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Sublinear Algorithms Overview

Sublinear Algorithms: Algorithms that return reasonably good approx-
imate answers without scanning or storing the entire input

Usually these algorithms are randomised!

Sublinear Algorithms

Sublinear-(Time)
Algorithms

Algorithm may only inspect a
small fraction of the whole input

Data Streaming
Algorithms

Algorithm may only read input
once and store a small fraction

Dimensionality Reduction
Preprocess to reduce the size of

the input
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Motivation

Goal: Estimate properties of big probability distributions

big means that the domain of the finite probability distribution is very large!

Lottery (are numbers equally likely?)

Birthday Distribution (is the birthday
distribution uniform over 365 days?)

Shopping patterns (are distributions
the same or different?)

Physical Experiment (is the observed
distribution close to the prediction?)

Health (are there correlations between
zip code and health condition?)

 

Thanks to Krzysztof Onak (pointer) and Eric Price (graph) 

Transactions of 20-30 yr olds Transactions of 30-40 yr olds 
 
 
 

Testing closeness of two distributions: 

 
  

  

trend change? 

Source: Slides by Ronitt Rubinfeld
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Testing Probability Distribution (Formal Model)

Given one (or more) probability distribution p = (p1, p2, . . . , pn)

distribution(s) are unknown, but can obtain independent samples

also known: n (or a good estimate of it)

Model

Cost: number of samples (queries)

Questions:
1. Is the distribution p close to the uniform distribution u?

2. Is the distribution p close to some other distribution q?

3. What is max1≤i≤n pi (heavy hitter)?

4. Are the distributions p and q independent? . . .
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Testing Uniformity

Testing Uniformity: Is the distribution p close to the uniform distribution u?

Let p and q be any two distributions over {1, 2, . . . , n}. Then:

1. L1-distance: ‖p − q‖1 =
∑n

i=1 |pi − qi | ∈ [0, 2],

2. L2-distance: ‖p − q‖2 =
√∑n

i=1(pi − qi )2 ∈ [0,
√

2],

3. L∞-distance: ‖p − q‖∞ = maxn
i=1 |pi − qi | ∈ [0, 1].

Distance between Discrete Distributions

Examples:

1. p = (1, 0, . . . , 0), q = (0, 1, 0, . . . , 0). Then ‖p − q‖1 = 2, ‖p − q‖2 =
√

2 and
‖p − q‖∞ = 1.

2. p = (1, 0, . . . , 0), q = (1/n, 1/n, . . . , 1/n). Then ‖p − q‖1 = 2− 2/n,
‖p − q‖2 =

√
1 · (1− 1/n)2 + (n − 1) · (1/n)2 =

√
1− 1/n and ‖p − q‖∞ = 1− 1/n.

3. p = (2/n, . . . , 2/n︸ ︷︷ ︸
n/2 times

, 0, . . . , 0) and q = (0, . . . , 0, 2/n, . . . , 2/n︸ ︷︷ ︸
n/2 times

). Then ‖p − q‖1 = 2,

‖p − q‖2 =
√

2 · (n/2) · (2/n)2 =
√

4/n and ‖p − q‖∞ = 2/n.

Disjoint distributions, yet L2
and L∞ distances are small!
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Testing Uniformity in the L1-distance

Find an efficient tester such that
Given any probability distribution p and ε ∈ (0, 1)

If p is the uniform distribution, then P[ ACCEPT ] ≥ 2/3,
If p is ε-far from uniform (

∑n
i=1 |pi − 1/n| ≥ ε), then P[ REJECT ] ≥ 2/3.

Objective

tester efficient (sub-linear)  different from standard statistical tests!

tester is allowed to have two-sided error

there is a “grey area” when p is different from but close to uniform,
where the tester may give any result

i

pi

1 2 3 4 5

1

0.75

0.5

0.25

0 i

ui

1 2 3 4 5

1

0.75

0.5

0.25

0
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High Level Idea

Recall: L1-distance is
n∑

i=1

∣∣∣∣pi −
1
n

∣∣∣∣

First Idea might be to approximate each pi − 1
n , but this takes at least Ω(n) queries.

Birthday Paradox:
If p is (close to) uniform, expect to see collisions after ≈

√
n samples

If p is far from uniform, expect to see collisions with

k

P[ collision ]
≈ 1− exp

(
− k(k−1)

2·365

)

36520 40 60 80 1001

1

0.5
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n , but this takes at least Ω(n) queries.

