
1 . 1

[01] INTRODUCTION

1 . 2

OUTLINE

Course Summary

Recap

Encodings: Text, Numbers, Data Structures, Instructions

A Model Computer and the Fetch-Execute Cycle

Some IO Devices, Buses, Interrupts, DMA

Key Concepts

Layering & Multiplexing

Synchronous & Asynchronous

Latency, Bandwidth, Jitter

Caching & Buffering

Bottlenecks, 80/20 Rule, Tuning

Operating Systems

What is and is not an Operating System?

Evolution of Operating Systems

2 . 1

COURSE SUMMARY

I Processor

02 Protection What is the OS protecting?

03 Processes On what does the OS operate?

04 Scheduling What does the OS run next?

05 Scheduling
Algorithms

How does it choose?

II Memory Management

06 Virtual Addressing How does the OS protect processes from each other?

07 Paging How to manage virtual addresses from a machine
perspective?

08 Segmentation How to manage virtual addresses from a programmer
perspective?

2 . 2

COURSE SUMMARY

III Input/Output

09 IO Subsystem How does the OS interact with the outside world?

10 Storage How does the OS manage persistence for processes?

IV Case Study

11 Unix I Putting it together: Design, Filesystem

12 Unix II Putting it together: IO, Processes, Shell

2 . 3

RECOMMENDED READING

Tannenbaum, A.S., (1990) Structured Computer Organization (3rd Ed.) Prentice-Hall

1990

Patterson, D., and Hennessy, J. (1998) Computer Organization & Design (2rd Ed.)

Morgan Kaufmann

Bacon, J. (1997) [and Harris, T. (2003)] Concurrent Systems [or Operating Systems].

Addison Wesley

Silberschatz, A., Peterson, J., and Galvin, P. (1998) Operating Systems Concepts (5th

Ed.) Addison Wesley

Leffler, S. (1989). The Design and Implementation of the 4.3BSD Unix Operating

System Addison-Wesley

McKusick, M.K., Neville-Neil, G.N. & Watson, R.N.M. (2014) The Design and

Implementation of the FreeBSD Operating System (2nd Ed.) Pearson Education

3 . 1

RECAP
Course Summary

Recap

Encodings: Text, Numbers, Data Structures, Instructions

A Model Computer and the Fetch-Execute Cycle

Some IO Devices, Buses, Interrupts, DMA

Key Concepts

Operating Systems

Dr Richard Mortier IA Operating Systems, 2018/19 1/60

3 . 2

TEXT
Two main standards:

ASCII: 7-bit code holding (American) letters, numbers, punctuation and a few
other characters. Regional 8-bit variations. Competitors included EBCDIC (IBM;
very odd, not all characters contiguous)
Unicode: 8-, 12- or 32-bit code intended to support all international alphabets
and symbols

ASCII used to be widespread default. Unicode now becoming popular (esp. UTF-8):

Unicode 9.0 has 128,172 characters assigned out of potential 1,114,112 code
points (—)
Commonly use the 8-bit transformation format called UTF-8; superset of ASCII
which includes "enough" to get by for Roman languages and regional currency
symbols, etc.

3 . 3

UTF-8
Low 128 bits map direct to ASCII which is useful for backward compatibility

Variable length: all other characters are encoded as <len> <codes>, where 0xC0
 len 0xFD encoding the length, while 0x80 codes 0xFD. Top two

bytes unused. Also have UTF-16 and UTF-32.

Unicode distinguishes character (smallest meaningful semantic unit), codepoint (its
encoding) and glyph (character rendering, including directionality, whether text
should be displayed right-to-left, or top-to-bottom, etc.)

Both ASCII and Unicode are represented in
memory as either strings or arrays: e.g. "Pub
Time!" (0x50='P', 0x75='u', etc)

Since |character| |machine word size|, need
to be careful with endianness. Example is
little endian

3 . 4

NUMBERS
-bit register can represent different values

 termed the Most Significant Bit (MSB), and the Least Significant Bit (LSB)

Unsigned numbers: treat the obvious way, i.e.,

e.g.,

Represents values from to inclusive. For large numbers, binary is unwieldy so

use hexadecimal (base 16)

To convert, group bits into groups of 4,

e.g., 1111101010 = 0011|1110|1010 = 3EA
Often use 0x prefix to denote hex, e.g., 0x107
Can use dot to separate large numbers into 16-bit chunks, e.g., 0x3FF.FFFF

3 . 5

SIGNED NUMBERS
Two main options:

Sign & magnitude:
Top (leftmost) bit flags if negative; remaining bits make value
E.g., 10011011 is -0011011 = -27
Represents range to and the bonus value (!)

