Lecture 13-14: Sublinear-Time Algorithms

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Lent 2019

Introduction

Upper Bounds on Testing Uniformity

Lower Bounds on Testing Uniformity

Extensions

Sublinear Algorithms: Algorithms that return reasonably good approximate answers without scanning or storing the entire input

Goal: Estimate properties of big probability distributions

Goal: Estimate properties of big probability distributions

big means that the domain of the finite probability distribution is very large!

Goal: Estimate properties of big probability distributions

big means that the domain of the finite probability distribution is very large!

- Lottery (are numbers equally likely?)
- Birthday Distribution (is the birthday distribution uniform over 365 days?)

Thanks to Krzysztof Onak (pointer) and Eric Price (graph)

Goal: Estimate properties of big probability distributions

big means that the domain of the finite probability distribution is very large!

- Lottery (are numbers equally likely?)
- Birthday Distribution (is the birthday distribution uniform over 365 days?)
- Shopping patterns (are distributions the same or different?)

Thanks to Krzysztof Onak (pointer) and Eric Price (graph)

Transactions of 20-30 vr olds

Transactions of 30-40 yr olds

Source: Slides by Ronitt Rubinfeld

Goal: Estimate properties of big probability distributions

big means that the domain of the finite probability distribution is very large!

- Lottery (are numbers equally likely?)
- Birthday Distribution (is the birthday distribution uniform over 365 days?)
- Shopping patterns (are distributions the same or different?)
- Physical Experiment (is the observed distribution close to the prediction?)

Thanks to Krzysztof Onak (pointer) and Eric Price (graph)

Transactions of 20-30 vr olds

Transactions of 30-40 yr olds

Goal: Estimate properties of big probability distributions

big means that the domain of the finite probability distribution is very large!

- Lottery (are numbers equally likely?)
- Birthday Distribution (is the birthday distribution uniform over 365 days?)
- Shopping patterns (are distributions the same or different?)
- Physical Experiment (is the observed distribution close to the prediction?)
- Health (are there correlations between zip code and health condition?)

Thanks to Krzysztof Onak (pointer) and Eric Price (graph)

Transactions of 20-30 vr olds

Transactions of 30-40 yr olds

Testing Probability Distribution (Formal Model)

Model ·

- Given one (or more) probability distribution $p = (p_1, p_2, \dots, p_n)$
- distribution(s) are unknown, but can obtain independent samples
- also known: n (or a good estimate of it)

Testing Probability Distribution (Formal Model)

Model

- Given one (or more) probability distribution p = (p₁, p₂,..., p_n)
- distribution(s) are unknown, but can obtain independent samples

Cost: number of samples (queries)

Testing Probability Distribution (Formal Model)

- Model

- Given one (or more) probability distribution $p = (p_1, p_2, \dots, p_n)$
- distribution(s) are unknown, but can obtain independent samples
- also known: n (or a good estimate of it)

Cost: number of samples (queries)

Questions:

- 1. Is the distribution *p* close to the uniform distribution *u*?
- 2. Is the distribution *p* close to some other distribution *q*?
- 3. What is $\max_{1 \le i \le n} p_i$ (heavy hitter)?
- 4. Are the distributions *p* and *q* independent? ...

Testing Uniformity: Is the distribution *p* close to the uniform distribution *u*?

Testing Uniformity: Is the distribution *p* close to the uniform distribution *u*?

Distance between Discrete Distributions
Let
$$p$$
 and q be any two distributions over $\{1, 2, ..., n\}$. Then:
1. L_1 -distance: $||p - q||_1 = \sum_{i=1}^n |p_i - q_i| \in [0, 2]$,
2. L_2 -distance: $||p - q||_2 = \sqrt{\sum_{i=1}^n (p_i - q_i)^2} \in [0, \sqrt{2}]$,
3. L_∞ -distance: $||p - q||_\infty = \max_{i=1}^n |p_i - q_i| \in [0, 1]$.

Testing Uniformity: Is the distribution *p* close to the uniform distribution *u*?

Distance between Discrete Distributions
Let
$$p$$
 and q be any two distributions over $\{1, 2, ..., n\}$. Then:
1. L_1 -distance: $||p - q||_1 = \sum_{i=1}^n |p_i - q_i| \in [0, 2]$,
2. L_2 -distance: $||p - q||_2 = \sqrt{\sum_{i=1}^n (p_i - q_i)^2} \in [0, \sqrt{2}]$,
3. L_∞ -distance: $||p - q||_\infty = \max_{i=1}^n |p_i - q_i| \in [0, 1]$.

Testing Uniformity: Is the distribution *p* close to the uniform distribution *u*?

Distance between Discrete Distributions
Let
$$p$$
 and q be any two distributions over $\{1, 2, ..., n\}$. Then:
1. L_1 -distance: $||p - q||_1 = \sum_{i=1}^n |p_i - q_i| \in [0, 2]$,
2. L_2 -distance: $||p - q||_2 = \sqrt{\sum_{i=1}^n (p_i - q_i)^2} \in [0, \sqrt{2}]$,
3. L_∞ -distance: $||p - q||_\infty = \max_{i=1}^n |p_i - q_i| \in [0, 1]$.

Examples:

1. p = (1, 0, ..., 0), q = (0, 1, 0, ..., 0). Then $||p - q||_1 = 2, ||p - q||_2 = \sqrt{2}$ and $||p - q||_{\infty} = 1$.

Testing Uniformity: Is the distribution *p* close to the uniform distribution *u*?

Distance between Discrete Distributions
Let
$$p$$
 and q be any two distributions over $\{1, 2, ..., n\}$. Then:
1. L_1 -distance: $||p - q||_1 = \sum_{i=1}^n |p_i - q_i| \in [0, 2]$,
2. L_2 -distance: $||p - q||_2 = \sqrt{\sum_{i=1}^n (p_i - q_i)^2} \in [0, \sqrt{2}]$,
3. L_{∞} -distance: $||p - q||_{\infty} = \max_{i=1}^n |p_i - q_i| \in [0, 1]$.

1.
$$p = (1, 0, ..., 0), q = (0, 1, 0, ..., 0)$$
. Then $||p - q||_1 = 2$, $||p - q||_2 = \sqrt{2}$ and $||p - q||_{\infty} = 1$.

2.
$$p = (1, 0, ..., 0), q = (1/n, 1/n, ..., 1/n)$$
. Then $||p - q||_1 = 2 - 2/n$,
 $||p - q||_2 = \sqrt{1 \cdot (1 - 1/n)^2 + (n - 1) \cdot (1/n)^2} = \sqrt{1 - 1/n}$ and $||p - q||_{\infty} = 1 - 1/n$.

Testing Uniformity: Is the distribution *p* close to the uniform distribution *u*?

Distance between Discrete Distributions
Let
$$p$$
 and q be any two distributions over $\{1, 2, ..., n\}$. Then:
1. L_1 -distance: $||p - q||_1 = \sum_{i=1}^n |p_i - q_i| \in [0, 2]$,
2. L_2 -distance: $||p - q||_2 = \sqrt{\sum_{i=1}^n (p_i - q_i)^2} \in [0, \sqrt{2}]$,
3. L_∞ -distance: $||p - q||_\infty = \max_{i=1}^n |p_i - q_i| \in [0, 1]$.

1.
$$p = (1, 0, ..., 0), q = (0, 1, 0, ..., 0)$$
. Then $||p - q||_1 = 2, ||p - q||_2 = \sqrt{2}$ and
 $||p - q||_{\infty} = 1$.
2. $p = (1, 0, ..., 0), q = (1/n, 1/n, ..., 1/n)$. Then $||p - q||_1 = 2 - 2/n$,
 $||p - q||_2 = \sqrt{1 \cdot (1 - 1/n)^2 + (n - 1) \cdot (1/n)^2} = \sqrt{1 - 1/n}$ and $||p - q||_{\infty} = 1 - 1/n$
3. $p = \underbrace{(2/n, ..., 2/n, 0, ..., 0)}_{n/2 \text{ times}}$ and $q = (0, ..., 0, \underbrace{2/n, ..., 2/n}_{n/2 \text{ times}})$. Then $||p - q||_1 = 2$,
 $||p - q||_2 = \sqrt{2 \cdot (n/2) \cdot (2/n)^2} = \sqrt{4/n}$ and $||p - q||_{\infty} = 2/n$.