Birthday Paradox:
If p is (close to) uniform, expect to see collisions after ≈

√
n samples

If p is far from uniform, expect to see collisions with even less samples

k

P[ collision ]
≈ 1− exp

(
− k(k−1)

2·365

)
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Collision Probability and L2-distance

‖p − u‖2
2

=
n∑

i=1

(pi − 1/n)2 =
n∑

i=1

p2
i − 2 ·

n∑
i=1

pi ·
1
n

+
n∑

i=1

(
1
n

)2

= ‖p‖2
2 −

1
n

Hence ‖p‖2
2 =

∑n
i=1 p2

i captures the L2-distance to the uniform distribution

1. Sample r elements from p, x1, x2, . . . , xr ∈ {1, . . . , n}
2. For each 1 ≤ i < j ≤ r ,

σi,j :=

{
1 if xi = xj ,
0 otherwise.

3. Output Y := 1
(r

2)
·
∑

1≤i<j≤r σi,j .

APPROXIMATE ‖p‖2
2

number of samples r will be specified later!
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Runtime Analysis

Sampling/Query Complexity is obviously r

Time Complexity??

Evaluating
∑

1≤i<j≤r σi,j directly takes time quadratic in r
Linear-Time Solution:
1. Maintain array A = (a1, a2, . . . , an), where ai ∈ [0, r ] counts the frequency
of samples of item i
2. Use formula ∑

1≤i<j≤r

σi,j
(?)
=

n∑
k=1

(ak

2

)
3. Since at most O(r) elements in A will be non-zero, using hash-function
allows computation in time O(r)

Proof of (?):∑
1≤i<j≤r

σi,j

=
∑

1≤i<j≤r

1xi =xj

=
∑

1≤i<j≤r

n∑
k=1

1xi =xj =k =
n∑

k=1

∑
1≤i<j≤r

1xi =xj =k =
n∑

k=1

(
ak

2

)
.
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Approximation Analysis

For any value r ≥ 42 ·
√

n
ε2 , the algorithm returns a value Y such that

P
[ ∣∣∣Y − ‖p‖2

2

∣∣∣ ≥ ε · ‖p‖2
2

]
≤ 1/3.

Analysis
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ε2 , the algorithm returns a value Y such that

P
[ ∣∣∣Y − ‖p‖2

2

∣∣∣ ≥ ε · ‖p‖2
2

]
≤ 1/3.

Analysis

Proof (1/5):
Let us start by computing E[ Y ]:

E[ Y ]

=
1(r
2

) · ∑
1≤i<j≤r

E
[
σi,j
]

=
1(r
2

) · ∑
1≤i<j≤r

n∑
k=1

P[ xi = k ] · P
[

xj = k
]

=
1(r
2

) · ∑
1≤i<j≤r

n∑
k=1

p2
k = ‖p‖2

2.

Analysis of the deviation more complex (see next slides):

requires a careful analysis of the variance
(note that the σi,j ’s are not even pairwise independent! - Exercise)
final step is an application of Chebysheff’s inequality
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Approximation Analysis

For any value r ≥ 42 ·
√

n
ε2 , the algorithm returns a value Y such that

P
[ ∣∣∣Y − ‖p‖2

2

∣∣∣ ≥ ε · ‖p‖2
2

]
≤ 1/3.

Analysis

Proof (2/5):

Define σ̂i,j := σi,j − E[σi,j ] . Note E[ σ̂i,j ] = 0, σ̂i,j ≤ σi,j and

Var

 ∑
1≤i<j≤r

σi,j

 = E


 ∑

1≤i<j≤r

σi,j −
∑

1≤i<j≤r

E[σi,j ]

2
 = E


 ∑

1≤i<j≤r

σ̂i,j

2
 .

Expanding yields:∑
1≤i<j≤r

E
[
σ̂2

i,j

]
︸ ︷︷ ︸

=A

+
∑

i, j, k, ` diff.

E[ σ̂i,j · σ̂k,` ]

︸ ︷︷ ︸
=B

+ 6 ·
∑

1≤i<j<k≤r

E[ σ̂i,j · σ̂j,k ]

︸ ︷︷ ︸
=C

.

