Lecture 12: Graph clustering and beyond

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Lent 2019

In the last lecture we have introduced

- Graph clustering
- The notion of conductance
- Cheeger's inequality: $1 \lambda_2 \lesssim \phi(G) \lesssim \sqrt{1 \lambda_2}$.

In this lecture we will see

- How to formalise the notion of multiple clusters in a graph
- How to partition a graph in $k \ge 2$ clusters
- Applications (if time permits)

Multiway partitioning

Let G = (V, E, w). Recall the notion of conductance of a set $S \subset V$:

$$\begin{split} \phi(S) &= \frac{w(S, V \setminus S)}{\min\{\operatorname{vol}(S), \operatorname{vol}(V \setminus S)\}} \\ &= \max\left\{\frac{w(S, V \setminus S)}{\operatorname{vol}(S)}, \frac{w(S, V \setminus S)}{\operatorname{vol}(V \setminus S)}\right\} \end{split}$$

k-way partition: $\{S_1, \ldots, S_k\}$ s.t. $\emptyset \neq S_i \subset V$, $S_i \cap S_j = \emptyset$, $\bigcup_{i=1}^k S_i = V$

$$\phi_k(S_1,\ldots,S_k) = \max_{i=1,\ldots,k} \frac{w(S_i,V\setminus S_i)}{\operatorname{vol}(S_i)}$$

We can define the k-way conductance of G as

$$\phi_k(G) = \min_{\substack{\{S_1, \dots, S_k\} \\ k \text{-way partition}}} \phi_k(S_1, \dots, S_k)$$

Yet another variational characterisation

Let *P* be the transition matrix of a lazy walk on G = (V, E, w) with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$.

Let
$$f_1, \ldots, f_k \colon V \to \mathbb{R}$$
, Span $(\{f_1, \ldots, f_k\}) \triangleq \left\{ \sum_{i=1}^k \alpha_i f_i \colon \alpha_1, \ldots, \alpha_k \in \mathbb{R} \right\}$
Let $f \colon V \to \mathbb{R}$, $\mathcal{R}_G(f) \triangleq \frac{\sum_{\{u, v\} \in E} w(u, v)(f(u) - f(v))^2}{2\sum_{u \in V} d(u)f(u)^2}$

and the minimum is achieved by the eigenvectors for $\lambda_1, \ldots, \lambda_k$

Corollary -

Let $f_1, \ldots, f_k \colon V \to \mathbb{R}$ be disjointly supported. Then, $\frac{1 - \lambda_k}{2} \leq \max_{i=1,\ldots,k} \mathcal{R}_G(f_i)$

Eigenvalues and k-way conductance

Let $\{S_1, \ldots, S_k\}$ be a *k*-way partitioning of G = (V, E, w) achieving $\phi_k(G)$

Define the indicator function $\mathbb{1}_{S_i} \colon V \to \{0,1\} \text{ s.t. } \mathbb{1}_{S_i}(u) = 1 \iff u \in S_i$

Notice that $\mathbb{1}_{S_i}$'s are disjointly supported

$$\mathcal{R}_{G}(\mathbb{1}_{S_{i}}) = \frac{\sum_{\{u,v\}\in E} w(u,v)(\mathbb{1}_{S_{i}}(u) - \mathbb{1}_{S_{i}}(v))^{2}}{2\sum_{u\in V} d(u)\mathbb{1}_{S_{i}}(u)^{2}} = \frac{w(S_{i}, V\setminus S_{i})}{2\operatorname{vol}(S_{i})}$$

By the previous corollary,

$$\frac{1-\lambda_k}{2} \leq \max_{i=1,\ldots,k} \frac{w(S_i,V\setminus S_i)}{2\operatorname{vol}(S_i)} = \frac{1}{2}\phi_k(S_1,\ldots,S_k) = \frac{1}{2}\phi_k(G)$$

Higher-order Cheeger inequality _____

$$1 - \lambda_k \leq \phi_k(G) \leq O(k^2) \sqrt{\lambda_k}$$

(Easy consequence: $\lambda_k = 1$ iff at least *k* connected components in *G*)

Example

Random graph G = (V, E) where $V = S_1 \cup S_2 \cup S_3 \cup S_4$

- each eigenvector doesn't give us enough info by itself
- using all eigenvectors together, however, we can recover the clusters
- IDEA: map each vertex *u* to $F(u) = (f_1(u), f_2(u), f_3(u), f_4(u))^T$

How do we cluster points in \mathbb{R}^k ?

