
Probability and Computation: Homework Assessment Solutions

Question 1. Let A,B be independent uniformly random subsets of [n] := {1, . . . , n}.

(i) Find P[A ⊆ B ].

(ii) What is the distribution of |A|?

(iii) How about the distribution of |A\B|?

(iv) How can you solve part (i) using part (iii)?

Solution: For (i) we need that if i ∈ A then i ∈ B for all i ∈ [n]. For a specific i we have

P[ i ∈ A =⇒ i ∈ B ] = P
[
i ∈ A =⇒ i ∈ B

∣∣∣i ∈ B ]P[ i ∈ B ] + P
[
i ∈ A =⇒ i ∈ B

∣∣∣i 6∈ B ]P[ i 6∈ B ]

= (P[ i 6∈ A ] + P[ i ∈ A ])P[ i ∈ B ] + (P[ i 6∈ A ])P[ i 6∈ B ]

= 1 · (1/2) + (1/2)(̇1/2) = 3/4.

Thus P[A ⊆ B ] =
∏n

i=1 P[ i ∈ A =⇒ i ∈ B ] = (3/4)n.
For (ii) all elemets of [n] are in A with probability 1/2 independent of one and other so |A| is distributed
Bin (n, 1/2).
For (iii) all elemets of [n] are in A\B with probability 1/4 independent of one and other so |A\B| is
distributed Bin (n, 1/4).
For (iv) observe {A ⊆ B} = {A\B = ∅}. Thus P[A ⊆ B ] = P[Bin (n, 1/4) = 0 ] = (1− 1/4)n.

Question 2. Let X ≥ 0 be an integer valued random variable.

(i) Show that E[X ] =
∑∞

i=0 P[X > i ] .

(ii) Find a similar expression for E
[
X2
]
.

Solution: By disjointness P[X = x ] = P[X > x− 1 ]−P[X > x ] thus

E[X ] =

∞∑
x=1

xP[X = x ] =

∞∑
x=1

xP[X > x− 1 ]−
∞∑
x=1

xP[X > x ]

=

∞∑
x=0

(x+ 1)P[X > x ]−
∞∑
x=0

xP[X > x ] =

∞∑
x=0

P[X > x ]

Item (ii) is similar.

Question 3. Throw two fair dice and consider the following three events:

A := {the sum of the dice is 7}, B := {the first dice rolled a 3}, C := {the second dice rolled a 4}.

(i) Show that the events are pairwise independent.

(ii) Are the three events are independent?

Solution: Item (i) follows from calculation. For Item (ii) notice A ∩ B ∩ C is the event that a 3 is rolled
followed by a 4 and thus P[A ∩B ∩ C ] = 1/62 6= 1/63 .

1



Question 4. Suppose you are throwing an unbiased, 6-faced dice sequentially until a 6 turns up followed by
a 5.

(i) What is the expected waiting time?

(ii) What happens if you are waiting for a 6 followed by a 6?

(iii) Explain the difference.

Solution: Item (i): Let τ65 = inf{t : roll a 65} and let VI be the event the last roll was a 6. Then

E[ τ65 ] =
1

6
(1 + E[ τ65 | VI ]) +

5

6
(1 + E[ τ65 ]) . (1)

We also have

E[ τ65 | VI ] =
1

6
+

1

6
(1 + E[ τ65 | VI ]) +

4

6
(1 + E[ τ65 ]) . (2)

Thus 5E[ τ65 | VI ] = 6 + 4E[ τ65 ] by (1) and substituting this into (2) gives E[ τ65 ] = 36.
Item (ii): Let τ66 = inf{t : roll a 66}, this calculation is actually easier:

E[ τ66 ] =
1

6

(
1 +

1

6
+

5

6
(1 + E[ τ66 ])

)
+

5

6
(1 + E[ τ66 ]) . (3)

Solving (3) gives E[ τ66 ] = 42.
Item (iii): The probability we roll x followed by y is 1/36, if we think of this as an independent trial then

we expect to fail 36 times before success. This is the first experiment. In the second experiment there is no
overlap between trials and a full trial takes time 2 total, thus we must add the expected number of times we
roll 6 then something else before rolling 66, this is what gives the additional 6 expected time.

