
Lecture 1: Introduction
John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Lent 2019



Outline

Introduction

Probability Theory (Review)

First and Second Moment Methods

The Probabilistic Method

Lecture 1: Introduction 2



Probability and Computation

What? Randomised algorithms utilise random bits to compute their output.

Why? A randomised algorithm often provides an efficient (and elegant!)
solution or approximation to a problem that is costly to solve deterministically.

“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomized algorithms had
to be the winner.”
- Donald E. Knuth

How? This theory course aims to strengthen your knowledge of probability
theory and apply this to analyse examples of randomised algorithm.

“ What if I don’t care about randomised algorithms?”
Much of the theory in this course (Markov Chains, Concentration of measure,
Spectral theory) is very relevant to current “hot” areas of research and
employment such as Data science and Machine learning.
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Randomised Algorithms

Ranking Websites Sampling/Counting

A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0



A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0



Computer Science Mathematics

Biology Physics

. . .

Randomised
Algorithms

Graph Clustering/Sparsification Particle Processes
7

10

3
10
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Outline of the Course

Teaching Plan
Probability and Markov chains (4 lectures) - John Sylvester .

Concentration and Martingales (4 lectures) - Nicolás Rivera.

Spectral techniques for MC’s and algorithms (4 lectures) - Luca Zanetti.

Applications to randomised algorithms (4 lectures) - Thomas Sauerwald.

Running along side these lectures will be

Problem classes (6/7 total) - Hayk Saribekyan and Leran Cai.

Lecture and Problem class times
Lectures: Tuesdays and Thursdays 2pm-3pm in LT2

Problem classes: Thursdays 3.30pm-4.30pm in LT2 (Starting 24th Jan)

Assessment
Recall: There is a “tick style” Homework Assessment to be submitted by
2pm Thursday 24th Jan via moodle and at reception.

There will also be a 1.5 hour Written Test 9am on Friday 15 March in LT1.
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Running Example 1: Max-Cut

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

Semi-supervised learning

Data mining

Comments:

Max-Cut is NP-hard

NP-hard to approximate with ratio > 16/17 ≈ .941
This example will be covered repeatedly:

Me - "Random guess": poly-time, approx. ratio = 1/2.
Nicolás - Concentration for max cut of a random graph.
Luca - Bi-partition via graph spectrum.
Thomas - SDP: poly-time, approximation ratio ≈ .879 .

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6
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Simple Randomised Algorithm for Max-Cut

Input G = (V ,E).
-Start with S = ∅.
-For each v ∈ V add v to S independently with probability 1/2.
Return S.

Algorithm: RandMaxCut

In expectation RandMaxCut gives a 1/2 approximation in linear time
Proposition

Proof: What is the expected size of e (S,Sc) for S output by RandMaxCut?

E
[

e
(
S,Sc) ] = E

[ ∑
vu∈E

1{v∈S,u∈Sc}∪{v∈Sc ,u∈S}

]
=
∑
vu∈E

E
[

1{v∈S,u∈Sc}∪{v∈Sc ,u∈S}
]

=
∑
vu∈E

P
[
{v ∈ S, u ∈ Sc} ∪ {v ∈ Sc , u ∈ S}

]
= 2

∑
vu∈E

P
[

v ∈ S, u ∈ Sc ] = 2
∑
vu∈E

P[ v ∈ S ] P
[

u ∈ Sc ] = |E |/2.

Since for any S ⊆ V we have e (S,Sc) ≤ |E | this always gives us at least (in
expectation) a 1/2-approximation to the Max-Cut problem. �
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Probability Space

In Probability Theory we wish to evaluate the likelihood of certain results from
an experiment. The setting of this is the Probability Space (Ω,Σ,P).

The Sample Space Ω contains all the possible outcomes ω1, ω2, . . .
of the experiment.

The Event Space Σ is the power-set of Ω containing events, which
are combinations of outcomes (subsets of Ω including ∅ and Ω).
The Probability Measure P is a function from Σ to R satisfying

(i) 0 ≤ P[ E ] ≤ 1, for all E ∈ Σ
(ii) P[ Ω ] = 1
(iii) If E1, E2, . . . ∈ Σ are pairwise disjoint (Ei ∩ Ej = ∅ for all i 6= j) then

P

[ ∞⋃
i=1

Ei

]
=
∞∑
i=1

P[ Ei ] .

Components of the Probability Space (Ω,Σ,P)
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Probability Spaces from Randomised Algorithms

Running any randomised algorithm induces a probability space.

Given G = (V ,E) as input we output a cut-set S.
-Start with S = ∅.
-For each v ∈ V add v to S independently with probability 1/2.
Return S.

Algorithm: RandMaxCut

This is an example of a Product Space.

RandMaxCut on G with |V | = n generates a Probability space (Ω,Σ,P) with

Ω = {0, 1}n = {(b1, . . . , bn) : bi = 1 if i ∈ S, bi = 0 if i 6∈ S} .1

Σ = P ({0, 1}n) (powerset of Ω). An example on an event E ∈ Σ is
E = {i ∈ S} = {bi = 1} =

⋃
j 6=i, bi∈{0,1}

{(b1, . . . , bi−1, 1, bi+1, . . . , bn)} .

