{j,i}^t$ converges for all *i*, *j* we say the chain *Converges to Stationarity*.

Corollary — Corollary — The Lazy random walk on any finite connected graph converges to stationarity.

Outline

Stochastic Process

Stopping and Hitting Times

Irreducibility and Stationarity

Periodicity and Convergence

Gamblers Ruin

Gamblers Ruin

A gambler bets \$1 repeatedly on a biased coin (P[win] = a, P[lose] = b = 1 - a) until they either go broke or have \$*n*. What's more likely?

- Markov chain on $\{0, \ldots, n\}$ with $P_{i,i+1} = a$ and $P_{i,i-1} = b$ for each $1 \le i \le n$ and $P_{0,0} = P_{n,n} = 1$.
- Let X_t be the gambler's fortune at time t. Then, for any $S \subseteq \{0, ..., n\}$, $\tau_S = \inf\{t : X_t \in S\}$ is a stopping time.

Gamblers Ruin

Proof: Let $\tau = \inf\{t \ge 0 : X_t \in \{0, n\}\}$ and $p_i = \mathbf{P}[X_{\tau} = n | X_0 = i]$. Then by the Law of total probability and the Markov property we have

$$p_i = ap_{i+1} + bp_{i-1}.$$

Using 1 = a + b and rearranging the above we have

$$p_{i+1} - p_i = \frac{b}{a}(p_i - p_{i-1}) = \dots = \left(\frac{b}{a}\right)^i (p_1 - p_0) = \left(\frac{b}{a}\right)^i p_1.$$
 (1)

Expressing $p_{i+1} = (p_{i+1} - p_i) + p_1$, writing it as a sum and applying (1) yields

$$p_{i+1} = p_1 + \sum_{k=1}^{i} (p_{k+1} - p_k) = p_1 + \sum_{k=1}^{i} \left(\frac{b}{a}\right)^k p_1 = \begin{cases} \frac{1 - (b/a)^{i+1}}{1 - b/a} p_1 & \text{if } a \neq b\\ (i+1)p_1 & \text{if } a = b \end{cases}$$
(2)

Since $p_n = 1$ we have the following from (2)

$$1 = p_n = \begin{cases} \frac{1 - (b/a)^n}{1 - b/a} p_1 & \text{if } a \neq b \\ np_1 & \text{if } a = b \end{cases} \text{ thus } p_1 = \begin{cases} \frac{1 - b/a}{1 - (b/a)^n} & \text{if } a \neq b \\ 1/n & \text{if } a = b, \end{cases}$$

inserting the expression for p_1 into (1) yields the result.