There are 2 ·
(3

2

)
= 6 combinations!
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Approximation Analysis
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∑
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i,j
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=
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r
2

)
· ‖p‖2

2.
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∑
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∑
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∑
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3
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∑
`∈[n]

p3
` ≤
√

3
2
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r
2

)
‖p‖2

2

)3/2

Covariance Formula: E[ (X − E[ X ])(Y − E[ Y ]) ] = E[ XY ] − E[ X ] E[ Y ]
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Approximation Analysis
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Approximation Analysis
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Approximation Analysis
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We have just shown that:
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 ∑
1≤i<j≤r

σi,j

 = A + B + 6C

=

(
r
2

)
· ‖p‖2

2 + 0 + 6 ·
√

3
2

((
r
2

)
‖p‖2

2

)3/2

≤ 5

((
r
2

)
‖p‖2

2

)3/2
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Approximation Analysis
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Approximation of ‖p − u‖1 using ‖p‖2
2

1. Run APPROXIMATE ‖p‖2
2 with r = 42 ·

√
n

(ε2/4)2 = O(
√

n
ε4 ) samples to

get a value Y such that

P
[
|Y − E[ Y ] | ≥ ε2/4 · ‖p‖2

2

]
≤ 1/3.

2. If Y ≥ 1+ε2/2
n , then REJECT.

3. Otherwise, ACCEPT.

UNIFORM-TEST

If p = u, then P[ ACCEPT ] ≥ 2/3.

If p is ε-far from u, i.e.,
∑n

i=1

∣∣pi − 1
n

∣∣ ≥ ε), then P[ REJECT ] ≥ 2/3.

Correctness Analysis

Exercise: Prove that any testing algorithm in this model will have a two-sided error!
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Analysis of UNIFORM-TEST (1/2)

Case 1: p is uniform.
In this case

‖p‖2
2 =

1
n
,

and the approximation guarantee on Y implies

P
[

Y ≥ ‖p‖2
2 · (1 + ε2/4)

]
≤ 1/3,

which means that the algorithm will ACCEPT with probability at least 2/3.
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Analysis of UNIFORM-TEST (2/2)

Case 2: p is ε-far from u.
We will show that if P[ REJECT ] ≤ 2/3, then p is ε-close to u.

P[ REJECT ] ≤ 2/3 implies

P
[

Y >
1 + ε2/2

n

]
< 2/3. (1)

From line 1 of the algorithm we know that

P
[

Y > (1− ε2/4) · ‖p‖2
2

]
≥ 2/3. (2)

Combining (1) and (2) yields, and rearranging yields

‖p‖2
2 <

1
n
· (1 + ε2/2) · 1

1− ε2/4

≤ 1 + ε2

n
.

1 ≤ (1 + ε2/3) · (1− ε2/4)Hence,

‖p − u‖2
2 = ‖p‖2

2 −
1
n
<
ε2

n
⇒ ‖p − u‖2 <

ε√
n
.

Since ‖.‖2 ≥ 1√
n · ‖.‖1,

‖p − u‖1 ≤
√

n · ‖p − u‖2 < ε.
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Lower Bound

Let 0 < ε < 1. There is no algorithm with the following three properties:

1. The algorithm samples at most r := 1
64

√
n/ε times from p,

2. If p = u, then P[ ACCEPT ] ≥ 2
3 ,

3. If ‖p − u‖1 ≥ ε, then P[ REJECT ] ≥ 2
3 .

Theorem

Proof Outline.

Generate a distribution p randomly as follows:

Pick a set I ⊆ {1, . . . , ε · n} of size ε · n/2 uniformly at random.
Then define:

pi =


2
n if i ∈ I,
0 if i ∈ {1, . . . , ε · n} \ I,
1
n if ε · n < i < n.

Then ‖p − u‖1

= ε · n · 1/n = ε.

E.g., n = 16, ε = 1/4, I = {1, 4}:

p =

 2
n
, 0, 0,

2
n︸ ︷︷ ︸

εn=4 elements

,
1
n
,

1
n
,

1
n
,

1
n
,

1
n
,

1
n
,

1
n
,

1
n
,

1
n
,

1
n
,

1
n
,

1
n︸ ︷︷ ︸

12 elements



Exercise: Can you see why is it important to choose I randomly?

Idea is that algorithm needs enough samples
of the first ε · n elements to see any collisions!
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3 ,

3. If ‖p − u‖1 ≥ ε, then P[ REJECT ] ≥ 2
3 .

Theorem

Proof Outline.

Generate a distribution p randomly as follows:

Pick a set I ⊆ {1, . . . , ε · n} of size ε · n/2 uniformly at random.
Then define:

pi =


2
n if i ∈ I,
0 if i ∈ {1, . . . , ε · n} \ I,
1
n if ε · n < i < n.

Then ‖p − u‖1

= ε · n · 1/n = ε.

E.g., n = 16, ε = 1/4, I = {1, 4}:

p =

 2
n
, 0, 0,

2
n︸ ︷︷ ︸

εn=4 elements
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n︸ ︷︷ ︸

12 elements



Exercise: Can you see why is it important to choose I randomly?

