4P CAMBRIDGE

& 8 UNIVERSITY OF

P51: High Performance Networking

Lecture 5: Low Latency Devices

Dr Noa Zilberman L ent 2018/19

noa.zilberman@cl.cam.ac.uk



Project — Evaluation Plan

» For the next lab, you should prepare an evaluation plan for your project.

The following evaluation tests are expected:

Functional testing (using the NetFPGA test infrastructure)

Performance testing, using synthetic traffic (using OSNT or equivalent
to measure latency at low-rate and maximum throughput)

Performance benchmarking, using known benchmarks

Performance comparison to other solutions (sostware, hardware)
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Low Latency Switches

sg5 UNIVERSITY OF

%% CAMBRIDGE



How to lower the latency of a switch?

« Obvious option 1: Increase clock frequency
—E.g. change core clock frequency from 100MHz to 200MHz
—Half the time through the pipeline
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How to lower the latency of a switch?

* Obvious option 1: Increase clock frequency

e Limitations:
— Frequency is often a property of manufacturing process
— Some modules (e.g. PCS) must work at a specific frequency (multiplications)
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How to lower the latency of a switch?

e Obvious option 2: Reduce the number of pipeline stages
—Can you do the same in 150 pipeline stages instead of 2007

—Limitation: hard to achieve.
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How to lower the latency of a switch?

e Can we achieve ~0 latency switch?

—Is there a lower bound on switch latency?
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Cut Through Switching
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Cut Through Switch

o Cut through switch = Low latency switch
A cut through switch can implement a very long pipeline...
e But:
* For the smallest packet, the latency is ~same as longest packet

* As packet size grows, latency saving grows
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What is a cut-through switch?

« Kermani & Kleinrock, “Virtual cut-through: A new computer
communication switching technique”, 1976

* “when a message arrives in an intermediate node and its selected
outgoing channel is free (just after the reception of the header), then, in
contrast to message switching, the message is sent out to the adjacent
node towards its destination before it is received completely at the
node; only if the message is blocked due to a busy output channel is a
message buffered in an intermediate node.”

Source

Node 1

Node 2
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What is a cut-through switch?

» Past (far back):

* Networks were slow

e Memory was fast

e Writing packets to the DRAM took “negligible” time
o With time:

* Networks became faster

« Memory access time is no longer “negligible”
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What is a cut-through switch?

« Sundar, Kompella, and McKeown. "Designing packet buffers for router
line cards." 2002.
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What is a cut-through switch?

« But what does a REAL silicon implementation looks like?
» Tip 1: search for patents on Google Scholar
« Tip 2: read carefully performance evaluation reports

o We'll discuss some examples in the next lecture
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Latency considerations within modules
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Network Interfaces

o Data arrives at (up to) ~50Gbps per link.
» Let us ignore clock recovery, signal detection etc.
» Feasible clock rate is ~1GHz

 But if data rate is x50 times faster...

* Observation: data bus width will be no less than incoming data rate and
feasible clock rate
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Network Interfaces

* Line coding often directs the bus widths:

 E.g., 8b/10b coding led to bus widths of 16b (20b) or 64b (80b)
« Aportis commonly an aggregation of multiple serial links

e 10G XAUI =4 x 3.125Gbps

e 100G CAUI4 =4 x 25Gbps

e 400G PSM4 = 8 x 50Gbps

* Need to take care of aligning the data arriving from multiple links on
the same port.
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Network Interfaces

* Role: check the validity of the packet (e.g., FCS)
 What to do if an error is detected?
 Forward an error using a “fast path”
« Mark the last cycle of the packet
 E.g., to cause drop in the next hop
» Other roles need to be maintained too

 Frame delimiting and recognition, flow control, enforcing IFG, ...
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Packet Processing

o Alikely flow:
Header Header Match Action Header
starts = parsed = (table look up) = (set output port) = sent =

* Possible implementations:
* The entire packet goes through the header processing unit
« Just the header goes through the header processing unit

