Plan

In the last lecture:

- a review of linear algebra
- introduced reversible Markov chains

Today:

- relate mixing time to eigenvalues of reversible chains
- show how to obtain bounds on eigenvalues for some family of graphs
Recap

Let $|\Omega| = n$, $f, g : \Omega \to \mathbb{R}$, $\pi : \Omega \to \mathbb{R}_+$

- $\langle f, g \rangle_{\pi} = \sum_{x \in \Omega} f(x)g(x)\pi(x)$
- $\|f\|_{p,\pi} = \left(\sum_{x \in \Omega} |f(x)|^p \pi(x)\right)^{1/p}$

Let M be a $|\Omega| \times |\Omega|$ matrix

- M is self-adjoint if $\langle Mf, g \rangle_{\pi} = \langle f, Mg \rangle_{\pi}$ for any f, g
- If M is self-adjoint then it has n real eigenvalues with corresponding orthonormal eigenvectors

Let P be the transition matrix of a Markov chain and assume P is self-adjoint. Then,

- The chain is reversible (i.e., it’s a random walk on an undirected graph and $\pi(x)P(x, y) = \pi(y)P(y, x)$)
- It has eigenvalues $1 = \lambda_1 \geq \cdots \geq \lambda_n \geq -1$
- If $\lambda = \max_{i \neq 1} |\lambda_i| < 1$, the chain is irreducible and aperiodic (i.e., it converges to stationary)
Examples at the visualiser
Convergence to stationarity
Mixing time (revisited)

Recall the definition of mixing time: \(\tau(\epsilon) = \min \{ t : \max_x \| P^t_x - \pi \|_{TV} \leq \epsilon \} \), where

\[
\| P^t_x - \pi \|_{TV} = \frac{1}{2} \sum_y \left| P^t(x, y) - \pi(y) \right| = \frac{1}{2} \sum_y \left| \frac{P^t(x, y)}{\pi(y)} - 1 \right| \pi(y) = \frac{1}{2} \left\| \frac{P^t_x}{\pi} - 1 \right\|_{1, \pi}
\]

This is also called the \(\ell_1 \)-mixing time.

When dealing with spectral properties of \(P \), it is actually easier to consider a stronger notion of mixing: the \(\ell_2 \)-mixing time:

\[
\tau_2(\epsilon) = \min \left\{ t : \max_x \left\| \frac{P^t_x}{\pi} - 1 \right\|_{2, \pi} \leq \epsilon \right\}
\]

where \(\left\| \frac{P^t_x}{\pi} - 1 \right\|_{2, \pi} = \sqrt{\sum_y \left(\frac{P^t(x, y)}{\pi(y)} - 1 \right)^2 \pi(y)} = \sqrt{\text{Var}_\pi \left(\frac{P^t_x}{\pi} \right)} \).

It holds that: \(\tau(2\epsilon) \leq \tau_2(\epsilon) = O(\tau(2\epsilon) \log(1/\pi_*)) \), where \(\pi_* \triangleq \min_x \pi(x) \).
Mixing time and eigenvalues

Let P be a transition matrix of a reversible Markov chain with stationary distribution π and eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Suppose $\lambda = \max_{i \neq 1} |\lambda_i| < 1$.

Recall the spectral decomposition

$$P^t(x, \cdot) \pi = \sum_{i=1}^{n} \lambda_i^t f_i(x) f_i = 1 + \sum_{i=2}^{n} \lambda_i^t f_i(x) f_i.$$

For any $\epsilon \in (0, 1)$,

$$\left(\frac{1}{1 - \lambda} - 1 \right) \log \left(\frac{1}{\epsilon} \right) \leq \tau_2(\epsilon) \leq \log \left(\frac{1}{\epsilon \sqrt{\pi_*}} \right) \frac{1}{1 - \lambda},$$

where $\pi_* \triangleq \min_x \pi(x)$.

\[\lambda_i^t \to 0 \text{ as } t \to \infty\]

\[f_i = 1 \text{ and } \lambda_1 = 1\]
Theorem

Let P be the transition matrix of a reversible Markov chain with stationary distribution π and $\lambda = \max_{i \neq 1} |\lambda_i| < 1$. Then, for any $\epsilon \in (0, 1)$,

$$\tau_2(\epsilon) \leq \log \left(\frac{1}{\epsilon \sqrt{\pi_*}} \right) \frac{1}{1 - \lambda},$$

Proof: From the spectral decomposition:

$$\frac{P^t(x, \cdot)}{\pi} = \sum_{i=1}^n \lambda_i^t f_i(x) f_i = 1 + \sum_{i=2}^n \lambda_i^t f_i(x) f_i.$$

$$\left\| \frac{P^t_x}{\pi} - 1 \right\|_{2, \pi}^2 = \left\| \sum_{i=2}^n \lambda_i^t f_i(x) f_i \right\|_{2, \pi}^2 \leq \lambda^{2t} \left\| \sum_{i=2}^n f_i(x) f_i \right\|_{2, \pi}^2$$

