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Stochastic Process

A Stochastic Process X = {X; : t € T} is a collection of random variables
indexed by time (often T = N) and in this case X = (Xi),.
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Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that (X;);5, is @ Markov Chain on State Space I with Initial Dis-
tribution p and Transition Matrix P ifforall t > 0 and fy, - - - € Z,

" P[Xo = 1] = p.

= The Markov Property holds:

tolt41

P[Xt+1 :it+1‘xt: ity..., Xo :io] = P[Xm = it+1’Xr: it] =P,

From the definition one can deduce that (check!)
= P[Xt+1 = i[+1,Xt = I't,...7X1 = I'1,X0 = Io] = ,LL,'O . P,'

o,i1

P

Ie—150t

P,

t5lt+1

= P[Xipm = 1] = Xy P[ Xesm = 11X = j1P[ X = j]

If the Markov Chain starts from as single state i € Z then we use the notation

P,‘[Xk :j] = P[Xk :j|Xo = i].
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What does a Markov Chain Look Like?

Example : the carbohydrate served with lunch in the college cafeteria.

This has transition matrix:

@ “ Rice Pasta  Potato
N — W 0o 1/2 12
P= /

1/4 0  3/4
3/5 2/5 0

1/2

bl R

Rice
Pasta
Potato
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Transition Matrices

The Transition Matrix P of a Markov chain (i, P) on Z = {1, ... n} is given by

P171 e P17,7

P=1: oo
Pn71 e Pn,n

= pi(t): probability the chain is in state i at time ¢.

= B(t) = (po(t), p1(t), ..., pn(t)): State vector at time t (Row vector).

= Multiplying B(t) by P corresponds to advancing the chain one step:

pi(t+1)=> p(t)- P andthus  B(t+1)=p(t) P.

jezT
= The Markov Property and line above imply that for any k,t > 0
B(t+k)=p(t)- P andthus P =P[Xc=j|Xo = i].
Thus pi(t) = (uP'); and 50 B(t) = uP' = ((1P)1, (uP)z, ... (1P)n).

Sl

0 Lecture 2: Markov Chains



Outline

Stopping and Hitting Times

bl - e

-,,I;, Lecture 2: Markov Chains



Stopping and Hitting Times

A non-negative integer random variable 7 is a Stopping Time for (Xi),~, if for
every n > 0 the event {r = n} depends only on Xy, ..., Xy. B

Example - College Carbs Stopping times:
“We had Pasta yesterday”
x “We are having Rice next Thursday”

For two states x, y € Z we call hy,, the Hitting Time of y from x:
hy,y = Ex[ry] = E[7y|Xo = x] wherer, =inf{t >0:X; = y}.
For x € I the First Return Time Ex[7{ ] of x is defined
Ex[rv] =E[~|Xo =x] where 7 =inf{t>1:X =x}.
Comments
= Notice that hx x = Ex[x] = 0 whereas Ex[7;(] > 1.

= Forany y # x, hey = Ex[7/].
= Hitting times are the solution to the set of linear equations:

Edr] =" 14+ Y Euln] - Pz Yxye V.

zel
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Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

P _ ay Mi€E
"7 lo  ifijgE

ﬁlﬁ

43 % Lecture 2: Markov Chains



Outline

Irreducibility and Stationarity
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Irreducible Markov Chains

A Markov chain is Irreducible if for every pair of states (i, j) € Z? there is an
integer m > 0 such that P/} > 0.

1/4 1/4
3/4
3/4 1 3/4
2/5
2/5
3/5 @:3 1/4 3/5 @:31
/ irreducible x not-irreducible (thus reducible)

Finite Hitting Theorem

For any states x and y of a finite irreducible Markov chain Ex[7,/] < co.

e
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Stationary Distribution

A probability distribution = = (71, ..., mn) is the Stationary Distribution of a
Markov chain if 7P = 7, i.e. 7 is a left eigenvector with eigenvalue 1.

College carbs example:

(£4.2). PR U (£4.5)
13713713 3/5 2/5 0 137137 13 " 35 34 .

P
Potato

A Markov chain reaches Equilibrium if p(t) = = for some t.  If equilibrium is

SRR ES

0

reached it Persists: If p(t) = « then p(t + k) = = for all k > 0 since
B(t+1) =p(t)P = 7P = m = p(t).

1/4
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Existence of a Stationary Distribution

Existence and uniqueness of a positive stationary distribution

Let P be finite, irreducible M.C., then there is a unique probability distri-
bution 7 on Z such that # = 7P and mx = 1/Ex |7 | > 0, Vx € Z.

Proof: [Existence] Fix z € T and define py, = Y% P:[X; = y, 75 > t], thisis
the expected number of visits to y before returning to z. For any state y, we
have 0 < py < E;[r] < oo since P is irreducible. To show P = p we have

(MP)}’:ZNX'PX,y:ZZPZ[szx’T;>t] 'Px,y

X€EL X€TL t=0

=Y D P Xe=x X1 =y, 7 > ] =) P X =y, 7 > ]
X€ZL t=0 t=0

=Y P X1 =y, >t 1] 4P [ X =y, 7 =t +1]
t=0

(a) © (b)
=py —P:[X =y, 7 >0 +sz[xt+1 =y, =t+1] =py.
t=0
Where (a) and (b) are 1if y = z and 0 otherwise so cancel. Divide u
though by >~ ., px < oo to turn it into a probability distribution . O
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Uniqueness of the Stationary Distribution

Existence and uniqueness of a positive stationary distribution

Let P be finite, irreducible M.C., then there is a unique probability distri-
bution 7 on Z such that # = 7P and mx = 1/Ex |7 | > 0, Vx € Z.

