
P51: High Performance Networking
Lecture 5: Low Latency Devices

Dr Noa Zilberman
noa.zilberman@cl.cam.ac.uk Lent 2018/19

Project – Evaluation Plan

• For the next lab, you should prepare an evaluation plan for your project.

• The following evaluation tests are expected:

• Functional testing (using the NetFPGA test infrastructure)

• Performance testing, using synthetic traffic (using OSNT or equivalent
to measure latency at low-rate and maximum throughput)

• Performance benchmarking, using known benchmarks

• Performance comparison to other solutions (sostware, hardware)

Low Latency Switches

• Obvious option 1: Increase clock frequency

–E.g. change core clock frequency from 100MHz to 200MHz

–Half the time through the pipeline

How to lower the latency of a switch?

NIF

NIF

NIF

NIF

NIF

NIF

NIF

NIF

OQ

OQ

OQ

OQ

Sc
he

du
le

r

PP

IQ

IQ

IQ

IQ

• Obvious option 1: Increase clock frequency

• Limitations:
– Frequency is often a property of manufacturing process
– Some modules (e.g. PCS) must work at a specific frequency (multiplications)

How to lower the latency of a switch?

NIF

NIF

NIF

NIF

NIF

NIF

NIF

NIF

OQ

OQ

OQ

OQ

Sc
he

du
le

r

PP

IQ

IQ

IQ

IQ

• Obvious option 2: Reduce the number of pipeline stages

–Can you do the same in 150 pipeline stages instead of 200?

–Limitation: hard to achieve.

How to lower the latency of a switch?

NIF

NIF

NIF

NIF

NIF

NIF

NIF

NIF

OQ

OQ

OQ

OQ

Sc
he

du
le

r

PP

IQ

IQ

IQ

IQ

• Can we achieve ~0 latency switch?

–Is there a lower bound on switch latency?

How to lower the latency of a switch?

NIF

NIF

NIF

NIF

NIF

NIF

NIF

NIF

OQ

OQ

OQ

OQ

Sc
he

du
le

r

PP

IQ

IQ

IQ

IQ

Cut Through Switching

Cut Through Switch

• Cut through switch ≠ Low latency switch

• A cut through switch can implement a very long pipeline…

• But:

• For the smallest packet, the latency is ~same as longest packet

• As packet size grows, latency saving grows

What is a cut-through switch?

• Kermani & Kleinrock, “Virtual cut-through: A new computer
communication switching technique”, 1976

• “when a message arrives in an intermediate node and its selected
outgoing channel is free (just after the reception of the header), then, in
contrast to message switching, the message is sent out to the adjacent
node towards its destination before it is received completely at the
node; only if the message is blocked due to a busy output channel is a
message buffered in an intermediate node.”

Source

Node 1

Node 2

What is a cut-through switch?

• Past (far back):

• Networks were slow

• Memory was fast

• Writing packets to the DRAM took “negligible” time

• With time:

• Networks became faster

• Memory access time is no longer “negligible”

What is a cut-through switch?

• Sundar, Kompella, and McKeown. "Designing packet buffers for router
line cards." 2002.

What is a cut-through switch?

• But what does a REAL silicon implementation looks like?

• Tip 1: search for patents on Google Scholar

• Tip 2: read carefully performance evaluation reports

• We’ll discuss some examples in the next lecture

Latency considerations within modules

Network Interfaces

• Data arrives at (up to) ~50Gbps per link.

• Let us ignore clock recovery, signal detection etc.

• Feasible clock rate is ~1GHz

• But if data rate is ×50 times faster…

• Observation: data bus width will be no less than incoming data rate and
feasible clock rate

Network Interfaces

• Line coding often directs the bus widths:

• E.g., 8b/10b coding led to bus widths of 16b (20b) or 64b (80b)

• A port is commonly an aggregation of multiple serial links

• 10G XAUI = 4 × 3.125Gbps

• 100G CAUI4 = 4 × 25Gbps

• 400G PSM4 = 8 × 50Gbps

• Need to take care of aligning the data arriving from multiple links on
the same port.

Network Interfaces

• Role: check the validity of the packet (e.g., FCS)

• What to do if an error is detected?

• Forward an error using a “fast path”

• Mark the last cycle of the packet

• E.g., to cause drop in the next hop

• Other roles need to be maintained too

• Frame delimiting and recognition, flow control, enforcing IFG, …

Packet Processing

• A likely flow:

• Possible implementations:

• The entire packet goes through the header processing unit

• Just the header goes through the header processing unit

• “Better” depends on your performance profile (what are the
bottlenecks? Resource limitations?)

Header
starts

Header
parsed

Match
(table look up)

Action
(set output port)

Header
sent

Packet Processing

• A likely flow:

• Challenges:

• A field may arrive over multiple clock cycles (e.g. 32b field, 16b on
clock 2 and 16b on clock 3)

• Memory access taking more than 1 clock cycle

• E.g. request on clock 1, reply on clock 3

• Some memories allow multiple concurrent accesses, some don’t

• The bigger the memory, the more time it takes

Header
starts

Header
parsed

Match
(table look up)

Action
(set output port)

Header
sent

Packet Processing

• A likely flow:

• Solutions:

• Pipelining!
Don’t stall, add NOP stages in your pipe.