Question 5. For an event En say that En occurs with high probability (w.h.p.) if P[ En ] = 1 − o(1). Let
{Xn}n≥0 be a sequence of non-negative integer random variables. Show that if limn→∞E[Xn ] = 0 then
Xn = 0 w.h.p..

Solution: By Markov’s inequality,
P[Xn ≥ 1 ] ≤ E[Xn ] .

Thus if E[Xn ] = o(1), then P[Xn ≥ 1 ] = o(1). Since Xn is non-negative integer valued, P[Xn = 0 ] =
1− o(1).

Question 6. Let X be a random variable with expected value µ <∞ and variance 0 < σ2 <∞.

(i) Show that for any real number k > 0 we have P[ |X − µ| ≥ kσ ] ≤ 1/k2 .

(ii) Deduce that if X ≥ 0 then P[X = 0 ] ≤ σ2/µ2 .

(iii) Let X = X1+· · ·+Xn where Xi are indicator random variables with P[Xi = 1 ] = pi and P[Xi = 0 ] =
1− pi. Show that

Var [X ] ≤ E[X ] +
∑

1≤i 6=j≤n

Cov [Xi, Xj ] , where Cov [Xi, Xj ] = E[XiXj ]−E[Xi ]E[Xj ] .

Solution: Item (i) is in any standard text, even Wikipedia
Item (ii) follows since P[X = 0 ] ≤ P[ |X − µ| ≥ µ ].
Item (iii): To begin from the handout we have

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [Xi ] +
∑
i 6=j

Cov [Xi, Xj ] .

For Xi an indicator we have Var [Xi ] = pi(1− pi) ≤ pi = E[Xi ] .
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Question 7. Let G = (V,E) be an undirected graph of |V | = n vertices. Assume that G has been constructed
at random according to the following procedure: for any pair of vertices {u, v} ∈ V ×V , we put an undirected
edge between u and v with probability p (with probability 1− p there is no edge between u and v). We call a
vertex u isolated if there is no edge incident to u.

(i) Let X be the number of isolated vertices in G. Find an expression (which might depend on n and p)
for E[X ].

(ii) Use Question 5 to show that if p > lnn
n then with high probability there are no isolated vertices in G.

You might need to use the fact that limn→∞
(
1− x

n

)n
= e−x.

(iii) Use Question 6 (ii) and (iii) to argue that limn→∞P[X > 0 ] = 1 whenever p < lnn
n . That is, G

contains at least one isolated vertex with high probability.

Solution: For Item (i) let Xi is the indicator random variable for the event that vertex i is isolated (not
connected to any other vertex). A vertex is isolated with probability (1− p)n−1 and so

E[X ] =
∑
i∈V

E[Xi ] =

(
n

1

)
(1− p)n−1.

For Item (ii) if p = (lnn)+x
n for x not too large (or small), i.e. |x| = o(n) then we have

E[X ] = n(1− p)n−1 = n · e
−np+O(np2)

1− p
= n(1 + o(1))e− lnn−x = (1 + o(1))e−x. (4)

Thus provided x→∞ then by Q5 we have P[X > 0 ] ≤ (1 + o(1))e−x → 0.
For Item (iii) if i 6= j then

Cov [Xi, Xj ] = P[Xi = 1, Xj = 1 ]−P[Xi = 1 ]P[Xj = 1 ]

= (1− p) ·
(
(1− p)n−2

)2 − ((1− p)n−1)2
= p(1− p)2n−3.

Now notice that
∑

1≤i 6=j≤n Cov [Xi, Xj ] =
(
n
2

)
p(1 − p)2n−3 ≤ p(E[X ])2 for large n. Thus by Q6(iii) we

have
Var [X ] ≤ E[X ] +

∑
1≤i 6=j≤n

Cov [Xi, Xj ] ≤ E[X ] + p(E[X ])2

and so by Q6(ii) and (4) we have

P[X = 0 ] =
Var [X ]

E[X ]
2 ≤

E[X ] + p(E[X ])2

E[X ]
2 =

1

E[X ]
+ p = (1 + o(1))ex +

lnn+ x

n
.