Testing Uniformity: Is the distribution *p* close to the uniform distribution *u*?

Distance between Discrete Distributions
Let
$$p$$
 and q be any two distributions over $\{1, 2, ..., n\}$. Then:
1. L_1 -distance: $||p - q||_1 = \sum_{i=1}^n |p_i - q_i| \in [0, 2]$,
2. L_2 -distance: $||p - q||_2 = \sqrt{\sum_{i=1}^n (p_i - q_i)^2} \in [0, \sqrt{2}]$,
3. L_{∞} -distance: $||p - q||_{\infty} = \max_{i=1}^n |p_i - q_i| \in [0, 1]$.

1.
$$p = (1, 0, ..., 0), q = (0, 1, 0, ..., 0)$$
. Then $||p - q||_1 = 2, ||p - q||_2 = \sqrt{2}$ and
 $||p - q||_{\infty} = 1$.
2. $p = (1, 0, ..., 0), q = (1/n, 1/n, ..., 1/n)$. Then $||p - q||_1 = 2 - 2/n$,
 $||p - q||_2 = \sqrt{1 \cdot (1 - 1/n)^2 + (n - 1) \cdot (1/n)^2} = \sqrt{1 - 1/n}$ and $||p - q||_{\infty} = 1 - 1/n$.
3. $p = (2/n, ..., 2/n, 0, ..., 0)$ and $q = (0, ..., 0, 2/n, ..., 2/n)$. Then $||p - q||_1 = 2$.
 $||p - q||_2 = \sqrt{2 \cdot (n/2) \cdot (2/n)^2} = \sqrt{4/n}$ and $||p - q||_{\infty} = 2/n$.
Disjoint distributions, yet L_2 and L_{∞} distances are small!

Introduction

Upper Bounds on Testing Uniformity

Lower Bounds on Testing Uniformity

Extensions

Objective —

Find an efficient tester such that

• Given any probability distribution p and $\epsilon \in (0, 1)$

Objective –

Find an efficient tester such that

- Given any probability distribution p and $\epsilon \in (0, 1)$
 - If p is the uniform distribution, then **P**[ACCEPT] $\geq 2/3$,

Objective

Find an efficient tester such that

- Given any probability distribution p and $\epsilon \in (0, 1)$
 - If p is the uniform distribution, then **P**[ACCEPT] $\geq 2/3$,
 - If p is ϵ -far from uniform $(\sum_{i=1}^{n} |p_i 1/n| \ge \epsilon)$, then P[REJECT] $\ge 2/3$.

Find an efficient tester such that

- Given any probability distribution p and $\epsilon \in (0, 1)$
 - If *p* is the uniform distribution, then $P[ACCEPT] \ge 2/3$,
 - If p is ϵ -far from uniform $(\sum_{i=1}^{n} |p_i 1/n| \ge \epsilon)$, then $\mathbf{P}[\text{REJECT}] \ge 2/3$.
 - tester efficient (sub-linear) ~→ different from standard statistical tests!
 - tester is allowed to have two-sided error
 - there is a "grey area" when p is different from but close to uniform, where the tester may give any result

Recall: *L*₁-distance is

$$\sum_{i=1}^{n} \left| p_i - \frac{1}{n} \right|$$

Birthday Paradox:

- If p is (close to) uniform, expect to see collisions after $\approx \sqrt{n}$ samples
- If p is far from uniform, expect to see collisions with ??

Birthday Paradox:

- If *p* is (close to) uniform, expect to see collisions after $\approx \sqrt{n}$ samples
- If p is far from uniform, expect to see collisions with even less samples

Collision Probability and *L*₂**-distance**

Collision Probability and *L*₂**-distance**

$$\|p - u\|_2^2 = \sum_{i=1}^n (p_i - 1/n)^2$$

Collision Probability and *L*₂**-distance**

$$\|p - u\|_{2}^{2} = \sum_{i=1}^{n} (p_{i} - 1/n)^{2} = \sum_{i=1}^{n} p_{i}^{2} - 2 \cdot \sum_{i=1}^{n} p_{i} \cdot \frac{1}{n} + \sum_{i=1}^{n} \left(\frac{1}{n}\right)^{2}$$

$$\|\boldsymbol{p} - \boldsymbol{u}\|_{2}^{2} = \sum_{i=1}^{n} (p_{i} - 1/n)^{2} = \sum_{i=1}^{n} p_{i}^{2} - 2 \cdot \sum_{i=1}^{n} p_{i} \cdot \frac{1}{n} + \sum_{i=1}^{n} \left(\frac{1}{n}\right)^{2} = \|\boldsymbol{p}\|_{2}^{2} - \frac{1}{n}$$

$$\|p - u\|_{2}^{2} = \sum_{i=1}^{n} (p_{i} - 1/n)^{2} = \sum_{i=1}^{n} p_{i}^{2} - 2 \cdot \sum_{i=1}^{n} p_{i} \cdot \frac{1}{n} + \sum_{i=1}^{n} \left(\frac{1}{n}\right)^{2} = \|p\|_{2}^{2} - \frac{1}{n}$$

Hence $\|p\|_{2}^{2} = \sum_{i=1}^{n} p_{i}^{2}$ captures the L_{2} -distance to the uniform distribution

$$\|p - u\|_{2}^{2} = \sum_{i=1}^{n} (p_{i} - 1/n)^{2} = \sum_{i=1}^{n} p_{i}^{2} - 2 \cdot \sum_{i=1}^{n} p_{i} \cdot \frac{1}{n} + \sum_{i=1}^{n} \left(\frac{1}{n}\right)^{2} = \|p\|_{2}^{2} - \frac{1}{n}$$

Hence $\|p\|_{2}^{2} = \sum_{i=1}^{n} p_{i}^{2}$ captures the L_{2} -distance to the uniform distribution

APPROXIMATE $||p||_2^2$ 1. Sample *r* elements from *p*, $x_1, x_2, \ldots, x_r \in \{1, \ldots, n\}$ 2. For each $1 \le i < j \le r$, $\sigma_{i,j} := \begin{cases} 1 & \text{if } x_i = x_j, \\ 0 & \text{otherwise.} \end{cases}$ 3. Output $Y := \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sigma_{i,j}$.

$$\|p - u\|_{2}^{2} = \sum_{i=1}^{n} (p_{i} - 1/n)^{2} = \sum_{i=1}^{n} p_{i}^{2} - 2 \cdot \sum_{i=1}^{n} p_{i} \cdot \frac{1}{n} + \sum_{i=1}^{n} \left(\frac{1}{n}\right)^{2} = \|p\|_{2}^{2} - \frac{1}{n}$$
Hence $\|p\|_{2}^{2} = \sum_{i=1}^{n} p_{i}^{2}$ captures the L_{2} -distance to the uniform distribution
$$\frac{\text{APPROXIMATE } \|p\|_{2}^{2}}{\text{number of samples } r \text{ will be specified later!}}$$
1. Sample r elements from $p, x_{1}, x_{2}, \dots, x_{r} \in \{1, \dots, n\}$
2. For each $1 \leq i < j \leq r$,
$$\sigma_{i,j} := \begin{cases} 1 & \text{if } x_{i} = x_{j}, \\ 0 & \text{otherwise.} \end{cases}$$
3. Output $Y := \frac{1}{\binom{j}{2}} \cdot \sum_{1 \leq i < j \leq r} \sigma_{i,j}$.

Sampling/Query Complexity is obviously r

- Sampling/Query Complexity is obviously r
- Time Complexity??