Proof: [Uniqueness] Assume P has a stationary distribution p and let
P[ Xo = x] = ux. We shall show p is uniquely determined

fix - Ex[7] Fwt P[Xo = x]- ZP[T; >t Xo=x] | Asum Sis Telescoping if
t>1 n—1

=> P[nf >t X% =x] S=> a—ai = a—an

i=0
t>1

=P[Xo=x]+> P[Xi #X,..., X1 #X] =P[Xo #X,..., Xi_1 # X]

t>2

DPIXo=x]+ Y P[Xo# X, .., Xicz # X] = P[Xo # X, , Xeq # X]

t>2
@P[Xo:x]+P[Xo#x]—tirgoP[Xo;éx,...,X,,1 £x]21.

Equality (a) follows as u is stationary, equality (b) since the sum is
telescoping and (c¢) by Markov’s inequality and the Finite Hitting Theorem. O
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Periodicity

= A Markov chain is Aperiodic if for all x,y € Z, ged{t : Pf(,y >0} =1.
= Otherwise we say it is Periodic.

=0
—
1/2

1/2

1

1/4

v Aperiodic

ﬁla

1/2

@\1/2"@
/2 12| |1/2 12 |12
1/2
1/2
x Periodic
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Lazy Random Walks and Periodicity

For some graphs G the simple random walk on~G is periodic, as seen below.
The Lazy Random Walk (LRW) on G givenby P = (P + 1) /2,

am Hi€E
ﬁii —J1 ifi—=j P - SRW matrix
’ 2 . I - Identity matrix.
0 Otherwise

Fact: for any graph G the LRW on G is Aperiodic.
1

Q=@ O

®

ENEN

1 1 1 1 1 1 1 1
2 2 2 2
1 1
2 1
O—© NO==0x=}
2 2
1 1
2 4
SRW on C4, Periodic LRW on Cs, Aperiodic
ol

0 Lecture 2: Markov Chains



Convergence

Convergence Theorem

Let P be any finite, aperiodic, irreducible Markov chain with stationary
distribution =. Then forany i,j € Z

. t
lim Pj; =m.
t—oo

= Proved : For finite irreducible Markov chains 7 exists, is unique and

= If PI{,- converges for all i, j we say the chain Converges to Stationarity.

Corollary

The Lazy random walk on any finite connected graph converges to sta-
tionarity.
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Convergence to Stationarity for the LRW on Cy, from 0

At step t the value at vertex x is Py ,.

/ 0000 \
0.000 0.000
0.000 0.000
0.000 Step: 0
0.000 0.000
0.000 0.000

\ 0.000 /
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Convergence to Stationarity for the LRW on Cy, from 0

At step t the value at vertex x is Py ,.

/ 0.000 —
0.000 \ 0.062 |:|
o.ooo/ \0.250
0.000 Step: 2 0375
0.000 0.250
\ = /
0.000 0.062

\ 0.000 /
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Convergence to Stationarity for the LRW on Cy, from 0

At step t the value at vertex x is Py ,.

(I
- 0.083 ]
0.069 / \ 0.098
0.058 0.109
0.054 Step: 25 0113
0.058 0.109

e =

0.069 \E/ 0.098

0.083
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Convergence to Stationarity for the LRW on Cy, from 0

At step t the value at vertex x is Py ,.

=

|:|/ 0.083 \D

0.081 0.086

= =

0.079 0.088

o \m

0.078 Step: 50 0.089

\a o

0.079 0.088

N =

0.081 \E/ 0.086

0.083
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Bonus: Gamblers Ruin
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Gamblers Ruin

Gamblers Ruin

A gambler bets $1 repeatedly on a biased coin (P[win] = a, P[lose] =
b=1 — a) until they either go broke or have $n. What's more likely?

= Markov chain on {0, ..., n} with P; ;.1 = aand P;;,_1 = b for each

1<i<nand Pyg= Ppn=1.

= Let X; be the gambler’s fortune at time t. Then, forany S C {0,...,n},

7s = inf{t: X; € S} is a stopping time.

Proposition

If the gambler starts with §s, where 0 < s < n, then

s

(

n

ol [Tl

~——

Ps[Gambler reaches $n before going broke] = {

1—
1—
E
n

(

ifatb
fa=b=1/2

ol
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Gamblers Ruin

Proof: LetT =inf{t >0:X; € {0,n}} and p; = P[X: = n|Xy = i]. Then by
the Law of total probability and the Markov property we have

pi = api1 + bpi_1

Using 1 = a+ b and rearranging the above we have

Pitt — Pi = g(Pi—PM) == <Z>i(P1 — Po) = <Z)ip1~ 1

Expressing pi+1 = (pix1 — pi) + p1, writing it as a sum and applying (1) yields

i i K 1-(b/a)"* :
b f b
Piv1 =p1+ Y _(Prst1—Pk) = P+ > (5> p1= { 1-b/a P I az )
pa k=1

(i + 1)ps ifa=>b

Since p, = 1 we have the following from (2)

—(b/a)" : 1—b/a :
T=pn= s P Ta#D s py = { T 1270
npy ifa=»>b 1/n ifa=b,

inserting the expression for p; into (1) yields the result. d
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