2's complement:
To get from , invert every bit and add 1
E.g., +27 = 00011011 , -27 = (11100100 + 1) = 11100101
Treat 1000...000 as
Represents range to

3 . 6

FLOATING POINT

To handle very large or very small numbers, use scientific notation, e.g.,
with the mantissa, the exponent, e.g., m/s

For computers, use binary i.e. ,
where includes a "binary point"

In practice use IEEE floating point with
normalised mantissa i.e., use

IEEE floating point reserves and :

 zero: : ; : (!)
 non-zero: : NaNs; : denorms

Normal positive range for single, or for double

NB. still only or values — just spread out

3 . 7

DATA STRUCTURES
Not interpreted by machine — up to programmer (or compiler) where things go, and
how

Fields in records/structures stored as an offset from a base address. In variable size
structures, explicitly store addresses (pointers) inside structure, e.g.,

Address Value Comment
0x0F30 0xFFFF Constructor tags for a leaf

0x0F34 8 Integer 8

. . .

0x0F3C 0xFFFE Constructor tag for a node

0x0F40 6 Integer 6

0x0F44 7 Integer 7

0x0F48 0x0F30 Address of inner node

. . .

0x1000 0xFFFE Constructor tag for a node

0x1004 4 Integer 4

0x1008 5 Integer 5

0x100C 0x0F3C Address of inner node

datatype rec = node of int * int * rec
 | leaf of int;
val example = node(4, 5, node(6, 7, leaf(8)));

If example is stored at address 0x1000:

Dr Richard Mortier IA Operating Systems, 2018/19 2/60

3 . 8

ENCODING: INSTRUCTIONS

Instructions comprise:

An opcode: specify what to do

Zero or more operands: where to get values

E.g., add r1, r2, r3

E.g., ARM ALU operations

Range of options:

Addressing mode (how to interpret operands) either part of opcode, or given

explicitly

Variable length encoding: may give better code density; makes it easier to extend

instruction set (!)

Huffman encoding looks at most probable instructions and assigns them the

shortest opcodes; infrequently used instructions get long ones

But! Makes decoding rather tricky, lose on PC-relative, bad for cache
3 . 9

A MODEL COMPUTER

Processor (CPU) executes programs using:
Memory: stores both programs & data.
Devices: for input and output. Bus:
transfers information

Computers operate on information in
memory from input devices. Memory is a
large byte array that holds any
information on which we operate.
Computer logically takes values from
memory, performs operations, and then
stores result back

CPU operates on registers, extremely fast
pieces of on-chip memory, usually now 64-bits in size. Modern CPUs have between
8 and 128 registers. Data values are loaded from memory into registers before
being operated upon, and results are stored back again

3 . 10

FETCH-EXECUTE CYCLE

CPU fetches & decodes instruction,
generating control signals and
operand information

Inside Execution Unit (EU), control
signals select Functional Unit (FU)
("instruction class") and operation

If Arithmetic Logic Unit (ALU), then
read one or two registers, perform
operation, and (probably) write back
result. If Branch Unit (BU), test condition and (maybe) add value to PC. If Memory
Access Unit (MAU), generate address ("addressing mode") and use bus to read/write
value

Repeat

3 . 11

INPUT/OUTPUT DEVICES

Devices connected to processor via a bus (e.g., ISA, PCI, AGP):

Mouse, Keyboard
Graphics Card, Sound Card
Floppy Drive, Hard Disk Drive, CD-ROM
Network Card, Printer, Modem
etc.

Often two or more stages involved (e.g., IDE, SCSI, RS-232, Centronics, etc.)

