4P CAMBRIDGE

& 8 UNIVERSITY OF

P51: High Performance Networking

Lecture 5: Low Latency Devices

Dr Noa Zilberman L ent 2018/19

noa.zilberman@cl.cam.ac.uk

Project — Evaluation Plan

» For the next lab, you should prepare an evaluation plan for your project.

The following evaluation tests are expected:

Functional testing (using the NetFPGA test infrastructure)

Performance testing, using synthetic traffic (using OSNT or equivalent
to measure latency at low-rate and maximum throughput)

Performance benchmarking, using known benchmarks

Performance comparison to other solutions (sostware, hardware)

7% UNIVERSITY OF

“§ CAMBRIDGE

Low Latency Switches

sg5 UNIVERSITY OF

%% CAMBRIDGE

How to lower the latency of a switch?

« Obvious option 1: Increase clock frequency
—E.g. change core clock frequency from 100MHz to 200MHz
—Half the time through the pipeline

S 1
NIF | NIF

NIF

Scheduler

NIF

| |
NIF '—N@ﬁ@-@#

7% UNIVERSITY OF
% CAMBRIDGE

How to lower the latency of a switch?

* Obvious option 1: Increase clock frequency

e Limitations:
— Frequency is often a property of manufacturing process
— Some modules (e.g. PCS) must work at a specific frequency (multiplications)

S 1
NIF | NIF
I
I I I I
i I . I I
[}
NIF) =S | =INIF
I I () I
I % I I
NIF 3 s G NI T
I I I
I I I I
I I I
I
NiF 1 G NI

7% UNIVERSITY OF

“§ CAMBRIDGE

How to lower the latency of a switch?

e Obvious option 2: Reduce the number of pipeline stages
—Can you do the same in 150 pipeline stages instead of 2007

—Limitation: hard to achieve.

S 1
NIF =OQI™ NIF
I
| | | |
i I . I I
NIF ko NIF
| | 3 | |
| @ oo |
I % I I
NIF 2 NIF

I I
NIF '—N@ﬁ@-@#

7% UNIVERSITY OF
% CAMBRIDGE

How to lower the latency of a switch?

e Can we achieve ~0 latency switch?

—Is there a lower bound on switch latency?

S 1
NIF | NIF
I
| | | |
i I . I I
NIF © NIF
| | S | |
| @ o0 |
I % I I
NIF 2 NIF

| |
NIF '—P@-’@-@-’

7% UNIVERSITY OF
% CAMBRIDGE

Cut Through Switching

=gz UNIVERSITY OF

" CAMBRIDGE

Cut Through Switch

o Cut through switch = Low latency switch
A cut through switch can implement a very long pipeline...
e But:
* For the smallest packet, the latency is ~same as longest packet

* As packet size grows, latency saving grows

7% UNIVERSITY OF

“§ CAMBRIDGE

What is a cut-through switch?

« Kermani & Kleinrock, “Virtual cut-through: A new computer
communication switching technique”, 1976

* “when a message arrives in an intermediate node and its selected
outgoing channel is free (just after the reception of the header), then, in
contrast to message switching, the message is sent out to the adjacent
node towards its destination before it is received completely at the
node; only if the message is blocked due to a busy output channel is a
message buffered in an intermediate node.”

Source

Node 1

Node 2

7% UNIVERSITY OF

“§ CAMBRIDGE

What is a cut-through switch?

» Past (far back):

* Networks were slow

e Memory was fast

e Writing packets to the DRAM took “negligible” time
o With time:

* Networks became faster

« Memory access time is no longer “negligible”

7% UNIVERSITY OF

“§ CAMBRIDGE

What is a cut-through switch?

« Sundar, Kompella, and McKeown. "Designing packet buffers for router
line cards." 2002.