« “Better” depends on your performance profile (what are the
bottlenecks? Resource limitations?)
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Packet Processing

o Alikely flow:
Header Header Match Action Header
starts = parsed = (table look up) = (set output port) = sent =

e Challenges:

« Afield may arrive over multiple clock cycles (e.g. 32b field, 16b on
clock 2 and 16b on clock 3)

 Memory access taking more than 1 clock cycle
» E.g.request on clock 1, reply on clock 3
 Some memories allow multiple concurrent accesses, some don't

* The bigger the memory, the more time it takes
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Packet Processing

o Alikely flow:
Header Header Match Action Header
starts = parsed = (table look up) = (set output port) = sent =
e Solutions:
* Pipelining!

Don’t stall, add NOP stages in your pipe.
* Reorder operations (where possible)

 E.g. Lookup 1 — Action 1 — Lookup 2 — Action 2 turns:
Lookup 1 — Lookup 2 — Action 1 — Action 2

e Don’t create hazards!
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Arbitration

« Simple example: F=NIF

e Packets arriving from 4 ports ' |

CI=NIF

» (approximately) same arrival time | |

e Arbiter uses Round Robin m i i
I
e Problem: arbitration on packet NIE

boundaries?

* No: interleaved packets within the pipeline
Need to track which cycle belongs to which packet
May require multiple concurrent header lookups
Order is not guaranteed (e.g. P1-P2-P3-P1-P2-P2-...), due to NIF timing
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Arbitration

« Simple example: F=NIF

e Packets arriving from 4 ports ' |

CI=NIF

» (approximately) same arrival time | |

e Arbiter uses Round Robin m i i
I
e Problem: arbitration on packet NIE

boundaries?

* Yes: packets need to wait for previous packets to be handled before being
admitted.
Worst case waiting with <N> inputs is <N-1>xPacket time
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Arbitration

« Solutions to the previous problem:
e Scheduled (or slotted) traffic
e Multiple pipelines
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Arbitration

* This example solves the arbitration problem entering the device
* Resource inefficient:
* Pipeline overdesign

e |nefficient use of memories

I @)
« Concurrency issues NIF 1 P NIF

* One solution: NIE NIE

 Shared memories / tables

SCH
]

NIF NIF

* Highly complex

NIF 5 NIF
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Switching

* The previous arbitration solution “pushed” the problem to the switching
unit

* But now the problem is only when multiple packets compete over the
same output — that'’s fine!

e Assuming your switch can
handle multiple packets NIF > NIF
per cycle B

e E.g. crosshar NIF NIF
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Switching
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Switching

... This is also queueing

Challenge: SCALE
e S0 you can do it with 4 ports

e Can you do it with 32?7 1287 2567

Not just resource / area

« Computation time — being able to examine and choose between all
available inputs

Eventually:
Packets must be sent out on packet boundaries
Do not interleave packets!
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Interconnecting components

 Need interconnections between
— CPU, memory, storage, network, 1/0 controllers

e Shared Bus: shared communication channel
— A set of parallel wires for data and synchronization of
data transfer

— Can become a hottleneck

 Performance limited by physical factors

— Wire length, number of connections

« More recent alternative: high-speed serial connections with switches
— Like networks
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/O System Characteristics

 Performance measures
— Latency (response time)

— Throughput (bandwidth)
— Desktops & embedded systems

« Mainly interested in response time & diversity of devices
— Servers

* Mainly interested in throughput & expandability of devices
* Reliability

— Particularly for storage devices (fault avoidance, fault tolerance, fault
forecasting)
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/O Management and strategies

 |/Ois mediated by the OS

— Multiple programs share I/O resources
e Need protection and scheduling
— 1/O causes asynchronous interrupts
e Same mechanism as exceptions
— 1/O programming is fiddly
* OS provides abstractions to programs

Strategies characterize the amount of work done by the CPU in the I/O
operation:

. Polling
. Interrupt Driven
. Direct Memory Access
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The I/O Access Problem

e Question: how to transfer data from 1/O devices to memory
(RAM)?

e Trivial solution:

