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Growth of ML

ML algorithms optimized:

Not only for task performance, e.g. accuracy.

But also other criteria, e.g. safety, fairness, providing the right to
explanation.

There are often trade-offs among these goals.

However,

Accuracy can be quantified.

Not precisely the case for the other criteria.
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What is interpretability?

Interpret means to explain or to present in understandable terms.

In the ML context: The ability to explain or to present in
understandable terms to humans.

What constitutes an explanation? What makes some explanations
better than others? How are explanations generated? When are
explanations sought?

Automatic ways to generate and, to some extent, evaluate
interpretability.
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Taxonomy

Task-related:

Global interpretability: A general understanding of how the system is
working as a whole, and of the patterns present in the data.

Local interpretability: Providing an explanation of a particular
prediction or decision.

Method-related (what are the basic units of the explanation?):

Raw features.

Derived features that have some semantic meaning to the expert.

Prototypes.

The nature of the data/tasks should match the type of the explanation.
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Visualizing Deep Neural Network Decisions:
Prediction Difference Analysis

Zintgraf, Cohen, Adel, Welling, ICLR 2017
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Idea

Visualize the response of a deep neural network to a specific input.

For an individual classifier prediction, assign each feature a relevance
value reflecting its contribution towards or against the predicted class.
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Visualizing deep networks

Looking under the hood: explaining why a decision was made.

Can help to understand strengths and limitations of a model, help to
improve it [wolves/huskies based on presence/absence of snow].

Important for liability: why does the algorithm decide this patient has
Alzheimer?

Can lead to new insights and theories in poorly understood domains.
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Approach

Relevance of a feature xi can be estimated by measuring how the
prediction changes if the feature is unknown.

The difference between p(c |x) and p(c |x\i ), where x\i denotes the set
of all input features except xi .

But how would a classifier recognize a feature as unknown?

Label the feature as unknown.
Retrain the classifier with the feature left out.
Marginalize the feature.
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Marginalization of a feature

p(c |x\i ) =
∑
xi

p(xi |x\i )p(c |x\i , xi ) (1)

Assume xi is independent of x\i

p(c|x\i ) ≈
∑
xi

p(xi )p(c |x\i , xi ) (2)
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Weight of evidence

Compare p(c |x\i ) to p(c |x):

odds(c |x) = p(c|x)
(1−p(c|x))

WEi (c |x) = log2 (odds(c |x))− log2
(
odds(c |x\i )

)
, (3)

A large prediction difference → the feature contributed substantially
to the classification.

A small prediction difference → the feature was not important for the
decision.

A positive value WEi → the feature has contributed evidence for the
class of interest.

A negative value WEi → the feature displays evidence against the
class.
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Conditional sampling

A pixel depends most strongly on a small neighbourhood around it.

The conditional of a pixel given its neighbourhood does not depend
on the position of the pixel in the image.

p(xi |x\i ) ≈ p(xi |x̂\i ) (4)
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Multivariate Analysis

A neural network is relatively robust to the marginalization of just one
feature.

Remove several features at once

Connected pixels.

patches of size k × k .
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Experiments

Conditional sampling

Red: For.

Blue: Against.
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Experiments

Multivariate analysis
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MRI data
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MRI data
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Conclusions

A method for visualizing deep neural networks by using a more
powerful conditional, multivariate model.

The visualization method shows which pixels of a specific input image
are evidence for or against a node in the network.
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Discovering Interpretable Representations for
Both Deep Generative and Discriminative Models

Adel, Ghahramani, Weller, ICML 2018
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Generative models and interpretability

Generative models seek to infer the data-generating latent space.

This implies capturing to some extent the salient characteristics of
the data.

Generative models can potentially provide disentangled (and perhaps
interpretable?) data representations (Kingma et al., 2014; Chen et al.,

2016; Desjardins et al., 2012; Higgins et al., 2017; Kulkarni et al., 2015) .

“What I cannot create, I do not understand.”, Richard Feynman
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Contributions

We propose:

An interpretability framework as a lens on an existing model using
fully invertible transformations.

An active learning methodology basing the acquisition function on
mutual information with interpretable data attributes.

A quantitative metric. We define interpretability as a simple
relationship to something we can understand .

A second interpretability framework jointly optimized for
reconstruction and interpretability. This provides a novel analogy
between data compression and regularization.

Qualitative and quantitative state-of-the-art results on three datasets.
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Interpretable Lens Variable Model (ILVM)
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Interactive Interpretability via Active Learning

Interactive ‘human-in-the-loop’ interpretability

Choose the point with index j that maximizes :

ĵ = argmaxj I(sj, ψ) = H(sj)− Eqφ(z∗|s)[H(sj|z∗j )]

= −
∫

p(sj) log p(sj) ds

+ Eqφ(z∗|s)

[∫
pψ(sj|z∗) log pψ(sj|z∗) ds

]
. (5)

Choose the point possessing side information about which:

the model is most uncertain -maximized H(sj)-, but
in which the individual settings of the founding latent space z∗ are
confident -minimized Eqφ(z∗|s)[H(sj|z∗j )]-
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Interpretability Metric

Interpretability refers to a simple relationship to something we can
understand.

A latent space is (more) interpretable if it manages to explain the
relationship to salient attributes (more) simply.
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Jointly Learnt Variable Model (JLVM)

JLVM jointly optimizes for interpretability and reconstruction fidelity.

It is based on the information bottleneck concept:

Make z∗ maximally expressive about the side information s while
being maximally compressive about the data x. :

IB(z∗, x, s) = I(z∗, s)− βI(z∗, x).

We prove that being maximally compressive about the input for the
sake of interpretability is analogous to further regularization.
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Qualitative Evaluation
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Qualitative Evaluation
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Interpretable Lens Variable Model (ILVM)

Interpretable Lens on a Hidden Layer of a Neural Network
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Quantitative Evaluation
Interpretability Metric

MNIST SVHN Chairs

ILVM 95.2 ± 1.3 % 85.7 ± 0.9 % 87.4 ± 1.0 %

JLVM 89.8 ± 0.9 % 90.1 ± 1.1 % 89.8 ± 1.5 %

InfoGAN 83.3 ± 1.8 % 83.9 ± 1.3 % 85.2 ± 1.4 %
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Quantitative Evaluation
Active Learning

(a) MNIST (b) SVHN
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Conclusion

In ILVM, interpretability does not conflict with the original objective,
be it reconstruction fidelity or classification accuracy.

A strategy to bring human subjectivity into interpretability to yield
interactive ‘human-in-the-loop’ interpretability.

JLVM sheds light on a newly derived relationship between compression
and regularization.

The introduced frameworks achieve state-of-the-art results on three
datasets.
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The End
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