DRAM (Bulk Storage)
([‘ iy
2 10
) |
5 D_Lm [
: } e
T size b
2 < 1r Ry
E Tail Cache Head Cache b bytes * + b bytes
= (SRAM) (SRAM) cut
1
Arrivin throughl — T 1] i
Packets pih | =T |oaes *
\ L Packets
R R J R static heaclI cache | .
I r > | R
_|:|’ S
I:l I:l D D D|:| I tail cache |
Departing stream of F—_ — - — — 4

Arriving stream of

variable length packets variable length packets direct-write path

UNIVERSITY OF

CAMBRIDGE

What is a cut-through switch?

« But what does a REAL silicon implementation looks like?
» Tip 1: search for patents on Google Scholar
« Tip 2: read carefully performance evaluation reports

o We'll discuss some examples in the next lecture

7% UNIVERSITY OF

Latency considerations within modules

sg5 UNIVERSITY OF

%% CAMBRIDGE

Network Interfaces

o Data arrives at (up to) ~50Gbps per link.
» Let us ignore clock recovery, signal detection etc.
» Feasible clock rate is ~1GHz

 But if data rate is x50 times faster...

* Observation: data bus width will be no less than incoming data rate and
feasible clock rate

7% UNIVERSITY OF

“§ CAMBRIDGE

Network Interfaces

* Line coding often directs the bus widths:

 E.g., 8b/10b coding led to bus widths of 16b (20b) or 64b (80b)
« Aportis commonly an aggregation of multiple serial links

e 10G XAUI =4 x 3.125Gbps

e 100G CAUI4 =4 x 25Gbps

e 400G PSM4 = 8 x 50Gbps

* Need to take care of aligning the data arriving from multiple links on
the same port.

7% UNIVERSITY OF

“§ CAMBRIDGE

Network Interfaces

* Role: check the validity of the packet (e.g., FCS)
 What to do if an error is detected?
 Forward an error using a “fast path”
« Mark the last cycle of the packet
 E.g., to cause drop in the next hop
» Other roles need to be maintained too

 Frame delimiting and recognition, flow control, enforcing IFG, ...

7% UNIVERSITY OF

“§ CAMBRIDGE

Packet Processing

o Alikely flow:
Header Header Match Action Header
starts = parsed = (table look up) = (set output port) = sent =

* Possible implementations:
* The entire packet goes through the header processing unit
« Just the header goes through the header processing unit

« “Better” depends on your performance profile (what are the
bottlenecks? Resource limitations?)

7% UNIVERSITY OF

“§ CAMBRIDGE

Packet Processing

o Alikely flow:
Header Header Match Action Header
starts = parsed = (table look up) = (set output port) = sent =

e Challenges:

« Afield may arrive over multiple clock cycles (e.g. 32b field, 16b on
clock 2 and 16b on clock 3)

 Memory access taking more than 1 clock cycle
» E.g.request on clock 1, reply on clock 3
 Some memories allow multiple concurrent accesses, some don't

* The bigger the memory, the more time it takes

7% UNIVERSITY OF

“§ CAMBRIDGE

Packet Processing

o Alikely flow:
Header Header Match Action Header
starts = parsed = (table look up) = (set output port) = sent =
e Solutions:
* Pipelining!

Don’t stall, add NOP stages in your pipe.
* Reorder operations (where possible)

 E.g. Lookup 1 — Action 1 — Lookup 2 — Action 2 turns:
Lookup 1 — Lookup 2 — Action 1 — Action 2

e Don’t create hazards!

7% UNIVERSITY OF

Arbitration

« Simple example: F=NIF

e Packets arriving from 4 ports ' |

CI=NIF

» (approximately) same arrival time | |

e Arbiter uses Round Robin m i i
I
e Problem: arbitration on packet NIE

boundaries?

* No: interleaved packets within the pipeline
Need to track which cycle belongs to which packet
May require multiple concurrent header lookups
Order is not guaranteed (e.g. P1-P2-P3-P1-P2-P2-...), due to NIF timing

7% UNIVERSITY OF

“§ CAMBRIDGE

Arbitration

« Simple example: F=NIF

e Packets arriving from 4 ports ' |

CI=NIF

» (approximately) same arrival time | |

e Arbiter uses Round Robin m i i
I
e Problem: arbitration on packet NIE

boundaries?