- Sampling/Query Complexity is obviously r
- Time Complexity??
 - Evaluating $\sum_{1 \le i < j \le r} \sigma_{i,j}$ directly takes time quadratic in *r*

- Sampling/Query Complexity is obviously r
- Time Complexity??
 - Evaluating $\sum_{1 \le i \le j \le r} \sigma_{i,j}$ directly takes time quadratic in r
 - Linear-Time Solution:
 - 1. Maintain array $A = (a_1, a_2, ..., a_n)$, where $a_i \in [0, r]$ counts the frequency of samples of item *i*
 - 2. Use formula

$$\sum_{1 \le i < j \le r} \sigma_{i,j} \stackrel{(\star)}{=} \sum_{k=1}^n \binom{a_k}{2}$$

3. Since at most O(r) elements in A will be non-zero, using hash-function allows computation in time O(r)

- Sampling/Query Complexity is obviously r
- Time Complexity??
 - Evaluating $\sum_{1 \le i \le j \le r} \sigma_{i,j}$ directly takes time quadratic in r
 - Linear-Time Solution:
 - 1. Maintain array $A = (a_1, a_2, ..., a_n)$, where $a_i \in [0, r]$ counts the frequency of samples of item *i*
 - 2. Use formula

$$\sum_{1 \le i < j \le r} \sigma_{i,j} \stackrel{(\star)}{=} \sum_{k=1}^n \binom{a_k}{2}$$

3. Since at most O(r) elements in A will be non-zero, using hash-function allows computation in time O(r)

Proof of (*):

$$\sum_{1 \le i < j \le r} \sigma_{i,j}$$

- Sampling/Query Complexity is obviously r
- Time Complexity??
 - Evaluating $\sum_{1 \le i \le j \le r} \sigma_{i,j}$ directly takes time quadratic in r
 - Linear-Time Solution:
 - 1. Maintain array $A = (a_1, a_2, ..., a_n)$, where $a_i \in [0, r]$ counts the frequency of samples of item *i*
 - 2. Use formula

$$\sum_{1 \le i < j \le r} \sigma_{i,j} \stackrel{(\star)}{=} \sum_{k=1}^n \binom{a_k}{2}$$

3. Since at most O(r) elements in A will be non-zero, using hash-function allows computation in time O(r)

$$\sum_{1 \le i < j \le r} \sigma_{i,j} = \sum_{1 \le i < j \le r} \mathbf{1}_{x_i = x_j}$$

- Sampling/Query Complexity is obviously r
- Time Complexity??
 - Evaluating $\sum_{1 \le i \le j \le r} \sigma_{i,j}$ directly takes time quadratic in r
 - Linear-Time Solution:
 - 1. Maintain array $A = (a_1, a_2, ..., a_n)$, where $a_i \in [0, r]$ counts the frequency of samples of item *i*
 - 2. Use formula

$$\sum_{1 \le i < j \le r} \sigma_{i,j} \stackrel{(\star)}{=} \sum_{k=1}^n \binom{a_k}{2}$$

3. Since at most O(r) elements in A will be non-zero, using hash-function allows computation in time O(r)

$$\sum_{1 \le i < j \le r} \sigma_{i,j} = \sum_{1 \le i < j \le r} \mathbf{1}_{x_i = x_j}$$
$$= \sum_{1 \le i < j \le r} \sum_{k=1}^n \mathbf{1}_{x_i = x_j = k}$$

- Sampling/Query Complexity is obviously r
- Time Complexity??
 - Evaluating $\sum_{1 \le i \le j \le r} \sigma_{i,j}$ directly takes time quadratic in r
 - Linear-Time Solution:
 - 1. Maintain array $A = (a_1, a_2, ..., a_n)$, where $a_i \in [0, r]$ counts the frequency of samples of item *i*
 - 2. Use formula

$$\sum_{1 \le i < j \le r} \sigma_{i,j} \stackrel{(\star)}{=} \sum_{k=1}^n \binom{a_k}{2}$$

3. Since at most O(r) elements in A will be non-zero, using hash-function allows computation in time O(r)

$$\sum_{1 \le i < j \le r} \sigma_{i,j} = \sum_{1 \le i < j \le r} \mathbf{1}_{x_i = x_j}$$
$$= \sum_{1 \le i < j \le r} \sum_{k=1}^n \mathbf{1}_{x_i = x_j = k} = \sum_{k=1}^n \sum_{1 \le i < j \le r} \mathbf{1}_{x_i = x_j = k}$$

- Sampling/Query Complexity is obviously r
- Time Complexity??
 - Evaluating $\sum_{1 \le i \le j \le r} \sigma_{i,j}$ directly takes time quadratic in r
 - Linear-Time Solution:
 - 1. Maintain array $A = (a_1, a_2, ..., a_n)$, where $a_i \in [0, r]$ counts the frequency of samples of item *i*
 - 2. Use formula

$$\sum_{1 \le i < j \le r} \sigma_{i,j} \stackrel{(\star)}{=} \sum_{k=1}^n \binom{a_k}{2}$$

3. Since at most O(r) elements in A will be non-zero, using hash-function allows computation in time O(r)

$$\sum_{1 \le i < j \le r} \sigma_{i,j} = \sum_{1 \le i < j \le r} \mathbf{1}_{x_i = x_j}$$
$$= \sum_{1 \le i < j \le r} \sum_{k=1}^n \mathbf{1}_{x_i = x_j = k} = \sum_{k=1}^n \sum_{1 \le i < j \le r} \mathbf{1}_{x_i = x_j = k} = \sum_{k=1}^n \binom{a_k}{2}. \quad \Box$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{c^2}$, the algorithm returns a value *Y* such that

$$\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

Proof (1/5):

• Let us start by computing **E**[Y]:

 $\mathbf{E}[Y]$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

Proof (1/5):

• Let us start by computing **E**[Y]:

$$\mathbf{E}[Y] = \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \mathbf{E}[\sigma_{i,j}]$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (1/5):

• Let us start by computing **E**[Y]:

$$\mathbf{E}[Y] = \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \mathbf{E}[\sigma_{i,j}]$$
$$= \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sum_{k=1}^{n} \mathbf{P}[x_i = k] \cdot \mathbf{P}[x_j = k]$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value Y such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (1/5):

Let us start by computing E[Y]:

$$\mathbf{E}[Y] = \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \mathbf{E}[\sigma_{i,j}]$$
$$= \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sum_{k=1}^{n} \mathbf{P}[x_i = k] \cdot \mathbf{P}[x_j = k]$$
$$= \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sum_{k=1}^{n} p_k^2 = \|p\|_2^2.$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value Y such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (1/5):

Let us start by computing E[Y]:

$$\mathbf{E}[Y] = \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \mathbf{E}[\sigma_{i,j}]$$
$$= \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sum_{k=1}^{n} \mathbf{P}[x_i = k] \cdot \mathbf{P}[x_j = k]$$
$$= \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sum_{k=1}^{n} p_k^2 = \|p\|_2^2.$$

Analysis of the deviation more complex (see next slides):

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (1/5):

Let us start by computing E[Y]:

$$\mathbf{E}[Y] = \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \mathbf{E}[\sigma_{i,j}]$$
$$= \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sum_{k=1}^{n} \mathbf{P}[x_i = k] \cdot \mathbf{P}[x_j = k]$$
$$= \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sum_{k=1}^{n} p_k^2 = \|p\|_2^2.$$

- Analysis of the deviation more complex (see next slides):
 - requires a careful analysis of the variance (note that the σ_{i,i}'s are not even pairwise independent! - Exercise)

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

Proof (1/5):

Let us start by computing E[Y]:

$$\mathbf{E}[Y] = \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \mathbf{E}[\sigma_{i,j}]$$
$$= \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sum_{k=1}^{n} \mathbf{P}[x_i = k] \cdot \mathbf{P}[x_j = k]$$
$$= \frac{1}{\binom{r}{2}} \cdot \sum_{1 \le i < j \le r} \sum_{k=1}^{n} p_k^2 = \|p\|_2^2.$$

- Analysis of the deviation more complex (see next slides):
 - requires a careful analysis of the variance (note that the σ_{i,i}'s are not even pairwise independent! - Exercise)
 - final step is an application of Chebysheff's inequality

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value Y such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (2/5):

• Define $\widehat{\sigma}_{i,j} := \sigma_{i,j} - \mathbf{E}[\sigma_{i,j}]$. Note $\mathbf{E}[\widehat{\sigma}_{i,j}] = 0$, $\widehat{\sigma}_{i,j} \le \sigma_{i,j}$ and

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (2/5):