• Reorder operations (where possible)

• E.g. Lookup 1 → Action 1 → Lookup 2 → Action 2 turns:
Lookup 1 → Lookup 2 → Action 1 → Action 2

• Don’t create hazards!

Header
starts

Header
parsed

Match
(table look up)

Action
(set output port)

Header
sent

Arbitration

• Simple example:

• Packets arriving from 4 ports

• (approximately) same arrival time

• Arbiter uses Round Robin

• Problem: arbitration on packet
boundaries?

• No: interleaved packets within the pipeline
Need to track which cycle belongs to which packet
May require multiple concurrent header lookups
Order is not guaranteed (e.g. P1-P2-P3-P1-P2-P2-…), due to NIF timing

NIF

NIF

NIF

NIF

Ar
bi

te
r

PP

IQ

IQ

IQ

IQ

Arbitration

• Simple example:

• Packets arriving from 4 ports

• (approximately) same arrival time

• Arbiter uses Round Robin

• Problem: arbitration on packet
boundaries?

• Yes: packets need to wait for previous packets to be handled before being
admitted.
Worst case waiting with <N> inputs is <N-1>×Packet time

NIF

NIF

NIF

NIF

Ar
bi

te
r

PP

IQ

IQ

IQ

IQ

Arbitration

• Solutions to the previous problem:

• Scheduled (or slotted) traffic

• Multiple pipelines

• …

M Grosvenor et al “The Resilient Realtime Data Delivery Network
Architecture” (R2D2) 2013

Arbitration

• This example solves the arbitration problem entering the device

• Resource inefficient:

• Pipeline overdesign

• Inefficient use of memories

• Concurrency issues

• One solution:

• Shared memories / tables

• Highly complex

PP

PP

PP

PP

NIF

NIF

NIF

NIF

NIF

NIF

NIF

NIF

OQ

OQ

OQ

OQ
SC

H

Switching

• The previous arbitration solution “pushed” the problem to the switching
unit

• But now the problem is only when multiple packets compete over the
same output – that’s fine!

• Assuming your switch can
handle multiple packets
per cycle

• E.g. crossbar

PP

PP

PP

PP

NIF

NIF

NIF

NIF

NIF

NIF

NIF

NIF

OQ

OQ

OQ

OQ
SC

H

Switching

PP

PP

PP

PP

NIF

NIF

NIF

NIF

1
2
3
4

1
2
3
4

NIF

NIF

Switching

• … This is also queueing

• Challenge: SCALE

• So you can do it with 4 ports

• Can you do it with 32? 128? 256?

• Not just resource / area

• Computation time – being able to examine and choose between all
available inputs

• Eventually:
Packets must be sent out on packet boundaries
Do not interleave packets!

DMA

Host architecture

Legacy vs. Recent (courtesy of Intel)

Interconnecting components

• Need interconnections between
– CPU, memory, storage, network, I/O controllers

• Shared Bus: shared communication channel
– A set of parallel wires for data and synchronization of

data transfer

– Can become a bottleneck

• Performance limited by physical factors

– Wire length, number of connections

• More recent alternative: high-speed serial connections with switches
– Like networks

I/O System Characteristics

• Performance measures
– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

• Mainly interested in response time & diversity of devices
– Servers

• Mainly interested in throughput & expandability of devices

• Reliability
– Particularly for storage devices (fault avoidance, fault tolerance, fault

forecasting)

I/O Management and strategies

• I/O is mediated by the OS
– Multiple programs share I/O resources

• Need protection and scheduling
– I/O causes asynchronous interrupts

• Same mechanism as exceptions
– I/O programming is fiddly

• OS provides abstractions to programs
Strategies characterize the amount of work done by the CPU in the I/O
operation:

• Polling
• Interrupt Driven
• Direct Memory Access

The I/O Access Problem

• Question: how to transfer data from I/O devices to memory
(RAM)?

• Trivial solution:
• Processor individually reads or writes every word
• Transferred to/from I/O through an internal register to memory

• Problems:
• Extremely inefficient – can occupy a processor for 1000’s of cycles
• Pollute cache

DMA

• DMA – Direct Memory Access
• A modern solution to the I/O access problem
• The peripheral I/O can issue read/write commands directly to

the memory
• Through the main memory controller
• The processor does not need to execute any operation

• Write: The processor is notified when a transaction is
completed (interrupt)

• Read: The processor issues a signal to the I/O when the data
is ready in memory

Example – Intel Xeon D

1

1. Message arrives on I/O
interface.
Message is decoded to
Mem read/write.
Address is converted to
internal address.

2

2. Mem Read/Write
command goes through
the switch to the internal
bus and memory
controller.

3

3. Memory controller
executes the command
to the DRAM.
Returns data if required
in the same manner.

Memory Mapped Access

Example (Embedded Processor)

DMA

• DMA accesses are usually handled in buffers
• Single word/block is typically inefficient