Now notice that $\frac{1_x}{\pi} = \sum_{i=i}^n \langle \frac{1_x}{\pi}, f_i \rangle \pi f_i = \sum_{i=i}^n f_i(x) f_i$. Hence,

$$\left\| \frac{P^t_x}{\pi} - 1 \right\|_{2, \pi}^2 \leq \lambda^{2t} \left\| \frac{1_x}{\pi} \right\|_{2, \pi}^2 = \lambda^{2t} \cdot \frac{1}{\pi(x)}$$

Finally, take t such that $\frac{\lambda^{2t}}{\pi(x)} \leq \epsilon^2$.

\square
How to obtain bounds on the spectral gap
Lazy random walks

From now on we will focus on lazy random walks:

- a particle moves on an undirected graph $G = (V, E)$
- at each time-step, it can either stay with probability $1/2$ or move to an adjacent vertex picked uniformly at random.

Let P be the transition matrix for the lazy walk, and P' for the simple walk on the same graph G. Then,

$$P = \frac{1}{2}(I + P')$$

Therefore $\lambda_n \geq 0$ and $\lambda = \lambda_2$.

Moreover, $\pi(x) = \frac{d(x)}{2|E|}$ and $\pi_* = \Omega(n^{-2})$. Therefore,

$$\tau(\epsilon) = O\left(\frac{\log(n/\epsilon)}{1 - \lambda_2}\right).$$
Variational characterisation of λ_2

Lemma

Let P be the transition matrix of a reversible Markov chain with stationary distribution π and eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Then,

$$1 - \lambda_2 = \min_{0 \neq f \perp 1} \frac{\sum_{x,y} (f(x) - f(y))^2 P(x, y) \pi(x)}{2 \|f\|_{2, \pi}^2}$$

Moreover, f^* minimising the expression above is an eigenvector of P corresponding to λ_2.

It immediately follows from the lemma that $1 - \lambda_2 \geq 0 \implies \lambda_2 \leq 1$

If P represents a lazy random walk on an undirected graph $G = (V, E)$,

$$1 - \lambda_2 = \min_{0 \neq f \perp \pi} \frac{\sum_{\{x,y\} \in E} (f(x) - f(y))^2}{2 \sum_x d(x) f(x)^2}$$

where $d(x)$ is the degree of x.

Lecture 10: Mixing time and eigenvalues
Mixing time on regular graphs (1/2)

Let $G = (V, E)$ be a regular graph of n vertices, degree d, and diameter δ. Then, a lazy random walk in G has mixing time $\tau(\epsilon) = O(d\delta n \log(n/\epsilon))$.

Proof: Since G is regular, $\pi = 1/n$, and

$$1 - \lambda_2 = \min_{f \perp 1}{\frac{\sum_{\{x,y\}\in E}(f(x) - f(y))^2}{2d \sum_x f(x)^2}}$$

Assume $\sum_x f(x)^2 = 1$. Then, there exists $x \in V$ such that $|f(x)| \geq 1/\sqrt{n}$. $f \perp 1$ implies $\sum_x f(x) = 0$. Hence, there exists $y \in V$ such that $\text{sign}(f(y)) \neq \text{sign}(f(x))$. Therefore, $(f(x) - f(y))^2 \geq 1/n$.

Since G is connected, there exists a path $x = u_0, u_1, \ldots, u_\ell = y$ such that $\{u_i, u_{i+1}\} \in E$ and $\ell \leq \delta$. Then,

$$(f(x) - f(y))^2 = (f(u_0) - f(u_1) + f(u_1) - f(u_2) + \cdots + f(u_{\ell-1}) - f(u_\ell))^2 \leq \delta \sum_{i=0}^{\ell-1}(f(u_i) - f(u_{i+1}))^2 \quad (1)$$

$$1 - \lambda_2 \geq 1/(2d) \cdot \sum_{i=0}^{\ell-1}(f(u_i) - f(u_{i-1}))^2 \overset{(1)}{\geq} 1/(2d\delta) \cdot (f(x) - f(y))^2 \geq 1/(2d\delta n)$$
Mixing time on regular graphs (2/2)

Claim

Let $G = (V, E)$ be a regular graph of n vertices with degree d, and diameter δ. Then, $d \cdot \delta = O(n)$

Theorem

Let $G = (V, E)$ be a regular graph of n vertices. Then, a lazy random walk in G has mixing time $\tau(\epsilon) = O(n^2 \log(n/\epsilon))$.

Is this result tight?

- Almost. The best possible general bound for regular graphs is $\tau(1/10) = O(n^2)$.
- The cycle, in fact, has $O(n^2)$ mixing time.
- For general graphs, mixing can take up to $O(n^3)$ steps.