• Define $\hat{\sigma}_{i,j} := \sigma_{i,j} - \mathbf{E}[\sigma_{i,j}]$. Note $\mathbf{E}[\hat{\sigma}_{i,j}] = \mathbf{0}, \, \hat{\sigma}_{i,j} \leq \sigma_{i,j}$ and

$$\operatorname{Var}\left[\sum_{1 \leq i < j \leq r} \sigma_{i,j}\right] = \operatorname{E}\left[\left(\sum_{1 \leq i < j \leq r} \sigma_{i,j} - \sum_{1 \leq i < j \leq r} \operatorname{E}[\sigma_{i,j}]\right)^{2}\right] = \operatorname{E}\left[\left(\sum_{1 \leq i < j \leq r} \widehat{\sigma}_{i,j}\right)^{2}\right]$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (2/5):

• Define $\hat{\sigma}_{i,j} := \sigma_{i,j} - \mathbf{E}[\sigma_{i,j}]$. Note $\mathbf{E}[\hat{\sigma}_{i,j}] = \mathbf{0}, \hat{\sigma}_{i,j} \leq \sigma_{i,j}$ and

$$\operatorname{Var}\left[\sum_{1\leq i< j\leq r} \sigma_{i,j}\right] = \operatorname{E}\left[\left(\sum_{1\leq i< j\leq r} \sigma_{i,j} - \sum_{1\leq i< j\leq r} \operatorname{E}[\sigma_{i,j}]\right)^{2}\right] = \operatorname{E}\left[\left(\sum_{1\leq i< j\leq r} \widehat{\sigma}_{i,j}\right)^{2}\right]$$

• Expanding yields:

$$\underbrace{\sum_{1\leq i< j\leq r} \operatorname{E}\left[\widehat{\sigma}_{i,j}^{2}\right]}_{=A} + \underbrace{\sum_{i,j,k,\ell \text{ diff.}} \operatorname{E}[\widehat{\sigma}_{i,j} \cdot \widehat{\sigma}_{k,\ell}] + 6}_{=B} \cdot \underbrace{\sum_{1\leq i< j< k\leq r} \operatorname{E}[\widehat{\sigma}_{i,j} \cdot \widehat{\sigma}_{j,k}]}_{=C}.$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

$$\boldsymbol{A} = \sum_{1 \le i < j \le r} \mathbf{E} \Big[\widehat{\sigma}_{i,j}^2 \Big]$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

$$\mathbf{A} = \sum_{1 \le i < j \le r} \mathbf{E} \Big[\widehat{\sigma}_{i,j}^2 \Big] \le \sum_{1 \le i < j \le r} \mathbf{E} \Big[\sigma_{i,j}^2 \Big]$$

Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

$$\mathbf{A} = \sum_{1 \le i < j \le r} \mathbf{E} \Big[\widehat{\sigma}_{i,j}^2 \Big] \le \sum_{1 \le i < j \le r} \mathbf{E} \Big[\sigma_{i,j}^2 \Big] = \sum_{1 \le i < j \le r} \mathbf{E} [\sigma_{i,j}]$$

Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

$$A = \sum_{1 \le i < j \le r} \mathbf{E} \Big[\widehat{\sigma}_{i,j}^2 \Big] \le \sum_{1 \le i < j \le r} \mathbf{E} \Big[\sigma_{i,j}^2 \Big] = \sum_{1 \le i < j \le r} \mathbf{E} [\sigma_{i,j}] = \binom{r}{2} \cdot \|\boldsymbol{p}\|_2^2.$$

Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

$$A = \sum_{1 \le i < j \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j}^2 \right] \le \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j}^2 \right] = \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j} \right] = \binom{r}{2} \cdot \|p\|_2^2.$$
$$B = \sum_{i, j, k, \ell} \lim_{d \to m} \mathbf{E} \left[\widehat{\sigma}_{i,j} \cdot \widehat{\sigma}_{k,\ell} \right]$$

Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

$$A = \sum_{1 \le i < j \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j}^{2} \right] \le \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j}^{2} \right] = \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j} \right] = \binom{r}{2} \cdot \|p\|_{2}^{2}.$$
$$B = \sum_{i, j, k, \ell \text{ diff.}} \mathbf{E} \left[\widehat{\sigma}_{i,j} \cdot \widehat{\sigma}_{k,\ell} \right] = \sum_{i, j, k, \ell \text{ diff.}} \mathbf{E} \left[\widehat{\sigma}_{i,j} \right] \cdot \mathbf{E} \left[\widehat{\sigma}_{k,\ell} \right]$$

Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

$$A = \sum_{1 \le i < j \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j}^2 \right] \le \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j}^2 \right] = \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j} \right] = \binom{r}{2} \cdot \| p \|_2^2.$$
$$B = \sum_{i, j, k, \ell \text{ diff.}} \mathbf{E} \left[\widehat{\sigma}_{i,j} \cdot \widehat{\sigma}_{k,\ell} \right] = \sum_{i, j, k, \ell \text{ diff.}} \mathbf{E} \left[\widehat{\sigma}_{i,j} \right] \cdot \mathbf{E} \left[\widehat{\sigma}_{k,\ell} \right] = 0.$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

$$A = \sum_{1 \le i < j \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j}^2 \right] \le \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j}^2 \right] = \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j} \right] = \binom{r}{2} \cdot \|p\|_2^2.$$
$$B = \sum_{i, j, k, \ell \text{ diff.}} \mathbf{E} \left[\widehat{\sigma}_{i,j} \cdot \widehat{\sigma}_{k,\ell} \right] = \sum_{i, j, k, \ell \text{ diff.}} \mathbf{E} \left[\widehat{\sigma}_{i,j} \right] \cdot \mathbf{E} \left[\widehat{\sigma}_{k,\ell} \right] = 0.$$

$$C = \sum_{1 \le i < j < k \le r} \mathbf{E}[\widehat{\sigma}_{i,j}\widehat{\sigma}_{i,k}]$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

$$A = \sum_{1 \le i < j \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j}^{2} \right] \le \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j}^{2} \right] = \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j} \right] = \binom{r}{2} \cdot ||\mathbf{p}||_{2}^{2}.$$

$$B = \sum_{\substack{i, j, k, \ell \text{ diff.} \\ \text{Covariance Formula: } \mathbf{E} \left[\widehat{\sigma}_{i,j} \cdot \widehat{\sigma}_{k,\ell} \right] = \sum_{\substack{i, j, k, \ell \text{ diff.} \\ \text{Covariance Formula: } \mathbf{E} \left[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y]) \right] = \mathbf{E} [XY] - \mathbf{E}[X] \mathbf{E}[Y]}}{\mathbf{E} \left[\widehat{\sigma}_{i,j} \widehat{\sigma}_{i,k} \right]} \le \sum_{1 \le i < j < k \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j} \widehat{\sigma}_{i,k} \right]$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

$$A = \sum_{1 \le i < j \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j}^{2} \right] \le \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j}^{2} \right] = \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j} \right] = \binom{r}{2} \cdot \|p\|_{2}^{2}.$$

$$B = \sum_{\substack{i, j, k, \ell \text{ diff.} \\ (\text{Covariance Formula: } \mathbf{E} \left[\widehat{\sigma}_{i,j} \cdot \widehat{\sigma}_{k,\ell} \right] = \sum_{\substack{i, j, k, \ell \text{ diff.} \\ (\mathbf{Covariance Formula: } \mathbf{E} \left[(X - \mathbf{E} [X]) (Y - \mathbf{E} [Y]) \right] = \mathbf{E} [XY] - \mathbf{E} [X] \mathbf{E} [Y] \right]}}{C = \sum_{1 \le i < j < k \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j} \widehat{\sigma}_{i,k} \right] \le \sum_{1 \le i < j < k \le r} \mathbf{E} \left[\sigma_{i,j} \sigma_{i,k} \right]}$$

$$=\sum_{1\leq i< j< k\leq r}\sum_{\ell\in[n]}\mathbf{P}[X_i=X_j=X_k=\ell]$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

$$A = \sum_{1 \le i < j \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j}^{2} \right] \le \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j}^{2} \right] = \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j} \right] = \binom{r}{2} \cdot ||p||_{2}^{2}.$$

$$B = \sum_{\substack{i, j, k, \ell \text{ diff.} \\ \text{Covariance Formula: } \mathbf{E} \left[\widehat{\sigma}_{i,j} \cdot \widehat{\sigma}_{k,\ell} \right] = \sum_{\substack{i, j, k, \ell \text{ diff.} \\ \text{Covariance Formula: } \mathbf{E} \left[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y]) \right] = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y])}}{\sum_{1 \le i < j < k \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j} \widehat{\sigma}_{i,k} \right] \le \sum_{1 \le i < j < k \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j} \widehat{\sigma}_{i,k} \right] = \mathbf{E} \left[X_{i} = X_{j} = X_{k} = \ell \right] = \binom{r}{3} \cdot \sum_{\ell \in [n]} p_{\ell}^{3}$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