* Yes: packets need to wait for previous packets to be handled before being
admitted.
Worst case waiting with <N> inputs is <N-1>xPacket time

7% UNIVERSITY OF

“§ CAMBRIDGE

Arbitration

« Solutions to the previous problem:
e Scheduled (or slotted) traffic
e Multiple pipelines

7% UNIVERSITY OF

“§ CAMBRIDGE

How do you build abufferless
- n e tWD rk ? IEIEIiEﬁI:'.EI Multiplexing sa.-.ui:d? I

Switch Schedulbar

UTHRTENE—0 I - . Unpredictable

Hosl's queves Onthe wire ' Swilch queues

Time = 0.8ps to >1900us

paso o o (G

ah
3 ittt
(10} 3 i
B LNNNNIN— | 01~ :
: ~ 11 - S
a :
" IR TR B , ' Predictable
£ Host's queues Onthe wire 1 No queues | D
= et
{ EE_:!,I Time = Fixed (0.8ys to <3.5us) UNIVERGIEY oF

Thursday, 26 Saptamber 13
NIVERSITYOF M Grosvenor et al “The Resilient Realtime Data Delivery Network

CAMBRIDGE Architecture” (R2D2) 2013

Arbitration

* This example solves the arbitration problem entering the device
* Resource inefficient:
* Pipeline overdesign

e |nefficient use of memories

I @)
« Concurrency issues NIF 1 P NIF

* One solution: NIE NIE

 Shared memories / tables

SCH
]

NIF NIF

* Highly complex

NIF 5 NIF

7% UNIVERSITY OF

“§ CAMBRIDGE

Switching

* The previous arbitration solution “pushed” the problem to the switching
unit

* But now the problem is only when multiple packets compete over the
same output — that'’s fine!

e Assuming your switch can
handle multiple packets NIF > NIF
per cycle B

e E.g. crosshar NIF NIF

SCH
]

NIF NIF

NIF 5 NIF

7% UNIVERSITY OF

“§ CAMBRIDGE

Switching

1
DD 2
=) NIF - NIE
4
=) NIF PP
=) NIF i
1
2
=) NIF 0 3 NIF
4

JNIVERSITY OF

» CAMBRIDGE

Switching

... This is also queueing

Challenge: SCALE
e S0 you can do it with 4 ports

e Can you do it with 32?7 1287 2567

Not just resource / area

« Computation time — being able to examine and choose between all
available inputs

Eventually:
Packets must be sent out on packet boundaries
Do not interleave packets!

7% UNIVERSITY OF

“§ CAMBRIDGE

DMA

UNIVERSITY OF

CAMBRIDGE

Host arch

AGP Connector

AGP 2.0
AGP

Graphics

itecture

Intel
Pentium lll/Celeron
Processor (CPU)

i Intel 815 Chipset Family

System Memory

Intel

82815 GMCH | 100/133MHz

SDRAM 1

(Intel 815E
Northbridge)

SDRAM 2

EoTECrOR . oL)

Hub
Interface

Intel
ICH2

PCIl Bus '

PCI
Slots

(Southbridge)

Firmware Hub (FWH)
Interface

Flash BIOS

UNIVERSITY OF
CAMBRIDGE

.
H

Core1 || Core2 || Core3 Core 4
(8SP) || (AP) (AP) (AP)
T 1 T — T
¥ integrated
+ Graphics 1
---- pads r System Memory
——== “BeioRasiconpioc agi) 4 ([DoRamodued] |
PCle | | Pty Ve) § N ! :
Graphics i B control H
(PCle Endpoint) PClto-PCI Bridge § E’ i t tl DDR3 Module 2 I
3 Chipset Interconnect §
&] Logic [J
This PCle link is viewed as
originating from the root port Proprietary
(in PCle graphics point of view) Chipset Interconnect

(Chipset

Virtual

Bridge

PCle link originating from | {

PCl-to-PCI

Logic

PCl-to-PCI

This PCle link is viewed
as originating from root
port (from the PCle switch
point of view)

