Probability and Computation: Homework Assessment
 Submit by 2pm Thursday 24th Jan via moodle or at student reception

Question 1. Let A, B be independent uniformly random subsets of $[n]:=\{1, \ldots, n\}$.
(i) Find $\mathbf{P}[A \subseteq B]$.
(ii) What is the distribution of $|A|$?
(iii) How about the distribution of $|A \backslash B|$?
(iv) How can you solve part (i) using part (iii)?

Question 2. Let $X \geq 0$ be an integer valued random variable.
(i) Show that $\mathbf{E}[X]=\sum_{i=0}^{\infty} \mathbf{P}[X>i]$.
(ii) Find a similar expression for $\mathbf{E}\left[X^{2}\right]$.

Question 3. Throw two fair dice and consider the following three events:
$A:=\{$ the sum of the dice is 7$\}, \quad B:=\{$ the first dice rolled $a 3\}, \quad C:=\{$ the second dice rolled $a 4\}$.
(i) Show that the events are pairwise independent.
(ii) Are the three events are independent?

Question 4. Suppose you are throwing an unbiased, 6-faced dice sequentially until a 6 turns up followed by a 5 .
(i) What is the expected waiting time?
(ii) What happens if you are waiting for a followed by a 6 ?
(iii) Explain the difference.

Question 5. For an event \mathcal{E}_{n} say that \mathcal{E}_{n} occurs with high probability (w.h.p.) if $\mathbf{P}\left[\mathcal{E}_{n}\right]=1-o(1)$. Let $\left\{X_{n}\right\}_{n \geq 0}$ be a sequence of non-negative random variables. Show that if $\lim _{n \rightarrow \infty} \mathbf{E}\left[X_{n}\right]=0$ then $X_{n}=0 \quad$ w.h.p..
Question 6. Let X be a random variable with expected value $\mu<\infty$ and variance $0<\sigma^{2}<\infty$.
(i) Show that for any real number $k>0$ we have $\mathbf{P}[|X-\mu| \geq k \sigma] \leq 1 / k^{2}$.
(ii) Deduce that if $X \geq 0$ then $\mathbf{P}[X=0] \leq \sigma^{2} / \mu^{2}$.
(iii) Let $X=X_{1}+\cdots+X_{n}$ where X_{i} are indicator random variables with $\mathbf{P}\left[X_{i}=1\right]=p_{i}$ and $\mathbf{P}\left[X_{i}=0\right]=1-p_{i}$. Show that

$$
\operatorname{Var}[X] \leq \mathbf{E}[X]+\sum_{1 \leq i \neq j \leq n} \operatorname{Cov}\left[X_{i}, X_{j}\right], \quad \text { where } \quad \operatorname{Cov}\left[X_{i}, X_{j}\right]=\mathbf{E}\left[X_{i} X_{j}\right]-\mathbf{E}\left[X_{i}\right] \mathbf{E}\left[X_{j}\right]
$$

Question 7. Let $G=(V, E)$ be an undirected graph of $|V|=n$ vertices. Assume that G has been constructed at random according to the following procedure: for any pair of vertices $\{u, v\} \in V \times V$, we put an undirected edge between u and v with probability p (with probability $1-p$ there is no edge between u and v). We call a vertex u isolated if there is no edge incident to u.
(i) Let X be the number of isolated vertices in G. Find an expression (which might depend on n and p) for $\mathbf{E}[X]$.
(ii) Use Question 5 to show that if $p>\frac{\ln n}{n}$ then with high probability there are no isolated vertices in G. You might need to use the fact that $\lim _{n \rightarrow \infty}\left(1-\frac{x}{n}\right)^{n}=\mathrm{e}^{-x}$.
(iii) Use Question 6 (ii) and (iii) to argue that $\lim _{n \rightarrow \infty} \mathbf{P}[X>0]=1$ whenever $p<\frac{\ln n}{n}$. That is, G contains at least one isolated vertex with high probability.

Question 8. Let \mathcal{F} be a finite collection of binary strings of finite lengths and assume no member of \mathcal{F} is a prefix of another one. Let N_{i} denote the number of strings of length i in F. Prove that

$$
\sum_{i} \frac{N_{i}}{2^{i}} \leq 1
$$

Question 9. The "College Carbs" Markov chain below makes an appearance in Lecture 2:

This has transition matrix:

$$
P=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 0 & 3 / 4 \\
3 / 5 & 2 / 5 & 0
\end{array}\right)
$$

(i) If I had Pasta on Monday what is the probability that I have Pasta on Thursday and Potato on Friday?
(ii) If I have Pasta today then how many days should I expect to wait until I have Rice?
(iii) If I have Pasta today then how many days should I expect to wait until I next have Pasta again?

Question 10. The Gamblers ruin chain appears in Lecture 2. This is a Markov Chain on $\{0, \ldots, n\}$ with transition matrix P is given by $P_{i, i+1}=a, P_{i, i-1}=b=1-a$ for $1 \leq i \leq n-1$ and $P_{0,0}=1$, $P_{n, n}=1$.
(i) Describe the vectors v such that $v P=v$.
(ii) Why does this not contradict the results on the stationary distribution given in Lecture 2?