INPUT:

- a set of *n* points $X = \{x_1, \ldots, x_n\} \in \mathbb{R}^d$
- the number of clusters k ≥ 2

GOAL:

 assign the points to k clusters so as to minimise the intra-cluster variance:

$$\min_{S_1,\ldots,S_k \text{ partition of } X} \sum_{i=1}^{\kappa} \sum_{y \in S_i} \|y - c(S_i)\|^2$$

where

$$c(S_i) = rac{1}{|S_i|} \sum_{y \in S_i} y$$
 is the center of S_i

- k-means clustering is NP-hard!
- there are good approximation algorithms
- simple heuristics (usually!) work well in practice

Spectral clustering

Goal: Partition G = (V, E, w) in $k \ge 2$ well-separated clusters f_1, \ldots, f_k top eigenvectors of the random walk matrix of G

(3) Partition G according to the output of k-means

(2) Solve k-means on $\{F(u)\}_{u \in V}$

(1) Compute the spectral embedding $F: V \to \mathbb{R}^k$ $F(u) = (f_1(u), \dots, f_k(u))^T$

Example: Stochastic Block Models

Graph G = (V, E) with clusters $S_1, S_2, S_3 \subset V; \quad 0 \le q$ $<math>\mathbf{P}[u \sim v] = \begin{cases} p & u, v \in S_i \\ q & u \in S_i, v \in S_j, i \ne j \end{cases}$ $|V| = 300, |S_i| = 100$ p = 0.08, q = 0.01.

Spectral embedding

Output of Spectral Clustering

Example: US migration data

- Consider a dataset regarding internal migration in the US.
- For each pair of counties (*i*, *j*), *M*(*i*, *j*) represents the number of people who migrated from *i* to *j* in the timeframe 2000-2010.
- This can be seen as a weighted directed graph, where each node is a county and *M* is its weighted adjacency matrix.
- We first make this graph undirected: compute $M + M^T$
- We compute the corresponding random walk matrix and apply Spectral Clustering (k = 10)

Example: England+Wales migration data

- For each pair of local authorities (*i*, *j*), *M*(*i*, *j*) represents the number of people who migrated from *i* to *j* in the timeframe 2012-2017.
- We first make the graph undirected: $M + M^T$, and then compute its random walk matrix
- We apply Spectral Clustering (k = 8)

Spectral clustering beyond graphs

k-means clustering (examples)

k-means is able to recover only <u>convex</u> clusters:

• it divides the space in *k* regions with the following property: if we connect two points belonging to the same region, we never intersect any other region

Given
$$X = \{x_1, \ldots, x_n\} \in \mathbb{R}^d$$
, construct $G = (V, E, w)$:

- $x_i \in X \mapsto v_i \in V$
- $E = \binom{V}{2}$

•
$$w(v_i, v_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$
 (Gaussian similarity function)

Remarks:

- w(v_i, v_j) is large if x_i is close to x_j
- value of $\sigma \ge 0$ depends on the application (choose it by trial and error)
- large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since *G* is complete, from $\Theta(dn)$ to $\Theta(n^2)$ space.

Possible solution: *r*-nearest neighbour graph ($v_i \sim v_j$ iff x_j is one of the *r*-nearest neighbours of x_i or vice versa)

From geometric to graph clustering!

Example

Similarity graph: Gaussian with $\sigma = 0.1$. Only edges with weight ≥ 0.01 shown.

Spectral partitioning:

- 1. Compute the eigenvector f_2 corresponding to λ_2
- 2. Order the vertices so that $f_2(u_1) \leq f_2(u_2) \leq \cdots \leq f_2(u_n)$
- 3. Choose "sweep" cut $(\{u_1, \ldots, u_i\}, \{u_{i+1}, \ldots, u_n\})$ with smallest conductance

Ulrike von Luxburg

A tutorial on spectral clustering Statistics and computing (2007)

Santo Fortunato Community detection in graphs Physics reports (2010)

Daniel A. Spielman Spectral Partitiong in a Stochastic Block Model Lecture notes for Spectral Graph Theory (2015) http://www.cs.yale.edu/homes/spielman/561/lect21-15.pdf

Appendix A: image segmentation

GOAL: identify different objects in an image

Construct similarity graph as follows:

- A pixel p is characterised by its position in the image and by its RGB value
- map pixel p in position (x, y) to a vector $v_p = (x, y, r, g, b)$
- construct similarity graph as explained earlier

Original image

Output SC (Gaussian, $\sigma = 10$)

Appendix B: Lloyd's algorithm for k-means

INPUT:
$$X \subset \mathbb{R}^d, k \ge 2$$

GOAL:
 $S_1, \dots, S_k \text{ partition of } X \sum_{i=1}^k \sum_{y \in S_i} \|y - c(S_i)\|^2$ where $c(S_i) = \frac{1}{|S_i|} \sum_{y \in S_i} y$

Algorithm:

- 1. choose *k* random candidate centres $c_1, \ldots, c_k \in \mathbb{R}^d$
- 2. form clusters S_1, \ldots, S_k by assigning each $y \in X$ to its nearest centre c_j : $S_j = \{y \in X : j = \operatorname{argmin}_{1 \le i \le k} ||y - c_i||^2\}$
- 3. compute the new centres of the clusters: $c_j = \frac{1}{|S_j|} \sum_{y \in S_j} y$
- 4. Repeat steps 2-3 until clusters don't change anymore.
 - work usually well in practice, but
 - exponential time to converge in the worst case
 - no approximation guarantee
 - by cleverly choosing the initial centres, we can obtain a O(log k)-approximation algorithm (k-means++)