Virtual

Bridge

the PCle switch port [~

Add-In Network Card
(PCle Endpoint)

) PCle link originating
from the PCle switch port

(PCle Endpoint)

Add-In SCSI Controller

Legacy vs. Recent (courtesy of Intel)

Interconnecting components

 Need interconnections between
— CPU, memory, storage, network, 1/0 controllers

e Shared Bus: shared communication channel
— A set of parallel wires for data and synchronization of
data transfer

— Can become a hottleneck

 Performance limited by physical factors

— Wire length, number of connections

« More recent alternative: high-speed serial connections with switches
— Like networks

7% UNIVERSITY OF

“§ CAMBRIDGE

/O System Characteristics

 Performance measures
— Latency (response time)

— Throughput (bandwidth)
— Desktops & embedded systems

« Mainly interested in response time & diversity of devices
— Servers

* Mainly interested in throughput & expandability of devices
* Reliability

— Particularly for storage devices (fault avoidance, fault tolerance, fault
forecasting)

7% UNIVERSITY OF

“§ CAMBRIDGE

/O Management and strategies

 |/Ois mediated by the OS

— Multiple programs share I/O resources
e Need protection and scheduling
— 1/O causes asynchronous interrupts
e Same mechanism as exceptions
— 1/O programming is fiddly
* OS provides abstractions to programs

Strategies characterize the amount of work done by the CPU in the I/O
operation:

. Polling
. Interrupt Driven
. Direct Memory Access

7% UNIVERSITY OF

“§ CAMBRIDGE

The I/O Access Problem

e Question: how to transfer data from 1/O devices to memory
(RAM)?

e Trivial solution:

* Processor individually reads or writes every word

« Transferred to/from 1/O through an internal register to memory
e Problems:

o Extremely inefficient — can occupy a processor for 1000’s of cycles
e Pollute cache

7% UNIVERSITY OF

“§ CAMBRIDGE

DMA

DMA — Direct Memory Access
A modern solution to the I/O access problem

The peripheral I/O can issue read/write commands directly to
the memory

* Through the main memory controller

* The processor does not need to execute any operation

Write: The processor is notified when a transaction is
completed (interrupt)

Read: The processor issues a signal to the 1/0O when the data
IS ready in memory

7% UNIVERSITY OF

" CAMBRIDGE

Example — Intel Xeon D

PCle Gen3
24 Lanes, 6 Controllers

DDR3L-1600
DDR4-2133

PCle Gen2
8 Lanes
8 Controllers

= UNIVERSITY OF

CAMBRIDGE

Example (Embedded Processor)

Message arrives on I/O Memory Mapped Access
interface. ~
Message is decoded to DDR_, DDHfDDHzf'f)._f . || Seouity
) SDRAM Memory Contrall Engine
Mem read/write. \ > e
. - t

Address is converted to sosiiie| Locaigus convoer fe—»| | | b, || |2 Coche
. SRAM
|nternal addl’eSS IRQs Programmable Interrupt 8500 Core

. > Controller (PIC) [< > 500 # i
Mem Read/\N”te Serial<—>{ DUART Gﬁ:{;’igcy f‘Core Gomple; |n-3,truyc:~(:i!on L1-Da:'rca{.9
command goes through : R

. . I=C P
the switch to the internal o< conoler " ——
b d memor 20 <> c « > . ?fpldlo 4x RapidlO
us an Yy IC Controller o g PCI Express -‘—bxg P?:FIjI ss
controller. MFIIIi' gméﬁ:: o LemsE] N _ < @ :/
Memory controller RMI 1010071 Gl e 5CI 32.b1
=0l us Interfiace |--—e
executes the command 'Risl remil <o Lo < inoabitnotused) | %0 MHz
RMII 10/1001 Gb
32-bit PCI/

to the DRAM'_ _ M tol | eTSEC | o] smipoIPCX RO
Returns data if required RMI 10/100/1Gb Bus Intertace
H eTSEC 4-Channel DMA
in the same manner. e e T e « s FChame D

. UNIVERSITY OF

CAMBRIDGE

DMA

« DMA accesses are usually handled in buffers

« Single word/block is typically inefficient

* The processors assigns the peripheral unit the buffers in
advance
* The buffers are typically handled by buffer descriptors
» Pointer to the buffer in the memory
« May point to the next buffer as well
* Indicates buffer status: owner, valid etc.

