
P51 - Lab 2
Introduction to NetFPGA and

P4-NetFPGA - Part 2

Dr Noa Zilberman

Lent, 2018/19

The goal of this lab is to introduce you to the NetFPGA register infrastructure, as well as
to the test environment, providing hands on experience in NetFPGA and P4-NetFPGA
development.

1 Development Machines

This week you will continue and use the machines assigned to you last week. All the
machines are located in the Practical Classroom (SW02).

1. On a computer in the Practical Classroom, log in using your own UIS credentials.

2. From Moodle, download the private key.

3. Limit the permissions of the private key: chmod 600 p51 key

4. ssh -X root@<hostname>.nf.cl.cam.ac.uk -i p51 key. Hosts ending in .cl.cam.ac.uk
are permitted to ssh into these machines. -X enables X11 forwarding, allowing you
to run graphical applications. -i is the private ssh authentication key.

To ssh to the machines from outside the lab, follow the instructions on
https://www.cl.cam.ac.uk/local/sys/ssh/.

Hostname IP Address

nf-test103 128.232.82.63

nf-test104 128.232.82.64

nf-test102 128.232.82.62

nf-test108 128.232.82.68

nf-test110 128.232.82.70

nf-test111 128.232.82.71

1

Important: The IP addresses noted above should not be used for anything
except for communication with the machines. The network interfaces as-
signed for the tests use different IP addresses.

2 Practical Instructions

This section provides step-by-step instructions how to add a new register to your design.
To this end, we will be using the (verilog) Reference Switch design studied in class.

2.1 Accessing the board

1. Login to the development machine:

ssh root@<hostname>.nf.cl.cam.ac.uk

2. Pull the latest NetFPGA release:

cd ~/NetFPGA-SUME-live/

git pull

3. cd tools

vim settings.sh

4. Make sure that NF PROJECT NAME is set to “reference switch”

5. Load the environment settings:

source settings.sh

6. Compile all cores:

cd $SUME_FOLDER

make

2.2 Adding a new register

The goal of this exercise is to add a register that counts the number of packets of size
64B. Once you complete this exercise, try adding a second register that sets the packet
size to monitor.

The following instructions use the spreadsheet.
You can alternatively use the csv file, combined with the script csv gen.py. The file is

located under SUME FOLDER/tools/infrastructure. Then skip to step 7.

1. In Libreoffice, set security to medium.

2. Open $IP FOLDER/switch output port lookup v1 0 1/data/module generation.xls

2

3. If needed, change block name to match your module name (for sub-module this is
optional)

4. Delete all indirect registers (and others you dont want) (note potential issues in
some releases)

5. Change OS to Linux

6. Press Generate Registers. You may need to copy locally
SUME FOLDER/tools/infrastructure/regs template.txt.

7. From console, run:

python regs_gen.py

cp *.v $IP_FOLDER/switch_output_port_lookup_v1_0_1/hdl

8. Copy data files to the data folder:

cp <*.tcl,*.h,*.txt> $IP_FOLDER/switch_output_port_lookup_v1_0_1/data

9. Go to the core’s folder:

cd $IP_FOLDER/switch\output_port_lookup_v1_0_1/

10. Open the HDL code of the core:

vim hdl/switch_output_port_lookup.v

11. Add the following lines to the code, starting line 370 (this is a hint, you can also
use your own code):

reg next_is_new;

always @(posedge axis_aclk) next_is_new <= #1 ~resetn_sync ? 1’b0 :

(s_axis_tvalid && s_axis_tready) ? s_axis_tlast : next_is_new;

12. Copy the lines from the template file to switch output port lookup.v

13. Add in switch output port.v support for the register functionality

14. Compiling your IP core:

cd $IP_FOLDER/switch_output_port_lookup_v1_0_1/

make

15. Update the functional test to read (or write) your register:

cd $NF_DESIGN_DIR/test/both_learning_sw

vim run.py

16. Run a simulation of your design and test that it works:

cd $SUME_FOLDER/tools/scripts

./nf_test.py sim --major learning --minor sw

3

2.3 Coding and adding registers to the P4 module

The goal of this exercise is to add write a P4-based calculator program, including the
use of registers. The switch acts as the calculator, receiving a packet and operating on
its contents. The operations that need to be supported are:

• ADD - add two operands and return the result.

• SUBTRACT - subtract two operands and return the result.

• ADD REG - add an operand to the current value stored in a register on the switch
and return the result.

• SET REG - set the value of a register on the switch.

• LOOKUP - lookup the given key in a table on the switch and return the result.

The following packet header will be used in this exercise:

header Calc_h {

bit<32> op1; //First operand

bit<8> opCode; //Operation to perform

bit<32> op2; //Second operand

bit<32> result; //Result, optional

}

The Calc h header comes after the Ethernet header.
Once the switch has calculated the result, the packet is returned to the sender. This
means that the source and destination MAC addresses need to be swapped.

