Lecture 14
Instruction scheduling
Part C

Instruction scheduling
Instruction scheduling
Motivation

We have seen optimisation techniques which involve removing and reordering code at both the source- and intermediate-language levels in an attempt to achieve the smallest and fastest correct program.

These techniques are platform-independent, and pay little attention to the details of the target architecture.

We can improve target code if we consider the architectural characteristics of the target processor.
Single-cycle implementation

In single-cycle processor designs, an entire instruction is executed in a single clock cycle.

Each instruction will use some of the processor’s processing stages:

<table>
<thead>
<tr>
<th>Instruction fetch (IF)</th>
<th>Register fetch (RF)</th>
<th>Execute (EX)</th>
<th>Memory access (MEM)</th>
<th>Register write-back (WB)</th>
</tr>
</thead>
</table>

For example, a load instruction uses all five.
Single-cycle implementation

lw $1,0($0) lw $2,4($0) lw $3,8($0)
On these processors, the order of instructions doesn’t make any difference to execution time: each instruction takes one clock cycle, so n instructions will take n cycles and can be executed in any (correct) order.

In this case we can naively translate our optimised 3-address code by expanding each intermediate instruction into the appropriate sequence of target instructions; clever reordering is unlikely to yield any benefits.
Pipelined implementation

In *pipelined* processor designs (e.g. MIPS R2000), each processing stage works independently and does its job in a single clock cycle, so different stages can be handling different instructions simultaneously.

These stages are arranged in a pipeline, and the result from each unit is passed to the next one via a pipeline register before the next clock cycle.
Pipelined implementation

lw $1,0($0)

lw $2,4($0)

lw $3,8($0)
Pipelined implementation

In this *multicycle* design the clock cycle is much shorter (one pipeline stage vs. one complete instruction) and ideally we can still execute one instruction per cycle when the pipeline is full.

Programs will therefore execute more quickly.
Pipeline hazards

However, it is not always possible to run the pipeline at full capacity.

Some situations prevent the next instruction from executing in the next clock cycle: this is a pipeline hazard.

On interlocked hardware (e.g. SPARC) a hazard will cause a pipeline stall; on non-interlocked hardware (e.g. MIPS) the compiler must generate explicit NOPs to avoid errors.
Pipeline hazards

Consider *data hazards*: these occur when an instruction depends upon the result of an earlier one.

```
add  $3, $1, $2
add  $5, $3, $4
```

The pipeline must stall until the result of the first add has been written back into register $3.$
Pipeline hazards

add $3, $1, $2

add $5, $3, $4

STALL
Pipeline hazards

The severity of this effect can be reduced by using *bypassing*: extra paths are added between functional units, allowing data to be used before it has been written back into registers.
Pipeline hazards

add $3,$1,$2

add $5,$3,$4
Pipeline hazards

But even when bypassing is used, some combinations of instructions will always result in a stall.
Pipeline hazards

lw $1, 0($0)
add $3, $1, $2

STALL

IF RF EX MEM WB
Since particular combinations of instructions cause this problem on pipelined architectures, we can achieve better performance by reordering instructions where possible.

\[
\begin{align*}
\text{lw} & \quad \texttt{$1,0($0)} \\
\text{add} & \quad \texttt{$2,2,$1} \\
\text{lw} & \quad \texttt{$3,4($0)} \\
\text{add} & \quad \texttt{$4,$3} \\
\end{align*}
\]
lw $1,0($0)
add $2,$2,$1
lw $3,4($0)
add $4,$4,$3

10 cycles

Instruction order
Instruction order

lw $1,0($0)
lw $3,4($0)
add $2,$2,$1
add $4,$4,$3

STALL FOR $1
STALL FOR $3
Instruction order

lw $1, 0($0)
lw $3, 4($0)
add $2, $2, $1
add $4, $4, $3

8 cycles
Instruction dependencies

We can only reorder target-code instructions if the meaning of the program is preserved.

We must therefore identify and respect the data dependencies which exist between instructions.

In particular, whenever an instruction is dependent upon an earlier one, the order of these two instructions must not be reversed.
Instruction dependencies

There are three kinds of data dependency:

- Read after write
- Write after read
- Write after write

Whenever one of these dependencies exists between two instructions, we cannot safely permute them.
Instruction dependencies

Read after write:
An instruction \textit{reads} from a location after an earlier instruction has \textit{written} to it.

\begin{align*}
\text{add} & \ \ \ \ \ \ \ \ $3, \ $1, \ $2 \\
\vdots & \ \ \ \ \ \ \ \ \\
\text{add} & \ \ \ \ \ \ \ \ $4, \ $4, \ $3 \\
\text{add} & \ \ \ \ \ \ \ \ $3, \ $1, \ $2 \\
\end{align*}

\text{Reads old value}
Instruction dependencies

Write after read:
An instruction **writes** to a location after an earlier instruction has **read** from it.

```
add $4, $4, $3
  :
add $3, $1, $2
add $3, $1, $2

add $4, $4, $3
  :
add $4, $4, $3
```

Reads new value
Instruction dependencies

Write after write:
An instruction writes to a location after an earlier instruction has written to it.

\[
\begin{align*}
\text{add} & \quad 3, 1, 2 \\
\text{add} & \quad 3, 4, 5 \\
\text{add} & \quad 3, 1, 2
\end{align*}
\]

Writes old value
Instruction scheduling

We would like to reorder the instructions within each basic block in a way which

• preserves the dependencies between those instructions (and hence the correctness of the program), and

• achieves the minimum possible number of pipeline stalls.