Connections may be indirect, e.g.,

Graphics card (on bus) controls monitor (not on bus)

3 . 12

UNIVERSAL ASYNCHRONOUS
RECEIVER/TRANSMITTER (UART)
Stores 1 or more bytes internally, converting parallel to serial

Outputs according to RS-232

Various baud rates (e.g., 1,200 — 115,200)

Slow, simple, and very useful

Make up "serial ports" on PC

Max throughput 14.4kb/s; variants up to 56kb/s (for modems)

Connect to terminal (or terminal emulation software) to debug device

3 . 13

HARD DISKS

Whirling bits of metal, increasingly replaced by Solid State Devices (SSDs). Up to
around 15,000 rpm, 2TB per platter, 2Gb/s

Dr Richard Mortier IA Operating Systems, 2018/19 3/60

3 . 14

GRAPHICS CARDS

Essentially some RAM (framebuffer) and (older) some digital-to-analogue circuitry

(RAMDAC)

RAM holds array of pixels: picture elements

Resolutions e.g., 640x480, 800x600, 1024x768, 1280x1024, 1600x1200, ...

Depths: 8-bit (LUT), 16-bit (RGB=555), 24-bit (RGB=888), 32-bit (RGBA=888)

Memory requirement = , e.g., 1280x1024 @ 16bpp needs 2560kB

Full-screen 50Hz video requires 125 MB/s (or 1Gb/s)

3 . 15

BUSES
Collection of shared communication

wires: low cost, versatile but potential

bottleneck. Typically comprises address
lines (determine how many devices on

bus), data lines (determine how many bits

transferred at once) and control lines,

plus power and ground. Operates in a master-slave manner, e.g.,

Master decides to e.g., read some data

Master puts address onto bus and asserts read
Slave reads address from bus and retrieves data

Slave puts data onto bus

Master reads data from bus

Mean we don't need wires everywhere! Also can define bus protocol and then do

plug'n'play

3 . 16

BUS HIERARCHY

In practice, many different buses with different characteristics, e.g., data width, max
number of devices, max length. Most are synchronous, i.e. share a clock signal.

E.g., with four buses:

Processor bus: fastest (and widest?), for CPU to
talk to cache

Memory bus: to communicate with memory

PCI and (E)ISA buses: to communicate with
current and legacy devices

Bridges forwards from one side to the other; e.g.,
to access a device on ISA bus, processor generates
magic [physical] address which goes to memory
bridge, then to PCI bridge, and then to ISA bridge,
and finally to ISA device. Same on the way back

3 . 17

INTERRUPTS
Bus reads and writes are transaction

based: CPU requests something and waits

until it happens. But, e.g., reading a block

of data from a hard-disk might take

2ms, which could be 5M clock cycles!

Interrupts provide a way to decouple CPU requests from device responses

CPU uses bus to make a request (e.g., writes some special values to a device)

Device fetches data while CPU continues doing other stuff

Device raises an interrupt when it has data

On interrupt, CPU vectors to handler, reads data from device, and resumes using

special instruction, e.g., rti

NB. Interrupts happen at any time but are deferred to an instruction boundary.

Interrupt handlers must not trash registers, and must know where to resume. CPU

thus typically saves values of all (or most) register, restoring with rti

3 . 18

DIRECT MEMORY ACCESS (DMA)

Interrupts good but (e.g.) livelock a problem. Even better is a device which can read
and write processor memory directly — enter Direct Memory Access (DMA). A
generic DMA "command" might include:

Source address
Source increment / decrement / do nothing
Sink address
Sink increment / decrement / do nothing
Transfer size

Get just one interrupt at end of data transfer. DMA channels may be provided by
dedicated DMA controller, or by devices themselves: e.g. a disk controller that
passes disk address, memory address and size, and give instruction to read or write.
All that's required is that a device can become a bus master. Scatter/Gather DMA
chains requests, e.g., of disk reads into set of buffers

Complexities?

3 . 19

SUMMARY
Computers made up of four main parts:

1. Processor (including register file, control unit and execution unit)

2. Memory (caches, RAM, ROM)

3. Devices (disks, graphics cards, etc.)

4. Buses (interrupts, DMA)

Information represented in all sorts of formats:

Strings

Signed & unsigned integers

Floating point

Data structures

Instructions

Dr Richard Mortier IA Operating Systems, 2018/19 4/60

4 . 1

KEY CONCEPTS

Course Summary

Recap

Key Concepts
Layering & Multiplexing
Synchronous & Asynchronous
Latency, Bandwidth, Jitter
Caching & Buffering
Bottlenecks, 80/20 Rule, Tuning

Operating Systems

4 . 2

LAYERING
Layering is a means to manage complexity by controlling interactions
between components. Arrange components in a stack, and restrict a
component at layer X from relying on any other component except the one
at layer X 1 and from providing service to any component except the one
at layer X 1

MULTIPLEXING

 by — Own work.

