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Sublinear Algorithms Overview

Sublinear Algorithms: Algorithms that return reasonably good approx-
imate answers without scanning or storing the entire input

[\§

[ Usually these algorithms are randomised! j

Sublinear Algorithms

Sublinear-(Time)
Algorithms
Algorithm may only inspect a
small fraction of the whole input

Data Streaming
Algorithms
Algorithm may only read input
~ea gnd store a small fraction
Dimensionality Reduction
Preprocess to reduce the size of
the input
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Motivation

' Goal: Estimate properties of big probability distributions '
N\

1 X

[ big means that the domain of the finite probability distribution is very large! j

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

= Lottery (are numbers equally likely?)

= Birthday Distribution (is the birthday
distribution uniform over 365 days?) LRI

" Shopplng patterns (are dlstrlbutlons Thanks to Krzysztof Onak (pointer) and Eric Price (graph)
the same or different?)

Transactions of 20-30 yr olds Transactions of 30-40 yr olds

= Physical Experiment (is the observed
distribution close to the prediction?)

= Health (are there correlations between
zip code and health condition?)

Source: Slides by Ronitt Rubinfeld

i
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Testing Probability Distribution (Formal Model)

Model

= Given one (or more) probability distribution p = (p1, p2, - .., Pn)
= distribution(s) are unknown, but can obtain independent samples
= also known: n (or a good estimate of it)

[Cost: number of samples (queries)]

Questions:
1. Is the distribution p close to the uniform distribution u?
. Is the distribution p close to some other distribution g?

2
3. What is maxi<j<n p; (heavy hitter)?
4. Are the distributions p and g independent? ...
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Testing Uniformity

Testing Uniformity: Is the distribution p close to the uniform distribution u?

Distance between Discrete Distributions
Let p and q be any two distributions over {1,2,..., n}. Then:
1. Ly-distance: [lp — qll = X7, |pi — gl € [0,2],

2. Le-distance: [|p - qll2 = /37 (pi — G1)? € [0, V2],

3. Lo-distance: ||p — q|lo« = maxiL, |pi — qi| € [0, 1].

Examples:
1. p=(1,0,...,0),g=(0,1,0,...,0). Then |[p—ql|ls =2, |lp — g|l2 = V2 and
llp—qllos = 1.
2. p=(1,0,...,0),g=(1/n,1/n,...,1/n). Then [|p — qll =2 — 2/n,
le—gqllo=+1-(01=1/n2+(n—1)-(1/n)2 = /T—1/nand ||p — qllc =1 —1/n.
3. p=(/n,...,2/n,0,...,0)andq = (0,...,0,2/n,...,2/n). Then ||p — g|l1 =2,
N, N, e
n/2 times n/2times Disjoint distributions, yet L,
llp=gll2 =+/2-(n/2)-(2/n)2 = /4/nand ||p — g|lc =2/n.7 a@nd Lo distances are small!
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Upper Bounds on Testing Uniformity
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Testing Uniformity in the L-distance

Objective

Find an efficient tester such that
= Given any probability distribution p and € € (0, 1)
= If pis the uniform distribution, then P[ACCEPT] > 2/3,

= If pis e-far from uniform (327 |p; — 1/n| > €), then P[REJECT] > 2/3.

N
\

= tester efficient (sub-linear) ~~ different from standard statistical tests!
= tester is allowed to have two-sided error

= there is a “grey area” when p is different from but close to uniform,
where the tester may give any result

pi Ui
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High Level Idea

Recall: L;-distance is

z 1

[ First Idea might be to approximate each p; — 1E but this takes at least Q(n) queries.]

Birthday Paradox:

= If pis (close to) uniform, expect to see collisions after ~ v/n samples
= If pis far from uniform, expect to see collisions with ??