Proof (3/5):

$$A = \sum_{1 \le i < j \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j}^{2} \right] \le \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j}^{2} \right] = \sum_{1 \le i < j \le r} \mathbf{E} \left[\sigma_{i,j} \right] = \binom{r}{2} \cdot \|p\|_{2}^{2}.$$

$$B = \sum_{\substack{i, j, k, \ell \text{ diff.} \\ (Covariance Formula: \mathbf{E}(X - \mathbf{E}[X])(Y - \mathbf{E}[Y]) = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[\widehat{\sigma}_{k,\ell}]} = 0.$$

$$C = \sum_{1 \le i < j < k \le r} \mathbf{E} \left[\widehat{\sigma}_{i,j} \widehat{\sigma}_{i,k} \right] \le \sum_{1 \le i < j < k \le r} \mathbf{E} \left[\sigma_{i,j} \sigma_{i,k} \right]$$

$$= \sum_{1 \le i < j < k \le r} \sum_{\ell \in [n]} \mathbf{P} [X_{i} = X_{j} = X_{k} = \ell] = \binom{r}{3} \cdot \sum_{\ell \in [n]} p_{\ell}^{3} \le \frac{\sqrt{3}}{2} \left(\binom{r}{2} \|p\|_{2}^{2} \right)^{3/2}$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

Proof (4/5):

We have just shown that:

$$\operatorname{Var}\left[\sum_{1\leq i< j\leq r}\sigma_{i,j}\right] = \mathbf{A} + \mathbf{B} + \mathbf{6}\mathbf{C}$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

Proof (4/5):

We have just shown that:

$$\begin{aligned} \operatorname{Var}\left[\sum_{1 \le i < j \le r} \sigma_{i,j}\right] &= A + B + 6C \\ &= \binom{r}{2} \cdot \|p\|_2^2 + 0 + 6 \cdot \frac{\sqrt{3}}{2} \left(\binom{r}{2} \|p\|_2^2\right)^{3/2} \end{aligned}$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

Proof (4/5):

We have just shown that:

$$\begin{aligned} \operatorname{Var}\left[\sum_{1 \leq i < j \leq r} \sigma_{i,j}\right] &= A + B + 6C \\ &= \binom{r}{2} \cdot \|p\|_{2}^{2} + 0 + 6 \cdot \frac{\sqrt{3}}{2} \left(\binom{r}{2} \|p\|_{2}^{2}\right)^{3/2} \\ &\leq 5 \left(\binom{r}{2} \|p\|_{2}^{2}\right)^{3/2} \end{aligned}$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value *Y* such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (5/5):

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value Y such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (5/5):

• Applying Chebyshef's inequality to $Y := \frac{1}{\binom{j}{2}} \cdot \sum_{1 \le i < j \le r} \sigma_{i,j}$ yields:

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value Y such that $\mathbf{P}\Big[\left|Y - \|p\|_2^2\right| \ge \epsilon \cdot \|p\|_2^2\Big] \le 1/3.$

Proof (5/5):

• Applying Chebyshef's inequality to $Y := \frac{1}{\binom{i}{2}} \cdot \sum_{1 \le i < j \le r} \sigma_{i,j}$ yields:

$$\mathsf{P}\Big[\left|Y - \mathsf{E}[|Y]\right| \ge \epsilon \cdot \left\|p\right\|_{2}^{2}\Big] \le \frac{\mathsf{Var}[|Y|]}{\epsilon^{2} \cdot \left\|p\right\|_{2}^{4}}$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value Y such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (5/5):

• Applying Chebyshef's inequality to $Y := \frac{1}{\binom{i}{2}} \cdot \sum_{1 \le i < j \le r} \sigma_{i,j}$ yields:

$$\begin{split} \mathbf{P}\Big[\left|\mathbf{Y} - \mathbf{E}[\mathbf{Y}]\right| \geq \epsilon \cdot \|\mathbf{p}\|_{2}^{2}\Big] &\leq \frac{\operatorname{Var}[\mathbf{Y}]}{\epsilon^{2} \cdot \|\mathbf{p}\|_{2}^{4}} \\ &\leq \frac{\frac{1}{\binom{r}{2}^{2}} \cdot 7\left(\binom{r}{2} \cdot \|\mathbf{p}\|_{2}^{2}\right)^{3/2}}{\epsilon^{2} \cdot \|\mathbf{p}\|_{2}^{4}} \end{split}$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value Y such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (5/5):

• Applying Chebyshef's inequality to $Y := \frac{1}{\binom{j}{2}} \cdot \sum_{1 \le i < j \le r} \sigma_{i,j}$ yields:

$$\begin{aligned} \mathbf{P}\Big[\left| \mathbf{Y} - \mathbf{E}[\mathbf{Y}] \right| &\geq \epsilon \cdot \|\mathbf{p}\|_{2}^{2} \Big] &\leq \frac{\operatorname{Var}[\mathbf{Y}]}{\epsilon^{2} \cdot \|\mathbf{p}\|_{2}^{4}} \\ &\leq \frac{\frac{1}{\binom{r}{2}^{2}} \cdot 7\left(\binom{r}{2} \cdot \|\mathbf{p}\|_{2}^{2}\right)^{3/2}}{\epsilon^{2} \cdot \|\mathbf{p}\|_{2}^{4}} \\ &\leq \frac{14}{r \cdot \|\mathbf{p}\|_{2} \cdot \epsilon^{2}} \end{aligned}$$

- Analysis

For any value $r \ge 42 \cdot \frac{\sqrt{n}}{\epsilon^2}$, the algorithm returns a value Y such that $\mathbf{P}\Big[\left| Y - \|p\|_2^2 \right| \ge \epsilon \cdot \|p\|_2^2 \Big] \le 1/3.$

Proof (5/5):

• Applying Chebyshef's inequality to $Y := \frac{1}{\binom{j}{2}} \cdot \sum_{1 \le i < j \le r} \sigma_{i,j}$ yields:

$$\begin{split} \mathbf{P}\Big[|Y - \mathbf{E}[Y]| \geq \epsilon \cdot \|p\|_2^2\Big] &\leq \frac{\mathbf{Var}[Y]}{\epsilon^2 \cdot \|p\|_2^4} \\ &\leq \frac{\frac{1}{(2)^2} \cdot 7\left(\binom{r}{2} \cdot \|p\|_2^2\right)^{3/2}}{\epsilon^2 \cdot \|p\|_2^4} \\ &\leq \frac{14}{r \cdot \|p\|_2 \cdot \epsilon^2} \\ &\leq \frac{14}{r \cdot (1/\sqrt{n}) \cdot \epsilon^2} \end{split}$$

UNIFORM-TEST

1. Run **APPROXIMATE** $||p||_2^2$ with $r = 42 \cdot \frac{\sqrt{n}}{(\epsilon^2/4)^2} = O(\frac{\sqrt{n}}{\epsilon^4})$ samples to get a value Y such that

$$\mathbf{P}\Big[|Y - \mathbf{E}[Y]| \ge \epsilon^2/4 \cdot \|p\|_2^2\Big] \le 1/3.$$

- 2. If $Y \ge \frac{1+\epsilon^2/2}{n}$, then REJECT. 3. Otherwise, ACCEPT.

UNIFORM-TEST

1. Run **APPROXIMATE** $||p||_2^2$ with $r = 42 \cdot \frac{\sqrt{n}}{(\epsilon^2/4)^2} = \mathcal{O}(\frac{\sqrt{n}}{\epsilon^4})$ samples to get a value Y such that

$$\mathbf{P}\Big[\left| Y - \mathbf{E}[|Y|] \right| \ge \epsilon^2 / 4 \cdot \|p\|_2^2 \Big] \le 1/3.$$

- 2. If $Y \ge \frac{1+\epsilon^2/2}{n}$, then REJECT. 3. Otherwise, ACCEPT.

