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Plan

In the last lecture:

a review of linear algebra

introduced reversible Markov chains

Today:

relate mixing time to eigenvalues of reversible chains

show how to obtain bounds on eigenvalues for some family of graphs
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Recap

Let |Ω| = n, f , g : Ω→ R, π : Ω→ R+

〈f , g〉π =
∑

x∈Ω f (x)g(x)π(x)

‖f‖p,π =
(∑

x∈Ω |f (x)|pπ(x)
)1/p

Let M be a |Ω| × |Ω| matrix

M is self-adjoint if 〈Mf , g〉π = 〈f ,Mg〉π for any f , g

If M is self-adjoint then it has n real eigenvalues with corresponding
orthonormal eigenvectors

Let P be the transition matrix of a Markov chain and assume P is self-adjoint.
Then,

The chain is reversible (i.e., it’s a random walk on an undirected graph
and π(x)P(x , y) = π(y)P(y , x))

It has eigenvalues 1 = λ1 ≥ · · · ≥ λn ≥ −1

If λ = maxi 6=1 |λi | < 1, the chain is irreducible and aperiodic (i.e., it
converges to stationary)
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Examples at the visualiser
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Convergence to stationarity
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Mixing time (revisited)

Recall the definition of mixing time: τ(ε) = min
{

t : maxx
∥∥P t

x − π
∥∥

TV ≤ ε
}

,
where∥∥∥P t

x − π
∥∥∥

TV
=

1
2

∑
y

∣∣∣P t (x , y)− π(y)
∣∣∣ =

1
2

∑
y

∣∣∣∣P t (x , y)

π(y)
− 1
∣∣∣∣π(y) =

1
2

∥∥∥∥P t
x

π
− 1
∥∥∥∥

1,π
.

This is also called the `1-mixing time.

When dealing with spectral properties of P, it is actually easier to consider a
stronger notion of mixing: the `2-mixing time:

τ2(ε) = min

{
t : max

x

∥∥∥∥P t
x

π
− 1
∥∥∥∥

2,π
≤ ε

}

where
∥∥∥P t

x
π
− 1
∥∥∥

2,π
=

√∑
y

(
Pt (x,y)
π(y)

− 1
)2
π(y) =

√
Varπ

(
Pt

x
π

)
.

It holds that: τ(2ε) ≤ τ2(ε) = O(τ(2ε) log(1/π∗)), where π∗ , minx π(x).
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Mixing time and eigenvalues

Let P be a transition matrix of a reversible Markov chain with stationary
distribution π and eigenvalues λ1 ≥ · · · ≥ λn.
Suppose λ = maxi 6=1 |λi | < 1.

Recall the spectral decomposition

P t (x , ·)
π

=
n∑

i=1

λt
i fi (x)fi = 1 +

n∑
i=2

λt
i fi (x)fi .

λt
i → 0 as t →∞

fi = 1 and λ1 = 1

For any ε ∈ (0, 1),(
1

1− λ − 1
)

log

(
1
ε

)
≤ τ2(ε) ≤ log

(
1

ε
√
π∗

)
1

1− λ ,

where π∗ , minx π(x).

Theorem
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Mixing time and eigenvalues (2)

Let P be the transition matrix of a reversible Markov chain with stationary
distribution π and λ = maxi 6=1 |λi | < 1. Then, for any ε ∈ (0, 1),

τ2(ε) ≤ log

(
1

ε
√
π∗

)
1

1− λ ,

Theorem

Proof: From the spectral decomposition:

P t (x,·)
π

=
∑n

i=1 λ
t
i fi (x)fi = 1 +

∑n
i=2 λ

t
i fi (x)fi .∥∥∥Pt

x
π
− 1
∥∥∥2

2,π
=
∥∥∑n

i=2 λ
t
i fi (x)fi

∥∥2
2,π ≤ λ

2t
∥∥∑n

i=2 fi (x)fi
∥∥2

2,π

Now notice that 1x
π

=
∑n

i=i〈
1x
π
, fi〉πfi =

∑n
i=i fi (x)fi . Hence,∥∥∥Pt

x
π
− 1
∥∥∥2

2,π
≤ λ2t

∥∥ 1x
π

∥∥2
2,π = λ2t · 1

π(x)

Finally, take t such that λ2t

π(x)
≤ ε2.

�
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How to obtain bounds on the spectral gap
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Lazy random walks

From now on we will focus on lazy random walks:

a particle moves on an undirected graph G = (V ,E)

at each time-step, it can either stay with probability 1/2 or move to an
adjacent vertex picked uniformly at random.

Let P be the transition matrix for the lazy walk, and P′ for the simple walk on
the same graph G. Then,

P =
1
2

(I + P′)

Therefore λn ≥ 0 and λ = λ2.

Moreover, π(x) = d(x)
2|E| and π∗ = Ω(n−2). Therefore,

τ(ε) = O
(

log(n/ε)
1− λ2

)
.
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Variational characterisation of λ2

Let P be the transition matrix of a reversible Markov chain with stationary
distribution π and eigenvalues λ1 ≥ · · · ≥ λn. Then,

1− λ2 = min
0 6=f⊥1

∑
x,y (f (x)− f (y))2P(x , y)π(x)

2 ‖f‖2
2,π

Moreover, f ? minimising the expression above is an eigenvector of P
corresponding to λ2.

Lemma

It immediately follows from the lemma that 1− λ2 ≥ 0 =⇒ λ2 ≤ 1

If P represents a lazy random walk on an undirected graph G = (V ,E),

1− λ2 = min
06=f⊥π

∑
{x,y}∈E (f (x)− f (y))2

2
∑

x d(x)f (x)2

where d(x) is the degree of x .
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Mixing time on regular graphs (1/2)

Let G = (V ,E) be a regular graph of n vertices, degree d , and dia-
meter δ. Then, a lazy random walk in G has mixing time τ(ε) =
O(dδn log(n/ε)).

Lemma

Proof: Since G is regular, π = 1/n, and

1− λ2 = min0 6=f⊥1

∑
{x,y}∈E (f (x)−f (y))2

2d
∑

x f (x)2

Assume
∑

x f (x)2 = 1. Then, there exists x ∈ V such that |f (x)| ≥ 1/
√

n.

f ⊥ 1 implies
∑

x f (x) = 0. Hence, there exists y ∈ V such that
sign(f (y)) 6= sign(f (x)). Therefore, (f (x)− f (y))2 ≥ 1/n.

Since G is connected, there exists a path x = u0, u1, . . . , u` = y such that
{ui , ui+1} ∈ E and ` ≤ δ. Then,

(f (x)− f (y))2 = (f (u0)− f (u1) + f (u1)− f (u2) + · · ·+ f (u`−1)− f (u`))2

≤ δ
`−1∑
i=0

(f (ui )− f (ui+1))2 (1)

1−λ2 ≥ 1/(2d) ·
∑`−1

i=0 (f (ui )− f (ui−1))2
(1)
≥ 1/(2dδ) ·(f (x)− f (y))2 ≥ 1/(2dδn)

�
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Mixing time on regular graphs (2/2)

Let G = (V ,E) be a regular graph of n vertices with degree d , and
diameter δ. Then, d · δ = O(n)

Claim

Let G = (V ,E) be a regular graph of n vertices. Then, a lazy random
walk in G has mixing time τ(ε) = O(n2 log(n/ε)).

Theorem

Is this result tight?

Almost. The best possible general bound for regular graphs is
τ(1/10) = O(n2).

The cycle, in fact, has O(n2) mixing time.

For general graphs, mixing can take up to O(n3) steps.
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