• The processors assigns the peripheral unit the buffers in
advance

• The buffers are typically handled by buffer descriptors
• Pointer to the buffer in the memory
• May point to the next buffer as well
• Indicates buffer status: owner, valid etc.
• May include additional buffer properties as well

Transfers blocks of data
between external interfaces
and local address space

DMA Access

1
1. A transfer is started by SW

writing to DMA engine
configuration registers

3

3. DMA engine fetches a
descriptor from memory

4. DMA engine reads block of
data from source

4

2

2. SW Polls DMA channel
state to idle and sets trigger

5. DMA engine writes data to
destination

5

Example (Embedded Processor)

Intel Data Direct I/O (DDIO)

• Data is written and read directly to/from the last level cache
(LLC)

PCIe introduction

• PCIe is a serial point-to-point interconnect between two devices

• Implements packet based protocol (TLPs) for information transfer
• Scalable performance based on # of signal Lanes implemented on the PCIe

interconnect
• Supports credit-based point-to-point flow control (not end-to-end)

Provides:
• Processor independence &

buffered isolation

• Bus mastering

• Plug and Play operation

PCIe transaction types

• Memory Read or Memory Write. Used to transfer data from or to a
memory mapped location

• I/O Read or I/O Write. Used to transfer data from or to an I/O
location

• Configuration Read or Configuration Write. Used to discover device
capabilities, program features, and check status in the 4KB PCI
Express configuration space.

• Messages. Handled like posted writes. Used for event signaling and
general purpose messaging.

PCIe architecture

Interrupt Model

PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- interrupt the CPU by writing to a specific address in memory with a
payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual interrupts to
different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller

NetFPGA Reference Projects
H

os
ts

ys
te

m
PC

Ie
nd

po
in

t

D
ire

ct

M
em

or
y

A
cc

es
s

10GE

10GE

10GE

10GE

In
pu

t
A

rb
ite

r

O
ut

pu
t

Po
rt

Lo
ok

up

O
ut

pu
t

Q
ue

ue
s

A
XI

In
te

rc
on

ne
ct

Processing Overheads

• Processing in the kernel takes a lot of time…

Source: Yasukata et al. “StackMap: Low-Latency Networking with the OS Stack and
Dedicated NICs”, Usenix ATC 2016

Component Time [us]
Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket Enqueue 0.06
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43

Processing Overheads

• Processing in the kernel takes a lot of time…

• Order of microseconds (~2-4us on Xeon E5-v4)

• ×10 the time through a switch

• Solution: don’t go through the kernel!

Kernel Bypass

• The Kernel is slow – lets bypass the Kernel!

• There are many ways to achieve kernel bypass

• Some examples:

• Device drivers:

• Customized kernel device driver. E.g. Netmap forks standard Intel
drivers with extensions to map I/O memory into userspace.

• Custom hardware and use bespoke device drivers for the
specialized hardware.

• Userspace library: anything from basic I/O to the entire TCP/IP stack

Kernel Bypass - Examples

NIC

Device driver

OS packet I/O
TCP/IP/ETH

Socket API

Application

Kernel

User
space

Hardware

Framework

NIC

Device driver

TCP/IP/
ETH

Application

Kernel

User
space

Hardware

Buffers

NIC

Device driver

ApplicationUser
space

Hardware

Library

No Bypass Partly within Kernel Completely in
User Space

DPDK

• DPDK is a popular set of libraries and drivers for fast packet
processing.

• Originally designed for Intel processors

• Now running also on ARM and Power CPUs

• Runs mostly in Linux User space.

• Main libraries: multicore framework, huge page memory, ring buffers,
poll-mode drivers (networking, crypto etc)

• It is not a networking stack

DPDK

• Usage examples:

• Send and receive packets within minimum number of CPU cycles

• E.g. less than 80 cycles

• Fast packet capture algorithms

• Running third-party stacks

• Some projects demonstrated 100’s of millions packets per seconds

• But with limited functionality

• E.g. as a software switch / router

	P51: High Performance Networking
	Project – Evaluation Plan
	Slide Number 3
	How to lower the latency of a switch?
	How to lower the latency of a switch?
	How to lower the latency of a switch?
	How to lower the latency of a switch?
	Slide Number 8
	Cut Through Switch
	What is a cut-through switch?
	What is a cut-through switch?
	What is a cut-through switch?
	What is a cut-through switch?
	Slide Number 14
	Network Interfaces
	Network Interfaces
	Network Interfaces
	Packet Processing
	Packet Processing
	Packet Processing
	Arbitration
	Arbitration
	Arbitration
	Slide Number 24
	Arbitration
	Switching
	Switching
	Switching
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	The I/O Access Problem
	DMA
	Example – Intel Xeon D
	Example (Embedded Processor)
	DMA
	Example (Embedded Processor)
	Intel Data Direct I/O (DDIO)
	Slide Number 41
	Slide Number 42
	PCIe architecture
	Slide Number 44
	NetFPGA Reference Projects
	Processing Overheads
	Processing Overheads
	Kernel Bypass
	Kernel Bypass - Examples
	DPDK
	DPDK