P is given by P[ E ] =
∑
ω∈E P[ {ω} ] = |E|2−n for any |E| ∈ Σ. For

example the event {i ∈ S} above: P[ i ∈ S ] =
(
1 · 2n−1) 2−n = 1/2 .

1{0, 1}n = {0, 1} × · · · × {0, 1} is a Cartesian product of sets {0, 1}.
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Union Bound

For any events E1, . . . , En ∈ Σ the following holds,

P[ E1 ∪ · · · ∪ En ] ≤ P[ E1 ] + · · ·+ P[ En ] ,

with equality if events are disjoint.

Union Bound/Boole’s inequality

Thus P[ A ∪ B ∪ C ] ≤ P[ A ] + P[ B ] + P[ C ].
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Running Example 2: Balls into Bins

Assign m jobs to n servers as evenly as possible under constraints.
Content delivery problem

Assign balls (jobs) Uniformly at Random: a ball is equally likely to be
assigned to any of the bins (servers), independently of the other balls.

Balls into Bins

Settings and Applications:

Load Balancing: Assign m jobs to n servers as evenly as possible.
Hash functions: Assign keys efficiently whilst trying to minimise clashes.
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Apllication of the Union Bound: Balls into Bins

Assign m balls uniformly and independently to n bins. If m = n log n+Cn
for C > 0 then with probability at least 1− e−C there is no empty bin.

How many balls ensure there are no empty bins?

Proof: Let Ei be the event that bin i is empty after m throws.

Since each ball is thrown independently

P[ Ei ] =
m∏

k=1

P[ ball k not in bin i ] = (1− 1/n)m.

Thus we have

P[ some bin is empty after m balls ] = P

[
n⋃

i=1

Ei

]
union bdd
≤ n · P[ Ei ]

= n · (1− 1/n)m

= n · (1− 1/n)n(log n+C)

≤ ne−(log n+C) = e−C .
For any real x ,
1 + x ≤ ex .
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Random Variables

A Random Variable X on (Ω,Σ,P) is a function X : Ω→ R mapping each
sample “outcome” to a real number.

Intuitively random variables are the “observables” in our experiment.

In RandMaxCut the size of the cut is a random variable given by

e(S,V\S) =
∑

u,v∈V

1{u∈S,v∈V\S}.

The Indicator Random Variable 1E of an event E ∈ Σ given by

1E(ω) =

{
1 if ω ∈ E
0 otherwise.

For the indicator random variable 1E we have E[ 1E ] = P[ E ].

Examples of random variables
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Balls into Bins (Random Variables edition)

Let M be the number of balls we need to assign uniformly at random to
occupy all bins. Then E[ M ] = n log n + O(n).

How many balls ensure there are no empty bins?

Proof: During our first treatment of the problem we showed that

P[ some bin is empty after n log n + Cn balls ] ≤ e−C

However this directly implies that P[ M > n log n + Cn ] ≤ e−C .
We can now calculate the expectation of M using the above Tail Bound .

a : Q2 of the
homework
assessment!
b : P[ M > k ] ≥
P[ M > k + 1 ]

E[ M ]
a
=
∞∑

m=0

P[ M > m ]

≤
n log n+n−1∑

m=0

1 +
∞∑

m=n log n+n

P[ M > m ]

b
≤ n log n + n +

∞∑
k=1

n · P[ M > n log n + kn ]

≤ n log n + n + n ·
∞∑

k=1

e−k = n log n + O(n) .
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RandMaxCut Revisited

For any C < ∞ there is an algorithm which runs in time O
(
|E |2

)
and

gives a 1/2 approximation with probability at least 1− e−C .

Proposition

The algorithm: Run RandMaxCut repeatedly until we get a cut ≥ |E |/2.

Proof: The size of the cut can be checked in time |E | so if we run
RandMaxCut t times then the total run time will be O(t · |E |).
Let p = P[ e(S,Sc) ≥ |E |/2 ] and recall E[ e (S,Sc) ] = |E |/2. We have

|E |
2

=

|E|/2−1∑
i=1

i · P
[

e(S,Sc) = i
]

+

|E|∑
i=|E|/2

i · P
[

e(S,Sc) = i
]

≤ (1− p)

(
|E |
2
− 1
)

+ p|E |.

This implies that p ≥ 1
|E|/2+1 . If we run RandMaxCut t = C|E | times using

independent bits the probability of all the cuts being less than |E |/2 is at most

(1− p)t ≤
(

1− 1
|E |/2 + 1

)C|E|

≤ e−
1

|E|/2+1 ·C|E| ≤ e−C .
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Controlling the Probability Distribution using Moments

For k ≥ 1 the k th Moment of X is denoted E
[

X k ] and given by

E
[

X k
]

=
∑
ω∈Ω

X (ω)k · P[ {ω} ] .

If X is a non-negative random variable and a > 0, then

P[ X ≥ a ] ≤ E[ X ] /a.