Correctness Analysis

- If p = u, then **P**[ACCEPT] $\geq 2/3$.
- If p is ϵ -far from u, i.e., $\sum_{i=1}^{n} |p_i \frac{1}{n}| \ge \epsilon$), then **P**[REJECT] $\ge 2/3$.

UNIFORM-TEST

1. Run **APPROXIMATE** $||p||_2^2$ with $r = 42 \cdot \frac{\sqrt{n}}{(\epsilon^2/4)^2} = \mathcal{O}(\frac{\sqrt{n}}{\epsilon^4})$ samples to get a value Y such that

$$\mathbf{P}\Big[\left| Y - \mathbf{E}[|Y|] \right| \ge \epsilon^2 / 4 \cdot \|p\|_2^2 \Big] \le 1/3.$$

- 2. If $Y \ge \frac{1+\epsilon^2/2}{n}$, then REJECT. 3. Otherwise, ACCEPT.

Correctness Analysis

- If p = u, then **P**[ACCEPT] > 2/3.
- If p is ϵ -far from u, i.e., $\sum_{i=1}^{n} |p_i \frac{1}{n}| \ge \epsilon$), then **P**[REJECT] $\ge 2/3$.

Exercise: Prove that any testing algorithm in this model will have a two-sided error!

Case 1: *p* is uniform. In this case

$$\|p\|_2^2 = \frac{1}{n},$$

Case 1: *p* is uniform. In this case

$$\|p\|_2^2 = \frac{1}{n},$$

and the approximation guarantee on Y implies

$$\mathbf{P}\Big[Y \ge \|\boldsymbol{p}\|_2^2 \cdot (1 + \epsilon^2/4) \Big] \le 1/3,$$

Case 1: *p* is uniform. In this case

$$\|p\|_2^2 = \frac{1}{n},$$

and the approximation guarantee on Y implies

$$\mathbf{P}\Big[Y \ge \|\boldsymbol{p}\|_2^2 \cdot (1 + \epsilon^2/4) \Big] \le 1/3,$$

which means that the algorithm will ACCEPT with probability at least 2/3.

Case 2: p is ϵ -far from u.

We will show that if **P**[REJECT] $\leq 2/3$, then *p* is ϵ -close to *u*.

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

$$\mathbf{P}\left[\mathbf{Y} > \frac{1 + \epsilon^2/2}{n}\right] < 2/3. \tag{1}$$

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

$$\mathbf{P}\left[Y > \frac{1 + \epsilon^2/2}{n}\right] < 2/3. \tag{1}$$

From line 1 of the algorithm we know that

$$\mathbf{P}\left[|Y > (1 - \epsilon^2/4) \cdot \|p\|_2^2\right] \ge 2/3.$$
(2)

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

$$\mathbf{P}\left[Y > \frac{1 + \epsilon^2/2}{n}\right] < 2/3.$$
(1)

From line 1 of the algorithm we know that

$$\mathbf{P}\Big[Y > (1 - \epsilon^2 / 4) \cdot \|p\|_2^2 \Big] \ge 2/3.$$
(2)

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

$$\mathbf{P}\left[Y > \frac{1 + \epsilon^2/2}{n}\right] < 2/3.$$
(1)

From line 1 of the algorithm we know that

$$\mathbf{P}\Big[Y > (1 - \epsilon^2 / 4) \cdot \|p\|_2^2 \Big] \ge 2/3.$$
(2)

$$\|p\|_{2}^{2} < \frac{1}{n} \cdot (1 + \epsilon^{2}/2) \cdot \frac{1}{1 - \epsilon^{2}/4}$$

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

$$\mathbf{P}\left[Y > \frac{1 + \epsilon^2/2}{n}\right] < 2/3.$$
(1)

From line 1 of the algorithm we know that

$$\mathbf{P}\Big[Y > (1 - \epsilon^2 / 4) \cdot \|p\|_2^2 \Big] \ge 2/3.$$
(2)

$$\|p\|_{2}^{2} < \frac{1}{n} \cdot (1 + \epsilon^{2}/2) \cdot \frac{1}{1 - \epsilon^{2}/4} \underbrace{\left(1 \le (1 + \epsilon^{2}/3) \cdot (1 - \epsilon^{2}/4)\right)}_{1 \le (1 + \epsilon^{2}/3) \cdot (1 - \epsilon^{2}/4)}$$

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

$$\mathbf{P}\left[Y > \frac{1 + \epsilon^2/2}{n}\right] < 2/3. \tag{1}$$

From line 1 of the algorithm we know that

$$\mathbf{P}\Big[Y > (1 - \epsilon^2 / 4) \cdot \|p\|_2^2 \Big] \ge 2/3.$$
(2)

$$\|p\|_{2}^{2} < \frac{1}{n} \cdot (1 + \epsilon^{2}/2) \cdot \frac{1}{1 - \epsilon^{2}/4} \leq \underbrace{\frac{1 + \epsilon^{2}}{n}}_{\left(1 \le (1 + \epsilon^{2}/3) \cdot (1 - \epsilon^{2}/4)\right)}$$

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

$$\mathbf{P}\left[Y > \frac{1 + \epsilon^2/2}{n}\right] < 2/3. \tag{1}$$

From line 1 of the algorithm we know that

$$\mathbf{P}\Big[Y > (1 - \epsilon^2 / 4) \cdot \|p\|_2^2 \Big] \ge 2/3.$$
(2)

$$\begin{split} \|p\|_{2}^{2} &< \frac{1}{n} \cdot (1 + \epsilon^{2}/2) \cdot \frac{1}{1 - \epsilon^{2}/4} \leq \frac{1 + \epsilon^{2}}{n}. \\ \text{Hence,} & \underbrace{1 \leq (1 + \epsilon^{2}/3) \cdot (1 - \epsilon^{2}/4)}_{\|p - u\|_{2}^{2}} = \|p\|_{2}^{2} - \frac{1}{n} < \frac{\epsilon^{2}}{n} \Rightarrow \|p - u\|_{2} < \frac{\epsilon}{\sqrt{n}}. \end{split}$$

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

$$\mathbf{P}\left[Y > \frac{1 + \epsilon^2/2}{n}\right] < 2/3. \tag{1}$$

From line 1 of the algorithm we know that

$$\mathbf{P}\Big[Y > (1 - \epsilon^2 / 4) \cdot \|p\|_2^2 \Big] \ge 2/3.$$
(2)

$$\begin{split} \|p\|_{2}^{2} &< \frac{1}{n} \cdot (1 + \epsilon^{2}/2) \cdot \frac{1}{1 - \epsilon^{2}/4} \leq \underbrace{\frac{1 + \epsilon^{2}}{n}}_{n}. \\ \text{Hence,} & \underbrace{1 \leq (1 + \epsilon^{2}/3) \cdot (1 - \epsilon^{2}/4)}_{\|p - u\|_{2}^{2}} = \|p\|_{2}^{2} - \frac{1}{n} < \frac{\epsilon^{2}}{n} \Rightarrow \|p - u\|_{2} < \frac{\epsilon}{\sqrt{n}}. \\ \text{Since } \|.\|_{2} \geq \frac{1}{\sqrt{n}} \cdot \|.\|_{1}, \end{split}$$

Case 2: p is ϵ -far from u.

We will show that if $P[REJECT] \le 2/3$, then *p* is ϵ -close to *u*. $P[REJECT] \le 2/3$ implies

$$\mathbf{P}\left[Y > \frac{1 + \epsilon^2/2}{n}\right] < 2/3. \tag{1}$$

From line 1 of the algorithm we know that

$$\mathbf{P}\Big[Y > (1 - \epsilon^2 / 4) \cdot \|p\|_2^2 \Big] \ge 2/3.$$
(2)

$$\begin{split} \|p\|_{2}^{2} &< \frac{1}{n} \cdot (1 + \epsilon^{2}/2) \cdot \frac{1}{1 - \epsilon^{2}/4} \leq \frac{1 + \epsilon^{2}}{n}. \\ \text{Hence,} & \underbrace{1 \leq (1 + \epsilon^{2}/3) \cdot (1 - \epsilon^{2}/4)}_{\|p - u\|_{2}^{2}} = \|p\|_{2}^{2} - \frac{1}{n} < \frac{\epsilon^{2}}{n} \Rightarrow \|p - u\|_{2} < \frac{\epsilon}{\sqrt{n}}. \\ \text{Since } \|.\|_{2} \geq \frac{1}{\sqrt{n}} \cdot \|.\|_{1}, \\ \|p - u\|_{1} \leq \sqrt{n} \cdot \|p - u\|_{2} < \epsilon. \\ \Box \end{split}$$

Introduction

Upper Bounds on Testing Uniformity

Lower Bounds on Testing Uniformity

Extensions

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

- 1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from *p*,
- 2. If p = u, then $\mathbf{P}[\text{ACCEPT}] \ge \frac{2}{3}$, 3. If $||p u||_1 \ge \epsilon$, then $\mathbf{P}[\text{REJECT}] \ge \frac{2}{3}$.