P[ collision
[ ]1 ~1—exp (—ﬁ'&?)
0.5

1 20 40 60 80 100 365
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Collision Probability and L,-distance

n

n n n 2
1 1 1
lo—ullf=> (o =1/nf=>"p -2-> pi-—+ (5) = lIpllg -~
=1 i=1

i=1 =1

[ Hence ||p||§ =H» p,? captures the L,-distance to the uniform distribution ]

number of samples r will be specified later! ]

——— APPROXIMATE |p|2 -[

1. Sample r elements from p, x1, Xz, . .. ,XrVE{‘I, ..., N}
2. Foreach1<i<j<r,
1 ifxi =X,
agjj = .
0 otherwise.
3. Output Y := (1T) Y icicj<r Ti-
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Runtime Analysis

= Sampling/Query Complexity is obviously r
= Time Complexity??
® Evaluating 3~ ;< i, directly takes time quadratic in r

= Linear-Time Solution:
1. Maintain array A = (ay, a, - . ., an), where a; € [0, r] counts the frequency
of samples of item i
2. Use formula

() = (8K
o; ;i =
1§;j§r " k=1 (2)

3. Since at most O(r) elements in A will be non-zero, using hash-function
allows computation in time O(r)

Proof of (x):

Do o= D Ty

1<i<j<r 1<i<j<r
n n n a
k
= E E 1x,-:xj:k = E E 1Xi:Xj:k = E NE O
1<i<j<r k=1 k=1 1<i<j<r k=1

2l
E:E Lecture 13-14: Sublinear-Time Algorithms



Approximation Analysis

Analysis
For any value r > 30 - g the algorithm returns a value Y such that

PHY‘”F’Hg\ >e: ||p||§] <1/3.

Proof (1/5):
= Let us start by computing E[ Y]:

E[Y] = 17) E[oi;]
2 1<i<j<r
1 n
= o Plx; = k] -P[x; = k]
2) 1<i<j<r k=1
1 = 2
=7 Pk = IPll2-

= Analysis of the deviation more complex (see next slides):

= requires a careful analysis of the variance
(note that the o, ;s are not even pairwise independent! - Exercise)

= final step is an application of Chebysheff’s inequality
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Approximation Analysis

Analysis
For any value r > 30 - iz the algorithm returns a value Y such that

PHY‘”F’Hg\ >e: ||p|\§] <1/3.

Proof (2/5):
= Define 8,‘1/ =0jj— E[U,‘J] . Note E[E,-,,-] = 0, 6'\,"]' < aijj and

2 2
Var Z oij| =E Z oij— Z E[oi,] =E Z i
1<i<j<r 1<i<j<r 1<i<j<r <i<j<

= Expanding yields:

Z E[a,/} Z E[Gij- Oke]+4- Z E[Gij-Tjk].

1<i<j<r i,j, k, € diff. 1<i<j<k<r

=A =B =C

s
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Approximation Analysis

Analysis

For any value r > 30 - iz the algorithm returns a value Y such that

PHY‘”F’Hg\ >e: ||p|\§] <1/3.

Proof (3/5):

= > E[ah]< X E[eh] = X E[af,,]=<;>-||p||§.

1<i<j<r 1<i<j<r 1<i<j<r

B= > E[Gi-0ke] = Y  E[5i] E[Gk.] =0.
i, [, k, £ diff. i, ], k, £ diff.
[Covariance Formula: E[ (X — E[X])(Y — E[ Y])] = E[XY] — E[ X]E] Y]]

o
C= Z E[Gioik] < Z E[oi joik]

1<i<j<k<r 1<i<j<k<r

- Z prenenen= () s f () wn)

1<i<j<k<ree[n] Le(n]

s
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Approximation Analysis

Analysis

For any value r > 30 - g the algorithm returns a value Y such that

PHY‘”F’Hg\ >e: ||p||§] <1/3.

Proof (4/5):
= We have just shown that:

Var[ Z J,"j] =A+B+4C

1<i<j<r
3/2
_r 2 \/§ r 2
= <2> Pl 044 <(2> ||p||2>
3/2
r
o((5) )
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Approximation Analysis

Analysis

For any value r > 30 - g the algorithm returns a value Y such that

PHY‘”F’Hg\ >e: ||p||§] <1/3.

Proof (5/5):
= Applying Chebyshef’s inequality to Y := (‘f) “Di<icjor 0iy Yields:
T <i<j<

Var[Y]
e - |lpli3
3/2
oy - 5((2) - llpl2)
()
e lpli3

10
= plle- e
10

Sravme -

P[IY—E[Y]| 2 Ipl3] <
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Approximation of ||p — ul|; using ||p|3

——— UNIFORM-TEST N\

. Run APPROXIMATE ||p||3 with r = 30 -
get a value Y such that

@4 = O(4) samples to

PIIY—E[Y]|> /4 pl3] < 1/3

2. If Y > 2/2 then REJECT.
3. Otherwise, ACCEPT.

\ J

~——— Correctness Analysis N\
= If p = u, then P[ACCEPT] > 2/3.
« If pis e-far from u, i.e., 327, |pi — 1| > €), then P[REJECT] > 2/3.