We can address these two goals separately.
Preserving dependencies

Firstly, we can construct a *directed acyclic graph* (DAG) to represent the dependencies between instructions:

- For each instruction in the basic block, create a corresponding vertex in the graph.
- For each dependency between two instructions, create a corresponding edge in the graph.

 - This edge is *directed*: it goes from the earlier instruction to the later one.
Preserving dependencies

1 lw $1,0($0)
2 lw $2,4($0)
3 add $3,$1,$2
4 sw $3,12($0)
5 lw $4,8($0)
6 add $3,$1,$4
7 sw $3,16($0)
Preserving dependencies

Any topological sort of this DAG (i.e. any linear ordering of the vertices which keeps all the edges “pointing forwards”) will maintain the dependencies and hence preserve the correctness of the program.
Preserving dependencies

1, 2, 3, 4, 5, 6, 7
2, 1, 3, 4, 5, 6, 7
1, 2, 3, 5, 4, 6, 7
1, 2, 5, 3, 4, 6, 7
1, 5, 2, 3, 4, 6, 7
5, 1, 2, 3, 4, 6, 7
2, 1, 3, 5, 4, 6, 7
2, 1, 5, 3, 4, 6, 7
2, 5, 1, 3, 4, 6, 7
5, 2, 1, 3, 4, 6, 7
Minimising stalls

Secondly, we want to choose an instruction order which causes the fewest possible pipeline stalls.

Unfortunately, this problem is (as usual) NP-complete and hence difficult to solve in a reasonable amount of time for realistic quantities of instructions.

However, we can devise some static scheduling heuristics to help guide us; we will hence choose a sensible and reasonably optimal instruction order, if not necessarily the absolute best one possible.
Minimising stalls

Each time we’re emitting the next instruction, we should try to choose one which:

• does not conflict with the previous emitted instruction

• is most likely to conflict if first of a pair (e.g. prefer `lw` to `add`)

• is as far away as possible (along paths in the DAG) from an instruction which can validly be scheduled last
Algorithm

Armed with the scheduling DAG and the static scheduling heuristics, we can now devise an algorithm to perform instruction scheduling.
Algorithm

• Construct the scheduling DAG.
 - We can do this in $O(n^2)$ by scanning backwards through the basic block and adding edges as dependencies arise.

• Initialise the *candidate list* to contain the minimal elements of the DAG.
Algorithm

- While the candidate list is non-empty:
 - If possible, emit a candidate instruction satisfying all three of the static scheduling heuristics;
 - if no instruction satisfies all the heuristics, either emit NOP (on MIPS) or an instruction satisfying only the last two heuristics (on SPARC).
 - Remove the instruction from the DAG and insert the newly minimal elements into the candidate list.
Algorithm

Candidates: \{ 1, 2, 5 \}

lw $1,0($0)
Candidates: \{ 2, 5 \}

1. \texttt{lw \$1,0\($0\)}
2. \texttt{lw \$2,4\($0\)}
Algorithm

Candidates:
\{ 3, 5 \}

1. lw $1,0($0)
2. lw $2,4($0)
5. lw $4,8($0)
Algorithm

Candidates:
{ 3 }

1 lw $1,0($0)
2 lw $2,4($0)
5 lw $4,8($0)
3 add $3,$1,$2
Algorithm

Candidates:
{ 4 }

1 lw $1,0($0)
2 lw $2,4($0)
5 lw $4,8($0)
3 add $3,$1,$2
4 sw $3,12($0)
Algorithm

Candidates:
\{ 6 \}

1 lw $1,0($0)
2 lw $2,4($0)
5 lw $4,8($0)
3 add $3,$1,$2
4 sw $3,12($0)
6 add $3,$1,$4
Algorithm

Candidates: {7}

1 lw $1,0($0)
2 lw $2,4($0)
5 lw $4,8($0)
3 add $3,$1,$2
4 sw $3,12($0)
6 add $3,$1,$4
7 sw $3,16($0)
Algorithm

Original code:

1 lw $1,0($0)
2 lw $2,4($0)
3 add $3,$1,$2 \[\text{red}\]
4 sw $3,12($0)
5 lw $4,8($0) \[\text{red}\]
6 add $3,$1,$4
7 sw $3,16($0)

2 stalls
13 cycles

Scheduled code:

1 lw $1,0($0)
2 lw $2,4($0)
3 add $3,$1,$2
4 sw $3,12($0)
5 lw $4,8($0)
6 add $3,$1,$4
7 sw $3,16($0)

no stalls
11 cycles
Dynamic scheduling

Instruction scheduling is important for getting the best performance out of a processor; if the compiler does a bad job (or doesn’t even try), performance will suffer.

As a result, modern processors have dedicated hardware for performing instruction scheduling dynamically as the code is executing.

This may appear to render compile-time scheduling rather redundant.
Dynamic scheduling

But:

• This is still compiler technology, just increasingly being implemented in hardware.

• Somebody — now hardware designers — must still understand the principles.

• Embedded processors may not do dynamic scheduling, or may have the option to turn the feature off completely to save power, so it’s still worth doing at compile-time.
Summary

• Instruction pipelines allow a processor to work on executing several instructions at once

• Pipeline hazards cause stalls and impede optimal throughput, even when bypassing is used

• Instructions may be reordered to avoid stalls

• Dependencies between instructions limit reordering

• Static scheduling heuristics may be used to achieve near-optimal scheduling with an $O(n^2)$ algorithm