Idea is that algorithm needs enough samples
of the first ε · n elements to see any collisions!
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Exercise (in Class)

What is the expected number of collisions among I, if we are sampling t
times from the distribution p as described on the previous slide?

Let Z denote the number of collisions, so Z =
∑

1≤k<`≤t 1xk =x`∧xk∈I . Taking
expectations and using linearity of expectation yields:

E[ Z ] = E

 ∑
1≤k<`≤t

1xk =x`∧xk∈I

 =
∑

1≤k<`≤t

E
[

1xk =x`∧xk∈I
]

=
∑

1≤k<`≤t

P[ xk = x` ∧ xk ∈ I ] · 1

=
∑

1≤k<`≤t

εn∑
i=1

P[ xk = x` ∧ xk ∈ I ∧ xk = i ]

=
∑

1≤k<`≤t

εn∑
i=1

P[ i ∈ I ] · P[ xk = x` = i | i ∈ I ]

=
∑

1≤k<`≤t

εn∑
i=1

1
2
·
(

2
n

)2
=
( t

2

)
· εn ·

(
2
n

)2
.

Hence if t = o(
√

n/ε), then E[ Z ]→ 0 and thus P[ Z = 0 ]→ 1, as n →∞.
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Extension 1: Testing Closeness of Arbitrary Distributions (1/2)

‖p − q‖2
2

=
n∑

i=1

(pi − qi )
2 =

n∑
i=1

p2
i +

n∑
i=1

q2
i − 2 ·

n∑
i=1

pi · qi

= ‖p‖2
2 + ‖q‖2

2 − 2 · 〈p, q〉

We already know how to estimate ‖p‖2
2 and ‖q‖2

2!

1. Sample r elements from p, x1, x2, . . . , xr ∈ [n], and
sample r elements from q, y1, y2, . . . , yr ∈ [n]

2. For each 1 ≤ i < j ≤ r ,

τi,j :=

{
1 if xi = yj ,
0 otherwise.

3. Output Y := 1
r2

∑
1≤i,j≤r τi,j .

APPROXIMATE 〈p, q〉
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Extension 1: Testing Closeness of Arbitrary Distributions (2/2)

There exists an algorithm using O(1/ε4) samples such that if the distri-
butions p and q satisfy ‖p − q‖2 ≤ ε/2, then the algorithm accepts with
probability at least 2/3. If ‖p − q‖2 ≥ ε, then the algorithm rejects with
probability at least 2/3.

Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013)

There exists an algorithm using O(1/ε4 · n2/3 log n) samples such that if
the distributions p and q satisfy ‖p − q‖1 ≤ max{ ε2

32 3√n
, ε

4
√

n}, then the
algorithm accepts with probability at least 2/3. If ‖p − q‖1 ≥ ε, then the
algorithm rejects with probability at least 2/3.

Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013)

L2-distance L1-distance
Testing uniformity ‖p − u‖ Θ(1) Θ(

√
n)

Testing closeness ‖p − q‖ Θ(1) ∈ [Ω(n2/3),O(n2/3 log n)]

Figure: Overview of the known sampling complexities for constant ε ∈ (0, 1).
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the distributions p and q satisfy ‖p − q‖1 ≤ max{ ε2

32 3√n
, ε

4
√

n}, then the
algorithm accepts with probability at least 2/3. If ‖p − q‖1 ≥ ε, then the
algorithm rejects with probability at least 2/3.

Theorem (Batu, Fortnow, Rubinfeld, Smith, White; JACM 60(1), 2013)

L2-distance L1-distance
Testing uniformity ‖p − u‖ Θ(1) Θ(

√
n)

Testing closeness ‖p − q‖ Θ(1) ∈ [Ω(n2/3),O(n2/3 log n)]

Figure: Overview of the known sampling complexities for constant ε ∈ (0, 1).
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Extension 2: Testing Conductance of Graphs

Idea: Start several random walks from the same vertex

Count the number of pairwise collisions among the endpoints of the
walks

If the number of collisions high, graphs is not an expander
If the number of collisions is sufficiently small, graph is an expander

Testing Conductance of Graphs
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Application 3: Estimating Population Sizes using Mark & Recapture

k

P[ collision ]

≈ 1− exp
(
− k(k−1)

2·365

)

36520 40 60 801001

1

0.5

Source: Wikipedia

Mark & Recapture Method:

First phase: A portion of the population is captured, marked and released

Second phase: Another portion is captured and the number of marked
individuals is counted

Essentially the same as collision sampling

Can be used to estimate the size of a large network if each node
has a unique ID (within an unknown range)
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