Licensed under via

Multiplexing diagram The Anome

CC BY-SA 3.0 Wikimedia Commons

Traditionally a method by which multiple
(analogue) signals are combined into a single
signal over a shared medium. In this context, any
situation where one resource is being consumed
by multiple consumers simultaneously

4 . 3

SYNCHRONOUS & ASYNCHRONOUS
Loosely, shared clock (synchronous) vs no shared clock (asynchronous). In

networking, an asynchronous receiver needs to figure out for itself when the

transfer starts and ends while a synchronous receiver has a channel over which

that's communicated

In the case of Operating Systems, whether two components operate in lock-step:

synchronous IO means the requester waits until the request is fulfilled before

proceeding, while with asynchronous IO, the requester proceeds and later handles

fulfilment of their request

4 . 4

LATENCY, BANDWIDTH, JITTER

Different metrics of concern to systems designers

Latency: How long something takes. E.g., "This read took 3 ms"

Bandwidth: The rate at which something occurs. E.g., "This disk achieves 2 Gb/s"

Jitter: The variation (statistical dispersal) in latency (frequency). E.g., "Scheduling

was periodic with jitter 50 sec"

Be aware whether it is the absolute or relative value that matters, and whether the

distribution of values is also of interest

4 . 5

CACHING & BUFFERING

A common system design problem is to handle impedance mismatch — a term

abused from electrical engineering — where two components are operating at

different speeds (latencies, bandwidths). Common approaches are:

Caching, where a small amount of higher-performance storage is used to mask

the performance impact of a larger lower-performance component. Relies on

locality in time (finite resource) and space (non-zero cost)

E.g., CPU has registers, L1 cache, L2 cache, L3 cache, main memory

Buffering, where memory of some kind is introduced between two components to

soak up small, variable imbalances in bandwidth. NB. Doesn't help if one

component simply, on average, exceeds the other

E.g., A hard disk will have on-board memory into which the disk hardware reads

data, and from which the OS reads data out

4 . 6

BOTTLENECKS, TUNING, 80/20 RULE

There is typically one resource that is most constrained in a system — the

bottleneck

Performance optimisation and tuning focuses on determining and eliminating

bottlenecks

But often introduces new ones

A perfectly balanced system has all resources simultaneously bottlenecked

Impossible to actually achieve

Often find that optimising the common case gets most of the benefit anyway

Means that measurement is a prerequisite to performance tuning!

The 80/20 rule — 80% time spent in 20% code

If you highly optimise a very rare case, it'll make no difference

Dr Richard Mortier IA Operating Systems, 2018/19 5/60

5 . 1

OPERATING SYSTEMS

Course Summary
Recap
Key Concepts
Operating Systems

What is and is not an Operating System?

Evolution of Operating Systems

5 . 2

WHAT IS AN OPERATING SYSTEM?

A program controlling the execution of all other programs

Objectives:

Convenience — hide all the gunk we've just recapped

Efficiency — only does articulation work so minimise overheads

Extensibility — need to evolve to meet changing application demands and

resource constraints

There's an analogy to a government: does no useful work, simply legislates on

resource use by competing applications with the intent of achieving best function of

system (society) through policy

(Also difficult to change and can be imposed on users without consent ;)

5 . 3

WHAT IS NOT AN OPERATING SYSTEM

The Operating System (OS) controls all execution, multiplexes resources between

applications, and abstracts away from complexity

Consider the last point particularly — typically involves libraries and tools provided

as part of the OS, in addition to a kernel (e.g., glibc — but what about language

runtime?). Thus no-one really agrees precisely what the OS is

For our purposes, focus on the kernel
5 . 4

IN THE BEGINNING...

