Probability and Computation: 24th Jan Problem session Solutions

Question 1. Prove that if P is the transition matrix of a finite, irreducible, aperiodic Markov chain then there exists some time $K<\infty$ such that, for every $w, z \in \mathcal{I}$, if $t \geq K$ then $P_{w, z}^{t}>0$.

Solution: We use the following number-theoretic fact:
Any set of non-negative integers which is closed under addition and has greatest common divisor 1 must contain all but finitely many of the non-negative integers.

For $x \in \mathcal{I}$, let $T(x)=\left\{t \geq 1: P_{x, x}^{t}>0\right\}$. Since the chain is aperiodic, the greatest common divisor of $T(x)$ is 1 . The set $T(x)$ is closed under addition: if $s, t \in T(x)$, then

$$
P_{x, x}^{s+t}=\sum_{y \in \mathcal{I}} P_{x, y}^{s} \cdot P_{y, x}^{t} \geq P_{x, x}^{s} \cdot P_{x, x}^{t}>0
$$

and hence $s+t \in T(x)$. Therefore there exists a $t(x)$ such that $t \geq t(x)$ implies $t \in T(x)$.
By irreducibility we know that for any $y \in \mathcal{I}$ there exists $r=r(x, y)$ such that $P_{x, y}^{r}>0$. Therefore, for $t \geq t(x)+r, P_{x, y}^{t} \geq P_{x, x}^{t-r} P_{x, y}^{r}>0$. For $t \geq t^{\prime}(x):=t(x)+\max _{y \in \mathcal{I}} r(x, y)$, we have $P_{x, y}^{t}>0$ for all $y \in \mathcal{I}$. Finally, if $t \geq K:=\max _{x \in \mathcal{I}} t^{\prime}(x)$, then $P_{x, y}^{t}>0$ for all $x, y \in \mathcal{I}$.

Question 2. Prove that for any states x and y of a finite irreducible chain $\mathbf{E}_{x}\left[\tau_{y}^{+}\right]<\infty$.

Solution: By irreducibility there exist $r>0$ and $\varepsilon>0$ such that for any states $z, w \in \Omega$, there exists a $j \leq r$ with $P_{z, w}^{j}>\varepsilon$.

Thus for any $z \in \mathcal{I}$,

$$
\mathbf{P}\left[X_{t+1} \neq y, \ldots, X_{t+r} \neq y \mid X_{t}=z\right] \leq 1-\varepsilon
$$

Hence for $k \geq 0$,

$$
\begin{aligned}
\mathbf{P}_{x}\left[\tau_{y}^{+}>(k+1) r\right] & =\sum_{z \in \mathcal{I}} \mathbf{P}\left[X_{(k+1) r} \neq y, \ldots, X_{k r+1} \neq y \mid X_{k r}=z\right] \mathbf{P}_{x}\left[\tau_{y}^{+}>k r, X_{k r}=z\right] \\
& \leq(1-\varepsilon) \sum_{z \in \mathcal{I}} \mathbf{P}_{x}\left[\tau_{y}^{+}>k r, X_{k r}=z\right] \\
& =(1-\varepsilon) \mathbf{P}_{x}\left[\tau_{y}^{+}>k r\right] \\
& \leq(1-\varepsilon)^{k+1} .
\end{aligned}
$$

Since $\tau_{y}^{+} \geq 0$ and $\mathbf{P}_{x}\left[\tau_{y}^{+}>t\right]$ is a non-increasing function of t,

$$
\mathbf{E}_{x}\left[\tau_{y}^{+}\right]=\sum_{t \geq 0} \mathbf{P}_{x}\left[\tau_{y}^{+}>t\right] \leq \sum_{k \geq 0} r \mathbf{P}_{x}\left[\tau_{y}^{+}>k r\right] \leq r \sum_{k \geq 0}(1-\varepsilon)^{k}<\infty
$$

Question 3. Prove the following Lemma from class: For any probability distributions μ and η on a countable state space Ω

$$
\|\mu-\eta\|_{t v}=\sup _{A \subset \Omega}|\mu(A)-\eta(A)| .
$$

Solution: Let $\Omega^{+}=\{\omega: \mu(\omega) \geq \eta(\omega)\}$ and $\Omega^{-}=\{\omega: \mu(\omega)<\eta(\omega)\}$. Then

$$
\max _{A \subseteq \Omega} \mu(A)-\eta(A)=\mu\left(\Omega^{+}\right)-\eta\left(\Omega^{+}\right)
$$

and

$$
\max _{A \subseteq \Omega} \eta(A)-\mu(A)=\eta\left(\Omega^{-}\right)-\mu\left(\Omega^{-}\right) .
$$

Since $\Omega=\Omega^{+} \cup \Omega^{-}$and $\Omega^{+} \cap \Omega^{-}=\emptyset$ we have

$$
\mu\left(\Omega^{+}\right)+\mu\left(\Omega^{-}\right)=1 \quad \text { and } \quad \eta\left(\Omega^{+}\right)+\eta\left(\Omega^{-}\right)=1,
$$

thus

$$
\mu\left(\Omega^{+}\right)-\eta\left(\Omega^{+}\right)=\eta\left(\Omega^{-}\right)-\mu\left(\Omega^{-}\right)
$$

Hence

$$
\sup _{A \subset \Omega}|\mu(A)-\eta(A)|=\left|\mu\left(\Omega^{+}\right)-\eta\left(\Omega^{+}\right)\right|=\left|\mu\left(\Omega^{-}\right)-\eta\left(\Omega^{-}\right)\right| .
$$

Combining the above yields

$$
2 \sup _{A \subset \Omega}|\mu(A)-\eta(A)|=\left|\mu\left(\Omega^{+}\right)-\eta\left(\Omega^{+}\right)\right|+\left|\mu\left(\Omega^{-}\right)-\eta\left(\Omega^{-}\right)\right|=\sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)|=2\|\mu-\eta\|_{t v} .
$$