\ J

N
[Exercise: Prove that any testing algorithm in this model will have a two-sided error!j
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Analysis of UNIFORM-TEST (1/2)

Case 1: pis uniform.

In this case

1
n?
and the approximation guarantee on Y implies

Ipllz =

PlY=plB-(1+¢/4)] <1/3,

which means that the algorithm will ACCEPT with probability at least 2/3
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Analysis of UNIFORM-TEST (2/2)

Case 2: pis e-far from u.
We will show that if PREJECT] < 2/3, then pis e-close to u.
P[REJECT] < 2/3 implies

2
P{Y> #%2/3. ™)
From line 1 of the algorithm we know that
P[Y>(-¢/4)-lIpl3] > 2/3 @)
Combining (1) and (2) yields, and rearranging yields
1 2 1 1+ €
1Pl < — - (1+¢€/2)- < -
n 1—€e2/4 = n
Hence, (1 S (1+€/3)- (1 - 62/4))
2 ol _ 2
lp—ullz =lple =7 <7 = lp—ullz < =
Since ||.2 > 7z - |1l
lp—ulls <vn-llp—ull2 <. O
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Lower Bounds on Testing Uniformity
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Lower Bound

Theorem
Let 0 < € < 1. There is no algorithm with the following three properties:
1. The algorithm samples at most r := £;\/n/e times from p,
2. If p = u, then P[ACCEPT] > £,
3. If [p— ul|t > ¢, then P[REJECT] > 2.

LExercise: Can you see why is it important to choose Z randomly? j
Proof Outline.
= Generate a distribution p randomly as foIIowsN

= PickasetZ C {1,...,¢e- n} of size € - n/2 uniformly at random.

= Then define:

itiez,
fic{1,....c-n}\T,
ife-n<i<n.

" Then|p—uly=c-n-1/n=e. [

pi =

SI— O s3I

“E.g.,n=16,¢e=1/4 T={1,4): Idea is that algorithm needs enough samples ]

of the first e - n elements to see any collisions!

en=4 elements 12 elements

ffn
%E Lecture 13-14: Sublinear-Time Algorithms 17



Outline

Extensions
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Extension 1: Testing Closeness of Arbitrary Distributions (1/2)

n n n n
lp—qlz=> (Pi—a)=> P +> d -2 pa
i=1 i=1 i=1 i=1

= |lpl5 + ll9li5 — 2 (p, q)

[We already know how to estimate ||p||3 and qul%!]

—_ APPROXIMATE (p, q)

1. Sample r elements from p, x1, Xz, ..., X, € [n], and
sample r elements from q, y1, y2,..., ¥r € [N]

2. Foreach1<i<j<r,

1 ifxi=y,
7'/,]' = .
0 otherwise.

3. Output Y := 5 3" i, Tiyi
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Extension 1: Testing Closeness of Arbitrary Distributions (2/2)

Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013)

There exists an algorithm using O(1/¢*) samples such that if the distri-
butions p and q satisfy |p — ql|2 < ¢/2, then the algorithm accepts with
probability at least 2/3. If ||p — g||> > ¢, then the algorithm rejects with
probability at least 2/3.

Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013)

There exists an algorithm using O(1/¢* - n?/3log n) samples such that if
the distributions p and g satisfy ||p — g|l1 < max{ﬁ%, 4—%}, then the

algorithm accepts with probability at least 2/3. If ||p — qg||1 > ¢, then the
algorithm rejects with probability at least 2/3.

L,-distance L4-distance
Testing uniformity ||p — u|| o(1) o(v/n)
Testing closeness ||p — q|| o(1) € [Q(r*®), O(n*/®log n)]

Figure: Overview of the known sampling complexities for constant e € (0, 1).
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Extension 2: Testing Conductance of Graphs

Testing Conductance of Graphs

= |dea: Start several random walks from the same vertex
= Count the number of pairwise collisions

= |f the number of collisions high, graphs is not an expander
= If the number of collisions is sufficiently small, graph is an expander
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