1. Make sure to use the P4-NetFPGA flow:

vim ~/.bashrc

Go to line 103. change the line to:

source /opt/Xilinx/Vivado/2018.2/settings64.sh

Exit the ssh connection and connect again to the machine. Note that sourcing
bashrc again (without exiting current session) will lead to problems.

2. Change the project’s Makefile to point to the correct P4 source:

cd $P4_PROJECT_DIR/src

vim Makefile

In line #39, change $P4 PROJECT NAME solution.p4 to $P4 PROJECT NAME.p4

4

3. Write your code:

vim switch_calc.p4

4. If needed, add entries to the tables you defined in the P4 program:

cd $P4_PROJECT_DIR/src

vim commands.txt

5. Run the P4-SDNet compiler to generate the resulting HDL and an initial simulation
framework:

cd $P4_PROJECT_DIR && make

6. Run a simulation of your code in SDNet:

cd $P4_PROJECT_DIR/nf_sume_sdnet_ip/SimpleSumeSwitch

./vivado_sim.bash

The following describes the steps for running a simulation of the P4 code in the
SDNet environment, with GUI:

cd $P4_PROJECT_DIR/nf_sume_sdnet_ip/SimpleSumeSwitch

./vivado_sim_waveform.bash

7. Generate the scripts that configure the table entries :

cd $P4_PROJECT_DIR && make config_writes

8. Wrap SDNet output in wrapper module and install as a NetFPGA library core:

cd $P4_PROJECT_DIR

make uninstall_sdnet && make install_sdnet

9. Set up the simulation environment:

cd $NF_DESIGN_DIR/test/sim_switch_default

make

The test code can be viewed and edited in run.py.

10. Run the simulation:

cd $SUME_FOLDER/tools/scripts/

./nf_test.py sim --major switch --minor default

5

To run a simulation with GUI (Vivado xsim), replace the last stage with:

cd $SUME_FOLDER/tools/scripts

./nf_test.py sim --major switch --minor default --gui

Note that using xsim is not mandatory. You can also change the environment and
use Modelsim, and a license for that is available.

11. Run a simulation of registers access:

cd $NF_DESIGN_DIR/test/sim_switch_ctrlWrites && make

cd $SUME_FOLDER/tools/scripts

./nf_test.py sim --major switch --minor ctrlWrites

3 Building a project

The following steps are typically required when building a project. We recommend that
you follow them to test your design on the hardware:

1. Compiling an IP core:

cd $IP_FOLDER/<ip core name>

make

This step is required only for new IP cores or when changes are made to the tcl
file of the core. There is no need to run make if only the HDL files were modified.

2. Compiling CAM/TCAM cores:
Follows the instructions on https://github.com/NetFPGA/NetFPGA-SUME-public/

wiki/NetFPGA-SUME-TCAM-IPs

The CAM core is required for building the NetFPGA project. You only need to
run this step once.

3. Compiling all cores and building libraries (excluding CAM):

cd $SUME_FOLDER

make

This step if typically required only once: after the git repository is cloned or pulled.
It is also required if the make clean command was called.

4. Building a project:

cd $NF_DESIGN_DIR

make

The result of this step is the programming (bit) file. This step takes 45 minutes
or more. Do not run it during class.

5. Follow the instructions for hardware testing from Lab 1.

6

4 Common Issues

• Problem: Vivado’s GUI does not open.
Solution: 1) make sure to ssh using -X.
2) edit ˜/.bashrc. comment the line export DISPLAY=:0.

• Problem: Receiving extra or unexpected packets in the hardware test.
Solution: Try resetting the machine, this is sometimes a problem in Scapy. If
the problem persists, this is likely as the network manager is not disabled and/or
the network is not configured properly. Follow the steps in https://github.com/

NetFPGA/NetFPGA-SUME-public/wiki/Reference-Operating-System-Setup-Guide,
under the Network Configuration Manager section. In particular, make sure that
your NIC’s MAC address appears on the list of non managed interfaces
(/etc/NetworkManager/NetworkManager.conf) and that all your NIC’s host in-
terfaces are set to manual (/etc/network/interfaces).

5 Useful links

• NetFPGA Repository: https://github.com/NetFPGA/NetFPGA-SUME-live/

• NetFPGA Wiki: https://github.com/NetFPGA/NetFPGA-SUME-public/wiki

• NetFPGA registration page: https://netfpga.org/site/#/SUME_reg_form/

• P4-NetFPGA Repository: https://github.com/NetFPGA/P4-NetFPGA-live

• P4-NetFPGA Wiki: https://github.com/NetFPGA/P4-NetFPGA-public/wiki

• P4-NetFPGA registration page: https://goo.gl/forms/h7RbYmKZL7H4EaUf1

• P4-NetFPGA online tutorial: https://github.com/NetFPGA/P4-NetFPGA-public/
wiki/Tutorial-Assignments

7