First stored-program machine (EDSAC, 1949–1955), operated "open shop": user =

programmer = operator. All programming in machine code. Users sign up for blocks

of time to do development, debugging, etc. To reduce costs, hire a separate

(relatively unskilled) operator: management happy, everyone else hates it. Also

reduces "interactivity" so CPU utilisation reduces

BATCH SYSTEMS

Introduction of tape drives allow batching of jobs:

Programmers put jobs on cards as before

All cards read onto a tape

Operator carries input tape to computer

Results written to output tape

Output tape taken to printer

5 . 5

SPOOLING SYSTEMS

Even better: spooling systems

Spool jobs to tape for input to CPU, on a slower device not connected to CPU

Interrupt driven IO

Magnetic disk to cache input tape

Fire operator

Computer now has a resident monitor:

Initial control is in monitor, which reads job and transfers control

End of job, control transfers back to monitor

Monitor now schedules jobs, so need job control language to separate jobs on tape

and to allow jobs to pass control to the monitor on completion, e.g. FMS had $JOB,

$FTN, $RUN, $DATA, $END, with $FTN being optional for assembly programs

But! Need to "trust" the job will give control back to monitor, and devices still slow

compared to CPU...

5 . 6

MULTI-PROGRAMMING

Use memory to cache jobs from disk, meaning 1

job active (resident) simultaneously

Two stage scheduling: 1. select jobs to load: job
scheduling; 2. select resident job to run: CPU
scheduling. End up with one job computing while

another waits for IO, causes competition for CPU

and space in main memory

Batch Multi-Programming: extension of batch system to allow more than one job to

be resident simultaneously

Users wanting more interaction leads to time-sharing:

E.g., CTSS (first, in 1961), TSO, Unix, VMS, Windows NT, ...

Use timesharing to develop code, then batch to run: give each user a

teletype/terminal; interrupt on return; OS reads line and creates new job

Dr Richard Mortier IA Operating Systems, 2018/19 6/60

5 . 7

MONOLITHIC OPERATING SYSTEMS

Oldest kind of OS structure ("modern" examples are DOS, original MacOS)

Applications and OS bound in a big lump, without clear interfaces. All OS provides is

a simple abstraction layer, making it easier to write applications

Problem is, applications can trash the OS, other applications, lock the CPU, abuse IO,

etc. Doesn't provide useful fault containment. Need a better solution...

5 . 8

OPERATING SYSTEM FUNCTIONS

Regardless of structure, OS needs to securely multiplex resources, i.e. to protect

applications while sharing physical resources. Many OS design decisions are about

where this line is drawn

Also usually want to abstract away from grungy harware, i.e. OS provides a virtual

machine to:

Share CPU (in time) and provide each application with a virtual processor

Allocate and protect memory, and provide applications with their own virtual

address space

Present a set of (relatively) hardware independent virtual devices

Divide up storage space by using filing systems

Remainder of this part of the course will look at each of the above areas in turn

6

SUMMARY
Course Summary

Recap

Encodings: Text, Numbers, Data Structures, Instructions

A Model Computer and the Fetch-Execute Cycle

Some IO Devices, Buses, Interrupts, DMA

Key Concepts

Layering & Multiplexing

Synchronous & Asynchronous

Latency, Bandwidth, Jitter

Caching & Buffering

Bottlenecks, 80/20 Rule, Tuning

Operating Systems

What is and is not an Operating System?

Evolution of Operating Systems

Dr Richard Mortier IA Operating Systems, 2018/19 7/60

1 . 1

[02] PROTECTION

1 . 2

OUTLINE

Protection

Motivation, Requirements, Subjects & Objects

Design of Protection Systems

Covert Channels

Low-level Mechanisms

IO, Memory, CPU

OS Structures

Dual-mode Operation, Kernels & Microkernels

Mandatory Access Control, pledge(2)
Authentication

User to System, System to User

Mutual Suspicion

Access Matrix

Access Control Lists (ACLs) vs Capabilities

2 . 1

PROTECTION

Protection

Motivation, Requirements, Subjects & Objects

Design of Protection Systems

Covert Channels

Low-level Mechanisms

OS Structures

Authentication

Access Matrix

2 . 2

WHAT ARE WE PROTECTING AGAINST?
Unauthorised release of information

Reading or leaking data
Violating privacy legislation
Covert channels, traffic analysis

Unauthorised modification of information

Changing access rights
Can do sabotage without reading information

(Unauthorised) denial of service

Causing a crash
Causing high load (e.g. processes or packets)

Also protection against effects of errors: e.g., isolate for debugging, damage control

Impose controls on access by subjects (e.g. users) to objects (e.g. files)