Thus if we take x→ −∞, x > − lnn we obtain P[X = 0 ] = o(1) and so there are isolated vertices w.h.p.

Question 8. Let F be a finite collection of binary strings of finite lengths and assume no member of F is
a prefix of another one. Let Ni denote the number of strings of length i in F . Prove that∑

i

Ni

2i
≤ 1.

Solution: Since F is a collection of binary strings of finite length we can assume no string in F is longer
than L. Let Ai be the event that a string of length i in F is the prefix of a random binary string of length
L. Since no string in F is a prefix of any other the events Ai are disjoint. Thus

1 ≥ P[∪iAi ] =
∑
i

P[Ai ] =
∑
i

Ni

2i
.

Question 9. The “College Carbs” Markov chain below makes an appearance in Lecture 2:
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Rice Pasta

Potato

1/2

1/2

1/4

3/4

2/5

3/5

This has transition matrix:

P =

 0 1/2 1/2
1/4 0 3/4
3/5 2/5 0



(i) If I had Pasta on Monday what is the probability that I have Pasta on Thursday and Potato on Friday?

(ii) If I have Pasta today then how many days should I expect to wait until I have Rice?

(iii) If I have Pasta today then how many days should I expect to wait until I next have Pasta again?

Solution: Let Pasta, Potato and Rice be states 1, 2 and 3 respectively. For part (i),

P[X3 = 1, X4 = 2 | X0 = 1 ] = P[X4 = 2 | X3 = 1, X0 = 1 ]·P[X3 = 1 | X0 = 1 ] = 3P[X3 = 1 | X0 = 1 ] /4.

Also observe that

P[X3 = 1 | X0 = 1 ] =
∑

1≤i,j≤3

P1,iPi,jPj,1 = P1,3P3,2P2,1 + P1,2P2,3P3,1 =
11

40
,

thus the result for part (i) is (3/4) · (11/40) = 33/160.
For parts (ii) and (iii) we have the following pair of linear equations by the Markov property

h1,3 = 1 + P1,2h2,3 + P1,3 · 0 and h2,3 = 1 + P2,1h1,3 + P2,3 · 0.

Thus we have h1,3 = 1 + P1,2(1 + P2,1h1,3) and so h1,3 = (1 + P1,2)/(1 + P1,2P2,1) = 35/26.
More generally for i 6= j 6= k ∈ {1, 2, 3} we have

hi,j =
1 + Pi,k

1 + Pi,kPk,j

Thus we have

E1

[
τ+1
]

= 1 + P1,2h2,1 + P1,3h3,1 = P1,2
1 + P2,3

1 + P2,3P3,1
+ P1,3

1 + P3,2

1 + P3,2P2,1
= 13/4.

This also follows as we know π1 = 4/13.

Question 10. The Gamblers ruin chain appears in Lecture 2. This is a Markov Chain on {0, . . . , n} with
transition matrix P is given by Pi,i+1 = a, Pi,i−1 = b = 1− a for 1 ≤ i ≤ n− 1 and P0,0 = 1, Pn,n = 1.

(i) Describe the vectors v such that vP = v.

(ii) Why does this not contradict the results on the stationary distribution given in Lecture 2?

Solution: Part (i): Since P0,0 = 1, Pn,n = 1 the standard basis vectors e0 = (1, 0, . . . , 0) and en =
(0, . . . , 0, 1) and also any convex combination of the two satisfy vP = v, where v is a convex combination of
e0, en if there exists some α ∈ (0, 1) such that v = αe0 + (1− α)en.

Part (ii): The above says that there are infinitely many stationary vectors (they are a subspace of Rn

of dimension 2). This does not contradict the Theorem on uniqueness of stationary distribution for finite
irreducible chains as this chain is not irreducible.
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