Markov Inequality (First Moment Method)

Proof: Observe that a · 1{X≥a}(ω) ≤ X (ω) for any ω ∈ Ω. Thus we have

E[ X ] ≥ E
[

a · 1{X≥a}
] linearity

= a · E
[

1{X≥a}
]

= a · P[ X ≥ a ] .

The Variance is the centred second moment and is given by

Var [ X ] = E
[

(X − E[ X ])2
]

= E
[

X 2
]
− E[ X ]2 .

If X is a random variable and a > 0, then

P[ |X − E[ X ] | ≥ a ] ≤ Var [ X ] /a2.

Chebychev Inequality (Second Moment Method)
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MaxCut Revisited (Again)

For any C < ∞ running RandMaxCut once returns a cut with at least
|E |/2−

√
C|E | edges with probability at least 1− 1/C.

Proposition

Proof: Let Xuv = 1 if u, v in different parts of the partition into S and V\S.
Observe that by independence and symmetry for any distinct vertices
x , y , u, v we have E[ Xxy Xuv ] = E[ Xxy Xxv ] = E[ Xxy Xuy ] = 1/4. For example

E[ Xxy Xxv ]
sym
= 2P

[
x ∈ S, y ∈ Sc , v ∈ Sc ] ind

= 2 · (1/2)3.

Notice e (S,Sc) =
∑

vu∈E Xuv . Thus for the second moment we have

E
[

e
(
S,Sc)2

]
= E

(∑
vu∈E

Xuv

)2
 =

∑
xy∈E

∑
vu∈E

E[ Xxy Xuv ]

=
∑
xy∈E

E
[

X 2
xy

]
+
∑
xy∈E

∑
uv∈E,uv 6=xy

E[ Xxy Xuv ]

≤ E
[

e
(
S,Sc) ]+ |E |2/4.

Hence Var [ e (S,Sc) ] = E[e (S,Sc)
2
]− E[ e (S,Sc) ]

2 ≤ E[ e (S,Sc) ] and so

Chebychev : P
[

e
(
S,Sc) ≤ E

[
e
(
S,Sc) ]− C

√
E[ e (S,Sc) ]

]
≤ 1/C2.
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For Large Graphs, Once is Enough

For any C < ∞ RandMaxCut returns a cut with at least |E |/2 −
√

C|E |
edges with probability at least 1− 1/C in linear time.

Proposition

For any ε > 0 there exists M s.t. if m > M then RandMaxCut is a linear
time 1/2− ε approximation to Max-Cut with probability at least 1− ε.

Same Proposition Rehrased

We say an event E (depending on n) occurs With High Probability (w.h.p.) if

for all ε > 0 there exists N such that for all n > N, P[ E ] ≥ 1− ε.
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The Probabilistic Method - Non-Constructive Existence Result

Broadly speaking the Probabilistic Method is when we use probability to
prove results in combinatorics.

Aim : proving a structure with certain desired properties exists.

Method : define a probability measure (typically uniform) on the structures
and show the desired properties hold in this space with positive probability.

Every finite graph has a cut of size at least d|E |/2e
Example of a non-constructive existence result

Proof: We saw if S is output by RandMaxCut ran on any graph then
P
[

e(S,Sc) ≥ |E|2

]
≥ 1
|E|/2+1 . Thus there exists a cut of size at least d |E|2 e. �

We did not actually need a specific lower bound on P
[

e(S,Sc) ≥ |E|2

]
:

A discrete random variable X must take at least one value ≤ E[ X ] with
positive probability and at least one value ≥ E[ X ] with positive probability.
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Non-assessed - An Inequalitiy from the Probabilistic Method

A family F of sets is called intersecting if A,B ∈ F implies A ∩ B 6= ∅.

Suppose n > 2k and let F be an intersecting family of k -element subsets
of an n-set, then |F| ≤

(n−1
k−1

)
.

Example of a non-trivial inequality: Erdős-Ko-Rado Theorem

Proof: Let Ai = {s, s + 1, . . . , s + k − 1} where addition is modulo n. If we fix
As then the other sets Aj , j 6= s, can be partitioned into k − 1 sets of pairs
(As−`,As+k−`), 0 ≤ ` ≤ k − 1. The members of each pair are disjoint thus:

F can contain at most k of the sets As. (1)

Let a bijection σ : [n]→ [n] and i ∈ [n] be chosen uniformly independent from
each other. Let B = {σ(i), σ(i + 1), . . . , σ(i + k − 1)} and observe:
(i) Since σ and i are random B is a uniform k -set, thus P[ B ∈ F ] = |F|/

(n
k

)
.

(ii) Any fixed σ is just a relabelling of the elements of n and B = σ(Ai ). Thus

P[ B ∈ F | σ ] = P[ Ai ∈ F ] ≤ k/n.

Combining the above yields
|F|(n

k

) = P[ B ∈ F ] =
∑
σ

P[ B ∈ F | σ ] P[σ ] ≤ k
n

∑
σ

P[σ ] =
k
n
.
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