* Processor individually reads or writes every word

« Transferred to/from 1/O through an internal register to memory
e Problems:

o Extremely inefficient — can occupy a processor for 1000’s of cycles
e Pollute cache
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DMA

DMA — Direct Memory Access
A modern solution to the I/O access problem

The peripheral I/O can issue read/write commands directly to
the memory

* Through the main memory controller

* The processor does not need to execute any operation

Write: The processor is notified when a transaction is
completed (interrupt)

Read: The processor issues a signal to the 1/0O when the data
IS ready in memory
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Example — Intel Xeon D

PCle Gen3
24 Lanes, 6 Controllers

DDR3L-1600
DDR4-2133

PCle Gen2
8 Lanes
8 Controllers
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Example (Embedded Processor)
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DMA

« DMA accesses are usually handled in buffers

« Single word/block is typically inefficient

* The processors assigns the peripheral unit the buffers in
advance
* The buffers are typically handled by buffer descriptors
» Pointer to the buffer in the memory
« May point to the next buffer as well
* Indicates buffer status: owner, valid etc.

* May include additional buffer properties as well
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Example (Embedded Processor)

Transfers blocks of data
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Intel Data Direct /O (DDIO)

o Data is written and read directly to/from the last level cache
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PCle introduction

PCle is a serial point-to-point interconnect between two devices

Implements packet based protocol (TLPs) for information transfer
Scalable performance based on # of signal Lanes implemented on the PCle

interconnect

Supports credit-based point-to-point flow control (not end-to-end)

CPU

PCle
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PCI/PCI-X

PCI/PCI-X

Provides:

* Processor independence &
buffered isolation

e Bus mastering

Plug and Play operation
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PCle transaction types

Memory Read or Memory Write. Used to transfer data from or to a
memory mapped location

 |/O Read or I/O Write. Used to transfer data from or to an 1/O
location

« Configuration Read or Configuration Write. Used to discover device
capabilities, program features, and check status in the 4KB PCI
Express configuration space.

 Messages. Handled like posted writes. Used for event signaling and
general purpose messaging.
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PCle architecture

PCI Express Device A PCI Express Device B

Device Core

PCI Express Core
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Interrupt Model

PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- Interrupt the CPU by writing to a specific address in memory with a

payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual interrupts to

different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller
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Processing Overheads

* Processing in the kernel takes a lot of time...

Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket Enqueue 0.06
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43

Source: Yasukata et al. “StackMap: Low-Latency Networking with the OS Stack and
Dedicated NICs”, Usenix ATC 2016
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Processing Overheads

Processing in the kernel takes a lot of time...

Order of microseconds (~2-4us on Xeon E5-v4)

x10 the time through a switch
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Kernel Bypass

 The Kernel is slow — lets bypass the Kernel!
« There are many ways to achieve kernel bypass
 Some examples:

* Device drivers:

» Customized kernel device driver. E.g. Netmap forks standard Intel
drivers with extensions to map I/O memory into userspace.

e Custom hardware and use bespoke device drivers for the
specialized hardware.

» Userspace library: anything from basic I/O to the entire TCP/IP stack
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Kernel Bypass - Examples

User Application
space
Socket API
TCP/IP/ETH
Kernel -
OS packet I/O
Device driver
Hardware

No Bypass
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Framework
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Library

Device drivir Device driver

Hardware Hardware NIC
Completely in

Partly within Kernel
User Space




DPDK

« DPDK is a popular set of libraries and drivers for fast packet
processing.

» Originally designed for Intel processors
* Now running also on ARM and Power CPUs
* Runs mostly in Linux User space.

« Main libraries: multicore framework, huge page memory, ring buffers,
poll-mode drivers (networking, crypto etc)

* Itis not a networking stack
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DPDK

« Usage examples:
« Send and receive packets within minimum number of CPU cycles
 E.g.less than 80 cycles
» Fast packet capture algorithms
* Running third-party stacks
« Some projects demonstrated 100’s of millions packets per seconds
o But with limited functionality

 E.g. as a software switch / router
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