* May include additional buffer properties as well

7% UNIVERSITY OF

" CAMBRIDGE

Example (Embedded Processor)

Transfers blocks of data

DMA Access

between external interfaces oA DDR/DDRY e Secuy
and local address space SDRAM Memory Controller Engine
Flash XOR 512-Kbyte @O
. SDRAM=—» Local Bus Controller |&— : L2 Cache/ 2
1. Atransfer is started by SW GPIO =ae [- sham | [/.
. . e are
writing to DMA engine IROs <) P o J
configuration registers % o € KoyteLt| | a2-Kbyte
Serial «— DUART = Module | Core Complex Inétruinon L(; De;ta
ache ache
2. SW Polls DMA channel Pc
. - o Controller) :
state to idle and sets trigger > Serial RapidO
12C <> e ar 4x RapidlO
Controller PClExpress [«<=»x8 PC| Express
3. DMA engine fetches a MiGMIL T8l [eTSEC | S
descriptor from memory CURMI [10/1001Gb] .
| miomi,Te, [etsEC | 32:bit PO Bus Interface - 01 S2°01
4. DMA engine reads block of AT RON <10 oman [~ (If 64-bit not used)
data from source MII, GMII, TBI, TSEC 32-bit PCY PCIPCI-X
ATBL, RGMIL <> 10?100;1% = - 643.32 Ew?;frggéx 133 Mz
: . RMII
5. DMA engine writes data to I — —
destination RMIL ™ [1010011Gb > Controller

UNIVERSITY OF
CAMBRIDGE

Intel Data Direct /O (DDIO)

o Data is written and read directly to/from the last level cache

M| ‘M)
':I CPU | CPU CPU N CPU | CPU CPU
1 2 N m 1 2 N
) =
o 0]
r
; Last Level Cache ‘ y Last Level Cache
CPU Socket C"EJ Socket
Many Cores/Socket Many Cores/Socket
- 2 l 1
I/O Irterconnect
I/C Interconnect J
l Intel Adapter/NIC
Intel Adagter/NIC
l Fabric Interconnect
Fabric Intercannect l

JNIVERSITY OF

CAMBRIDGE

PCle introduction

PCle is a serial point-to-point interconnect between two devices

Implements packet based protocol (TLPs) for information transfer
Scalable performance based on # of signal Lanes implemented on the PCle

interconnect

Supports credit-based point-to-point flow control (not end-to-end)

CPU

PCle

JNIVERSITY OF

Bridge To
PCI/PCI-X

PCI/PCI-X

Provides:

* Processor independence &
buffered isolation

e Bus mastering

Plug and Play operation

CAMBRIDGE

PCle transaction types

Memory Read or Memory Write. Used to transfer data from or to a
memory mapped location

 |/O Read or I/O Write. Used to transfer data from or to an 1/O
location

« Configuration Read or Configuration Write. Used to discover device
capabilities, program features, and check status in the 4KB PCI
Express configuration space.

 Messages. Handled like posted writes. Used for event signaling and
general purpose messaging.

7% UNIVERSITY OF

“§ CAMBRIDGE

PCle architecture

PCI Express Device A PCI Express Device B

Device Core

PCI Express Core
s s bGiCIRIEITALES o

Device Core

PCI Express Core
» osQQIC JNICEIRET e o

Transacdon Layer

Transaction Layer

Transact.on Layer

T-Layer Packet Data Link Layer

Data L'n< Layer Data | ik Layer

Physica' Layer Physi<al Layer

"ssensess "ssnsesss Link fesedenes® "snse .-.:
FAN
(] L-Layer Packet Physical Layer
|V
Buffer space
available

TLP

._, C Buffer
111111

w

Transmitter

—1

Flow Control DLLP (FCx)

