Probability and Computation: 24th Jan Problem session Solutions

Question 1. Prove that if P is the transition matrix of a finite, irreducible, aperiodic Markov chain then there exists some time $K < \infty$ such that, for every $w, z \in \mathcal{I}$, if $t \geq K$ then $P_{w,z}^t > 0$.

Solution: We use the following number-theoretic fact:

Any set of non-negative integers which is closed under addition and has greatest common divisor 1 must contain all but finitely many of the non-negative integers.

For $x \in \mathcal{I}$, let $T(x) = \{t \ge 1 : P_{x,x}^t > 0\}$. Since the chain is aperiodic, the greatest common divisor of T(x) is 1. The set T(x) is closed under addition: if $s, t \in T(x)$, then

$$P_{x,x}^{s+t} = \sum_{y \in \mathcal{I}} P_{x,y}^s \cdot P_{y,x}^t \ge P_{x,x}^s \cdot P_{x,x}^t > 0,$$

and hence $s + t \in T(x)$. Therefore there exists a t(x) such that $t \ge t(x)$ implies $t \in T(x)$.

By irreducibility we know that for any $y \in \mathcal{I}$ there exists r = r(x, y) such that $P_{x,y}^r > 0$. Therefore, for $t \ge t(x) + r$, $P_{x,y}^t \ge P_{x,x}^{t-r} P_{x,y}^r > 0$. For $t \ge t'(x) := t(x) + \max_{y \in \mathcal{I}} r(x, y)$, we have $P_{x,y}^t > 0$ for all $y \in \mathcal{I}$. Finally, if $t \ge K := \max_{x \in \mathcal{I}} t'(x)$, then $P_{x,y}^t > 0$ for all $x, y \in \mathcal{I}$.

Question 2. Prove that for any states x and y of a finite irreducible chain $\mathbf{E}_x[\tau_y^+] < \infty$.

Solution: By irreducibility there exist r > 0 and $\varepsilon > 0$ such that for any states $z, w \in \Omega$, there exists a $j \leq r$ with $P_{z,w}^j > \varepsilon$.

Thus for any $z \in \mathcal{I}$,

$$\mathbf{P}[X_{t+1} \neq y, \dots, X_{t+r} \neq y \mid X_t = z] \le 1 - \varepsilon$$

Hence for $k \ge 0$,

$$\mathbf{P}_{x}[\tau_{y}^{+} > (k+1)r] = \sum_{z \in \mathcal{I}} \mathbf{P}[X_{(k+1)r} \neq y, \dots, X_{kr+1} \neq y \mid X_{kr} = z] \mathbf{P}_{x}[\tau_{y}^{+} > kr, X_{kr} = z]$$

$$\leq (1-\varepsilon) \sum_{z \in \mathcal{I}} \mathbf{P}_{x}[\tau_{y}^{+} > kr, X_{kr} = z]$$

$$= (1-\varepsilon) \mathbf{P}_{x}[\tau_{y}^{+} > kr]$$

$$< (1-\varepsilon)^{k+1}.$$

Since $\tau_y^+ \ge 0$ and $\mathbf{P}_x[\tau_y^+ > t]$ is a non-increasing function of t,

$$\mathbf{E}_x\big[\tau_y^+\big] = \sum_{t \ge 0} \mathbf{P}_x\big[\tau_y^+ > t\big] \le \sum_{k \ge 0} r \mathbf{P}_x\big[\tau_y^+ > kr\big] \le r \sum_{k \ge 0} (1-\varepsilon)^k < \infty.$$

Question 3. Prove the following Lemma from class: For any probability distributions μ and η on a countable state space Ω

$$\|\mu - \eta\|_{tv} = \sup_{A \subset \Omega} |\mu(A) - \eta(A)|.$$

 $\overline{Solution: \text{ Let } \Omega^+ = \{\omega: \mu(\omega) \geq \eta(\omega)\} \text{ and } \Omega^- = \{\omega: \mu(\omega) < \eta(\omega)\} \text{ . Then }$

 $\max_{A \subseteq \Omega} \mu(A) - \eta(A) = \mu(\Omega^+) - \eta(\Omega^+)$

and

$$\max_{A \subseteq \Omega} \eta(A) - \mu(A) = \eta(\Omega^{-}) - \mu(\Omega^{-}).$$

Since $\Omega = \Omega^+ \cup \Omega^-$ and $\Omega^+ \cap \Omega^- = \emptyset$ we have

$$\mu(\Omega^+) + \mu(\Omega^-) = 1 \qquad \text{and} \qquad \eta(\Omega^+) + \eta(\Omega^-) = 1,$$

 ${\rm thus}$

$$\mu(\Omega^+) - \eta(\Omega^+) = \eta(\Omega^-) - \mu(\Omega^-).$$

Hence

$$\sup_{A \subset \Omega} |\mu(A) - \eta(A)| = |\mu(\Omega^+) - \eta(\Omega^+)| = |\mu(\Omega^-) - \eta(\Omega^-)|.$$

Combining the above yields

$$2 \sup_{A \subset \Omega} |\mu(A) - \eta(A)| = |\mu(\Omega^+) - \eta(\Omega^+)| + |\mu(\Omega^-) - \eta(\Omega^-)| = \sum_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)| = 2 \|\mu - \eta\|_{tv}.$$