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Plan

In the last lecture:
= areview of linear algebra
= introduced reversible Markov chains

Today:
= relate mixing time to eigenvalues of reversible chains
= show how to obtain bounds on eigenvalues for some family of graphs
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Recap

Let|Q=n £f,9:Q—->R, 7:Q—Ry
" (£,9)r = Yyeq F(X)G(X)7(X)
Nl = (Seq [FO)PT(x)) P

Let M be a || x |2 matrix
= Mis self-adjoint if (Mf, )~ = (f, Mg)~ for any f, g
= If M is self-adjoint then it has n real eigenvalues with corresponding
orthonormal eigenvectors

Let P be the transition matrix of a Markov chain and assume P is self-adjoint.
Then,

= The chain is reversible (i.e., it's a random walk on an undirected graph
and 7(x)P(x, y) = 7(y)P(y, X))
= It has eigenvalues 1 =Xy > --- > X\ > —1

= If A = maxi4 |Aj| < 1, the chain is irreducible and aperiodic (i.e., it
converges to stationary)
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Examples at the visualiser
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Convergence to stationarity
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Mixing time (revisited)

Recall the definition of mixing time: 7(¢) = min {t: maxy ||P} — =/ ,, < ¢},
where

R 3 > = KOS -

This is also called the /;-mixing time.

When dealing with spectral properties of P, it is actually easier to consider a
stronger notion of mixing: the />-mixing time:
<e
2,

o \/Zy (Blen 1) m(y) = m

It holds that: 7(2¢) < T2(€) = O(7(2¢) log(1/7+)), where . & miny m(X).

t
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T2(€) = min {1‘: max
X

where ’

P
7*1’
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Mixing time and eigenvalues

Let P be a transition matrix of a reversible Markov chain with stationary
distribution 7 and eigenvalues A\ > --- > Ap.
Suppose A = max;x1 |Aj| < 1.

(Af—>0ast—>oo}

4
Zu x)f,_\1+z>\f(x)f

[f,-:1and>\1:1]

Recall the spectral decomposition

P‘(x

Theorem

Forany e € (0,1),

(11?)\ - 1) log (12) < m2(€) < log (%) 11j7

where 7. 2 miny 7(x).

o
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Mixing time and eigenvalues (2)

Theorem

Let P be the transition matrix of a reversible Markov chain with stationary
distribution m and A = max;x |Aj| < 1. Then, for any € € (0, 1),

() <tog (=) 115

Proof: From the spectral decomposition:

PLe) = S0 MO0 =1+ S0, A(0F.

pt

2
B = IS NE0R]S < A IS 003,

1

X
™

Now notice that

t
Px
™

Finally, take t such that 755 < ¢*.

=30 (X fiy.fi = S0, fi(x)f. Hence,

i=i\

— )2, 1

w(X)

Bl ] v
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How to obtain bounds on the spectral gap
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Lazy random walks

From now on we will focus on lazy random walks:
= a particle moves on an undirected graph G = (V, E)

= at each time-step, it can either stay with probability 1/2 or move to an
adjacent vertex picked uniformly at random.

Let P be the transition matrix for the lazy walk, and P’ for the simple walk on
the same graph G. Then,

P=2U+P)
Therefore A\, > 0 and X = Xo.
Moreover, =(x) = gi& and 7. = Q(n~?). Therefore,

7€) =0 (%) :

o
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Variational characterisation of )\,

Lemma

Let P be the transition matrix of a reversible Markov chain with stationary
distribution = and eigenvalues Ay > --- > A,. Then,

o 00— ()P
27 gL 2 Hf”gm

Moreover, f* minimising the expression above is an eigenvector of P
corresponding to Ao.

It immediately follows from the lemmathat1 — X2 >0 = X> <1

If P represents a lazy random walk on an undirected graph G = (V, E),

1 o = . Z{x,y}eE(f(X) - f(y))z
TR T 2y d(x)f(x)?

where d(x) is the degree of x.
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Mixing time on regular graphs (1/2)

Lemma

Let G = (V,E) be a regular graph of n vertices, degree d, and dia-
meter §. Then, a lazy random walk in G has mixing time 7(¢) =
O(dénlog(n/e)).

Proof: Since G is regular, = =1/n, and

¥ (x,yp e —1(1))?

Assume Y, f(x)? = 1. Then, there exists x € V such that |f(x)| > 1//n.

1-— Ag = mino;,guj

f L 1implies >, f(x) = 0. Hence, there exists y € V such that
sign(f(y)) # sign(f(x)). Therefore, (f(x) — f(y))* > 1/n.
Since G is connected, there exists a path x = wy, u1, ..., ue = y such that
{ui,uit1} € Eand £ < 4. Then,
(F(x) = £(¥))? = (F(uo) — F(ur) + F(ur) — F(Ua) + - -+ + F(ue—1) — F(ur))?
£—1

<6 (F(ur) — f(ui)) 1)

i=0

1= e > 1/(20)- 5205 (F(u) — F(u-1))? = 1/(2d6)- ((X)— F(¥))? > 1/(2d6n)

o
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Mixing time on regular graphs (2/2)

Claim

Let G = (V, E) be a regular graph of n vertices with degree d, and
diameter §. Then, d - § = O(n)

Theorem

Let G = (V, E) be a regular graph of n vertices. Then, a lazy random
walk in G has mixing time 7(¢) = O(r? log(n/e)).

Is this result tight?
= Almost. The best possible general bound for regular graphs is

7(1/10) = O(n?).
= The cycle, in fact, has O(n?) mixing time.
= For general graphs, mixing can take up to O(n®) steps.
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