UNIVERSITY OF

CAMBRIDGE

Interrupt Model

PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- Interrupt the CPU by writing to a specific address in memory with a

payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual interrupts to

different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller

7% UNIVERSITY OF

“§ CAMBRIDGE

10GE
10GE
10GE
10GE

%

dnyoo7 110d <
1ndinQ

ulv 191191V N
indu

p)
)
O
Q
@)
| -
al
()]
&)
C
()
| -
()]
(.
()
ad
<
@)
al
LL
-+
()
Z

y>
$S999V 108UU0JIOIU| ||
U
AloWwa IXV al=
7
199l1d mB
IL ==
e ——— 7. <
juiodpua |Dd 2l

Wa1SAS 1SOH

Processing Overheads

* Processing in the kernel takes a lot of time...

Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket Enqueue 0.06
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43

Source: Yasukata et al. “StackMap: Low-Latency Networking with the OS Stack and
Dedicated NICs”, Usenix ATC 2016

JNIVERSITY OF

Processing Overheads

Processing in the kernel takes a lot of time...

Order of microseconds (~2-4us on Xeon E5-v4)

x10 the time through a switch

7% UNIVERSITY OF

Solution: don’t go through the kernel!

Kernel Bypass

 The Kernel is slow — lets bypass the Kernel!
« There are many ways to achieve kernel bypass
 Some examples:

* Device drivers:

» Customized kernel device driver. E.g. Netmap forks standard Intel
drivers with extensions to map I/O memory into userspace.

e Custom hardware and use bespoke device drivers for the
specialized hardware.

» Userspace library: anything from basic I/O to the entire TCP/IP stack

7% UNIVERSITY OF

“§ CAMBRIDGE

Kernel Bypass - Examples

User Application
space
Socket API
TCP/IP/ETH
Kernel -
OS packet I/O
Device driver
Hardware

No Bypass

JNIVERSITY OF

User
Space

Application

User Application

space

Framework

TCP/IP/

Kernel 4 ETH Buffers
Library

Device drivir Device driver

Hardware Hardware NIC
Completely in

Partly within Kernel
User Space

DPDK

« DPDK is a popular set of libraries and drivers for fast packet
processing.

» Originally designed for Intel processors
* Now running also on ARM and Power CPUs
* Runs mostly in Linux User space.

« Main libraries: multicore framework, huge page memory, ring buffers,
poll-mode drivers (networking, crypto etc)

* Itis not a networking stack

7% UNIVERSITY OF

“§ CAMBRIDGE

DPDK

« Usage examples:
« Send and receive packets within minimum number of CPU cycles
 E.g.less than 80 cycles
» Fast packet capture algorithms
* Running third-party stacks
« Some projects demonstrated 100’s of millions packets per seconds
o But with limited functionality

 E.g. as a software switch / router

7% UNIVERSITY OF

“§ CAMBRIDGE

	P51: High Performance Networking
	Project – Evaluation Plan
	Slide Number 3
	How to lower the latency of a switch?
	How to lower the latency of a switch?
	How to lower the latency of a switch?
	How to lower the latency of a switch?
	Slide Number 8
	Cut Through Switch
	What is a cut-through switch?
	What is a cut-through switch?
	What is a cut-through switch?
	What is a cut-through switch?
	Slide Number 14
	Network Interfaces
	Network Interfaces
	Network Interfaces
	Packet Processing
	Packet Processing
	Packet Processing
	Arbitration
	Arbitration
	Arbitration
	Slide Number 24
	Arbitration
	Switching
	Switching
	Switching
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	The I/O Access Problem
	DMA
	Example – Intel Xeon D
	Example (Embedded Processor)
	DMA
	Example (Embedded Processor)
	Intel Data Direct I/O (DDIO)
	Slide Number 41
	Slide Number 42
	PCIe architecture
	Slide Number 44
	NetFPGA Reference Projects
	Processing Overheads
	Processing Overheads
	Kernel Bypass
	Kernel Bypass - Examples
	DPDK
	DPDK