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

```
2. If p = u, then P[ACCEPT] \geq \frac{2}{3},
```

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Proof Outline.

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

2. If
$$p = u$$
, then **P**[ACCEPT] $\geq \frac{2}{3}$

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Proof Outline.

Generate a distribution p randomly as follows:

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

2. If
$$p = u$$
, then **P**[ACCEPT] $\geq \frac{2}{3}$

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Proof Outline.

- Generate a distribution p randomly as follows:
 - Pick a set $\mathcal{I} \subseteq \{1, \dots, \epsilon \cdot n\}$ of size $\epsilon \cdot n/2$ uniformly at random.

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

2. If
$$p = u$$
, then **P**[ACCEPT] $\geq \frac{2}{3}$

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Proof Outline.

- Generate a distribution p randomly as follows:
 - Pick a set $\mathcal{I} \subseteq \{1, \dots, \epsilon \cdot n\}$ of size $\epsilon \cdot n/2$ uniformly at random.
 - Then define:

$$p_i = \begin{cases} \frac{2}{n} & \text{if } i \in \mathcal{I}, \\ 0 & \text{if } i \in \{1, \dots, \epsilon \cdot n\} \setminus \mathcal{I}, \\ \frac{1}{n} & \text{if } \epsilon \cdot n < i < n. \end{cases}$$

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

2. If
$$p = u$$
, then **P**[ACCEPT] $\geq \frac{2}{3}$

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Proof Outline.

- Generate a distribution p randomly as follows:
 - Pick a set $\mathcal{I} \subseteq \{1, \dots, \epsilon \cdot n\}$ of size $\epsilon \cdot n/2$ uniformly at random.
 - Then define:

$$p_i = \begin{cases} \frac{2}{n} & \text{if } i \in \mathcal{I}, \\ 0 & \text{if } i \in \{1, \dots, \epsilon \cdot n\} \setminus \mathcal{I}, \\ \frac{1}{n} & \text{if } \epsilon \cdot n < i < n. \end{cases}$$

• Then $\|p - u\|_1$

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

2. If
$$p = u$$
, then **P**[ACCEPT] $\geq \frac{2}{3}$

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Proof Outline.

- Generate a distribution p randomly as follows:
 - Pick a set $\mathcal{I} \subseteq \{1, \dots, \epsilon \cdot n\}$ of size $\epsilon \cdot n/2$ uniformly at random.
 - Then define:

$$p_i = \begin{cases} \frac{2}{n} & \text{if } i \in \mathcal{I}, \\ 0 & \text{if } i \in \{1, \dots, \epsilon \cdot n\} \setminus \mathcal{I}, \\ \frac{1}{n} & \text{if } \epsilon \cdot n < i < n. \end{cases}$$

• Then $\|p - u\|_1 = \epsilon \cdot n \cdot 1/n = \epsilon$.

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

2. If
$$p = u$$
, then **P**[ACCEPT] $\geq \frac{2}{3}$

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Proof Outline.

- Generate a distribution p randomly as follows:
 - Pick a set $\mathcal{I} \subseteq \{1, \dots, \epsilon \cdot n\}$ of size $\epsilon \cdot n/2$ uniformly at random.
 - Then define:

$$p_i = \begin{cases} \frac{2}{n} & \text{if } i \in \mathcal{I}, \\ 0 & \text{if } i \in \{1, \dots, \epsilon \cdot n\} \setminus \mathcal{I}, \\ \frac{1}{n} & \text{if } \epsilon \cdot n < i < n. \end{cases}$$

• Then
$$||p - u||_1 = \epsilon \cdot n \cdot 1/n = \epsilon$$
.

• E.g.,
$$n = 16$$
, $\epsilon = 1/4$, $\mathcal{I} = \{1, 4\}$:

Lower Bound

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

2. If
$$p = u$$
, then **P**[ACCEPT] $\geq \frac{2}{3}$

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Proof Outline.

- Generate a distribution p randomly as follows:
 - Pick a set $\mathcal{I} \subseteq \{1, \dots, \epsilon \cdot n\}$ of size $\epsilon \cdot n/2$ uniformly at random.
 - Then define:

$$p_i = \begin{cases} \frac{2}{n} & \text{if } i \in \mathcal{I}, \\ 0 & \text{if } i \in \{1, \dots, \epsilon \cdot n\} \setminus \mathcal{I}, \\ \frac{1}{n} & \text{if } \epsilon \cdot n < i < n. \end{cases}$$

Then $||p - u||_1 = \epsilon \cdot n \cdot 1/n = \epsilon$. E.g., n = 16, $\epsilon = 1/4$, $\mathcal{I} = \{1, 4\}$:

$$p = \left(\underbrace{\frac{2}{n}, 0, 0, \frac{2}{n}}_{en=4 \text{ elements}}, \underbrace{\frac{1}{n}, \frac{1}{n}, \frac{1}{n},$$

Lower Bound

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

2. If
$$p = u$$
, then **P**[ACCEPT] $\geq \frac{2}{3}$

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Proof Outline.

- Generate a distribution p randomly as follows:
 - Pick a set $\mathcal{I} \subseteq \{1, \dots, \epsilon \cdot n\}$ of size $\epsilon \cdot n/2$ uniformly at random.
 - Then define:

$$p_i = \begin{cases} \frac{2}{n} & \text{if } i \in \mathcal{I}, \\ 0 & \text{if } i \in \{1, \dots, \epsilon \cdot n\} \setminus \mathcal{I}, \\ \frac{1}{n} & \text{if } \epsilon \cdot n < i < n. \end{cases}$$

Then $||p - u||_1 = \epsilon \cdot n \cdot 1/n = \epsilon$. E.g., n = 16, $\epsilon = 1/4$, $\mathcal{I} = \{1, 4\}$:

Idea is that algorithm needs enough samples of the first $\epsilon \cdot n$ elements to see any collisions!

$$p = \left(\underbrace{\frac{2}{n}, 0, 0, \frac{2}{n}}_{en=4 \text{ elements}}, \underbrace{\frac{1}{n}, \frac{1}{n}, \frac{1}{n},$$

Lower Bound

Theorem

Let $0 < \epsilon < 1$. There is no algorithm with the following three properties:

1. The algorithm samples at most $r := \frac{1}{64} \sqrt{n/\epsilon}$ times from p,

2. If
$$p = u$$
, then **P**[ACCEPT] $\geq \frac{2}{3}$

3. If
$$\|p - u\|_1 \ge \epsilon$$
, then **P**[REJECT] $\ge \frac{2}{3}$.

Exercise: Can you see why is it important to choose \mathcal{I} randomly?

Proof Outline.

- Generate a distribution p randomly as follows:
 - Pick a set $\mathcal{I} \subseteq \{1, \ldots, \epsilon \cdot n\}$ of size $\epsilon \cdot n/2$ uniformly at random.

Then define:

$$p_i = \begin{cases} \frac{2}{n} & \text{if } i \in \mathcal{I}, \\ 0 & \text{if } i \in \{1, \dots, \epsilon \cdot n\} \setminus \mathcal{I}, \\ \frac{1}{n} & \text{if } \epsilon \cdot n < i < n. \end{cases}$$

Then $||p - u||_1 = \epsilon \cdot n \cdot 1/n = \epsilon$. E.g., n = 16, $\epsilon = 1/4$, $\mathcal{I} = \{1, 4\}$:

Idea is that algorithm needs enough samples of the first $\epsilon \cdot n$ elements to see any collisions!

$$p = \left(\underbrace{\frac{2}{n}, 0, 0, \frac{2}{n}}_{e n = 4 \text{ elements}}, \underbrace{\frac{1}{n}, \frac{1}{n}, \frac{1}{n$$

Exercise (in Class)

What is the **expected number of collisions** among \mathcal{I} , if we are sampling *t* times from the distribution *p* as described on the previous slide?

Let Z denote the number of collisions, so $Z = \sum_{1 \le k < \ell \le t} \mathbf{1}_{x_k = x_\ell \land x_k \in \mathcal{I}}$. Taking expectations and using linearity of expectation yields:

$$\begin{split} \mathbf{E}[\mathcal{Z}] &= \mathbf{E}\left[\sum_{1 \le k < \ell \le t} \mathbf{1}_{x_k = x_\ell \land x_k \in \mathcal{I}}\right] = \sum_{1 \le k < \ell \le t} \mathbf{E}[\mathbf{1}_{x_k = x_\ell \land x_k \in \mathcal{I}}] \\ &= \sum_{1 \le k < \ell \le t} \mathbf{P}[x_k = x_\ell \land x_k \in \mathcal{I}] \cdot \mathbf{1} \\ &= \sum_{1 \le k < \ell \le t} \sum_{i=1}^{e^n} \mathbf{P}[x_k = x_\ell \land x_k \in \mathcal{I} \land x_k = i] \\ &= \sum_{1 \le k < \ell \le t} \sum_{i=1}^{e^n} \mathbf{P}[i \in \mathcal{I}] \cdot \mathbf{P}[x_k = x_\ell = i \mid i \in \mathcal{I}] \\ &= \sum_{1 \le k < \ell \le t} \sum_{i=1}^{e^n} \frac{1}{2} \cdot \left(\frac{2}{n}\right)^2 = \left(\frac{t}{2}\right) \cdot \epsilon n \cdot \left(\frac{2}{n}\right)^2. \end{split}$$

Hence if $t = o(\sqrt{n/\epsilon})$, then $\mathbf{E}[Z] \to 0$ and thus $\mathbf{P}[Z=0] \to 1$, as $n \to \infty$.

Introduction

Upper Bounds on Testing Uniformity

Lower Bounds on Testing Uniformity

Extensions

$$\| p - q \|_2^2 = \sum_{i=1}^n (p_i - q_i)^2$$

$$\||p-q||_2^2 = \sum_{i=1}^n (p_i-q_i)^2 = \sum_{i=1}^n p_i^2 + \sum_{i=1}^n q_i^2 - 2 \cdot \sum_{i=1}^n p_i \cdot q_i$$

$$\begin{aligned} \|p - q\|_2^2 &= \sum_{i=1}^n (p_i - q_i)^2 = \sum_{i=1}^n p_i^2 + \sum_{i=1}^n q_i^2 - 2 \cdot \sum_{i=1}^n p_i \cdot q_i \\ &= \|p\|_2^2 + \|q\|_2^2 - 2 \cdot \langle p, q \rangle \end{aligned}$$

$$\|p - q\|_{2}^{2} = \sum_{i=1}^{n} (p_{i} - q_{i})^{2} = \sum_{i=1}^{n} p_{i}^{2} + \sum_{i=1}^{n} q_{i}^{2} - 2 \cdot \sum_{i=1}^{n} p_{i} \cdot q_{i}$$
$$= \|p\|_{2}^{2} + \|q\|_{2}^{2} - 2 \cdot \langle p, q \rangle$$
We already know how to estimate $\|p\|_{2}^{2}$ and $\|q\|_{2}^{2}!$

$$\|p - q\|_{2}^{2} = \sum_{i=1}^{n} (p_{i} - q_{i})^{2} = \sum_{i=1}^{n} p_{i}^{2} + \sum_{i=1}^{n} q_{i}^{2} - 2 \cdot \sum_{i=1}^{n} p_{i} \cdot q_{i}$$
$$= \|p\|_{2}^{2} + \|q\|_{2}^{2} - 2 \cdot \langle p, q \rangle$$
We already know how to estimate $\|p\|_{2}^{2}$ and $\|q\|_{2}^{2}!$

APPROXIMATE $\langle p, q \rangle$ —

- 1. Sample *r* elements from *p*, $x_1, x_2, \ldots, x_r \in [n]$, and sample *r* elements from *q*, $y_1, y_2, \ldots, y_r \in [n]$
- 2. For each $1 \leq i < j \leq r$,

$$\tau_{i,j} := \begin{cases} 1 & \text{if } x_i = y_j, \\ 0 & \text{otherwise.} \end{cases}$$

3. Output $Y := \frac{1}{r^2} \sum_{1 \le i,j \le r} \tau_{i,j}$.

Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013) ----

There exists an algorithm using $\mathcal{O}(1/\epsilon^4)$ samples such that if the distributions p and q satisfy $||p - q||_2 \le \epsilon/2$, then the algorithm accepts with probability at least 2/3. If $||p - q||_2 \ge \epsilon$, then the algorithm rejects with probability at least 2/3.

- Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013) ----

There exists an algorithm using $\mathcal{O}(1/\epsilon^4)$ samples such that if the distributions p and q satisfy $||p - q||_2 \le \epsilon/2$, then the algorithm accepts with probability at least 2/3. If $||p - q||_2 \ge \epsilon$, then the algorithm rejects with probability at least 2/3.

- Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013) -----

There exists an algorithm using $\mathcal{O}(1/\epsilon^4 \cdot n^{2/3} \log n)$ samples such that if the distributions p and q satisfy $\|p - q\|_1 \leq \max\{\frac{\epsilon^2}{32\sqrt[3]{n}}, \frac{\epsilon}{4\sqrt{n}}\}$, then the algorithm accepts with probability at least 2/3. If $\|p - q\|_1 \geq \epsilon$, then the algorithm rejects with probability at least 2/3.

- Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013) -----

There exists an algorithm using $\mathcal{O}(1/\epsilon^4)$ samples such that if the distributions p and q satisfy $||p - q||_2 \le \epsilon/2$, then the algorithm accepts with probability at least 2/3. If $||p - q||_2 \ge \epsilon$, then the algorithm rejects with probability at least 2/3.

- Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013) -----

There exists an algorithm using $\mathcal{O}(1/\epsilon^4 \cdot n^{2/3} \log n)$ samples such that if the distributions p and q satisfy $\|p - q\|_1 \leq \max\{\frac{\epsilon^2}{32\sqrt[3]{n}}, \frac{\epsilon}{4\sqrt{n}}\}$, then the algorithm accepts with probability at least 2/3. If $\|p - q\|_1 \geq \epsilon$, then the algorithm rejects with probability at least 2/3.

	L ₂ -distance	L1-distance
Testing uniformity $ p - u $	Θ(1)	$\Theta(\sqrt{n})$
Testing closeness $\ p - q\ $	Θ(1)	$\in [\Omega(n^{2/3}), \mathcal{O}(n^{2/3}\log n)]$

Figure: Overview of the known sampling complexities for constant $\epsilon \in (0, 1)$.

Extension 2: Testing Conductance of Graphs

Testing Conductance of Graphs -

Idea: Start several random walks from the same vertex

Extension 2: Testing Conductance of Graphs

Testing Conductance of Graphs -

- Idea: Start several random walks from the same vertex
- Count the number of pairwise collisions among the endpoints of the walks

Testing Conductance of Graphs

- Idea: Start several random walks from the same vertex
- Count the number of pairwise collisions among the endpoints of the walks
 - If the number of collisions high, graphs is not an expander
 - If the number of collisions is sufficiently small, graph is an expander

Application 3: Estimating Population Sizes using Mark & Recapture

Source: Wikipedia

Application 3: Estimating Population Sizes using Mark & Recapture

Mark & Recapture Method:

- First phase: A portion of the population is captured, marked and released
- Second phase: Another portion is captured and the number of marked individuals is counted

Application 3: Estimating Population Sizes using Mark & Recapture

Mark & Recapture Method:

- First phase: A portion of the population is captured, marked and released
- Second phase: Another portion is captured and the number of marked individuals is counted
 - Essentially the same as collision sampling
 - Can be used to estimate the size of a large network if each node has a unique ID (within an unknown range)