2 . 3

COVERT CHANNELS
Information leakage by side-effects: lots of fun! At the hardware level:

Wire tapping

Monitor signals in machine

Modification to hardware

Electromagnetic radiation of devices

By software:

File exists or not

Page fault or not

Compute or sleep

1 or 0

System provided statistics

E.g., lowest layer of recent OCaml TLS library in C to avoid side channel through

garbage collector

2 . 4

ASPECTS OF PROTECTION SYSTEM

Physical, e.g.,

Lock the computer room
Restrict access to system software

Social, e.g.,

De-skill systems operating staff
Keep designers away from final system!
Legislate

Technical, e.g.,

Use passwords (in general challenge/response)
Use encryption

Dr Richard Mortier IA Operating Systems, 2018/19 8/60

2 . 5

DESIGN OF PROTECTION SYSTEMS

From [Saltzer & Schroeder, Proc. IEEE, September 1975]:

Design should be public
Default should be no access
Check for current authority
Give each process minimum possible authority
Mechanisms should be simple, uniform and built in to lowest layers
Should be psychologically acceptable
Cost of circumvention should be high
Minimize shared access

3 . 1

LOW-LEVEL PROTECTION

Protection

Low-level Mechanisms

IO, Memory, CPU

OS Structures

Authentication

Access Matrix

3 . 2

PROTECTING IO & MEMORY

Initially, try to make IO instructions privileged:

Applications can't mask interrupts (that is, turn one or many off)
Applications can't control IO devices

But!

Some devices are accessed via memory, not special instructions
Applications can rewrite interrupt vectors

Hence protecting IO means also protecting memory,
e.g. define a base and a limit for each program, and
protect access outside allowed range

3 . 3

IMPLEMENTING MEMORY PROTECTION

Have hardware check every memory reference:

Access out of range causes vector into OS (as for an interrupt)
Only allow update of base and limit registers when in kernel mode
May disable memory protection in kernel mode (although a bad idea)

In reality, more complex protection hardware is used (see Paging and Segmentation)

3 . 4

PROTECTING THE CPU
Need to ensure that the OS stays in control:

I.e., must prevent any application from "hogging" the CPU the whole time

Means using a timer, usually a countdown timer, e.g.,

Set timer to initial value (e.g. 0xFFFF)

Every tick (e.g. 1 s or, nowadays, programmable), timer decrements value

When value hits zero, interrupt

Ensures the OS runs periodically

Requires that only OS can load timer, and that interrupt cannot be masked:

Use same scheme as for other devices

Re-use to implement time-sharing (later)

4 . 1

OS STRUCTURES

Protection
Low-level Mechanisms
OS Structures

Dual-mode Operation, Kernels & Microkernels

Mandatory Access Control, pledge(2)
Authentication
Access Matrix

Dr Richard Mortier IA Operating Systems, 2018/19 9/60

4 . 2

DUAL-MODE OPERATION

Simply want to stop buggy (or malicious) program from doing bad things

Trust boundary between user application and the OS

Use hardware support to differentiate between (at least) two modes of operation

1. User Mode : when executing on behalf of a user (i.e. application programs).

2. Kernel Mode : when executing on behalf of the OS

Make certain instructions only possible in kernel mode, indicated by mode bit

E.g., x86: Rings 0—3, ARM has two modes plus IRQ, Abort and FIQ

Often "nested" (per x86 rings): further inside can do strictly more. Not ideal — e.g.,

stop kernel messing with applications — but disjoint/overlapping permissions hard

4 . 3

KERNEL-BASED OPERATING SYSTEMS

Applications can't do IO due to protection so the OS

does it on their behalf

This means we need a secure way for application to

invoke OS: a special (unprivileged) instruction to

transition from user to kernel mode

Generally called a trap or a software interrupt since

operates similarly to (hardware) interrupt...

OS services accessible via software interrupt

mechanism called system calls

OS has vectors to handle traps, preventing application from leaping to kernel mode

and then just doing whatever it likes

Alternative is for OS to emulate for application, and check every instruction, as used

in some virtualization systems, e.g., QEMU

4 . 4

MICROKERNEL OPERATING SYSTEMS

We've protected "privileged instructions" via dual-mode operation, memory via

special hardware, and the CPU via use of a timer. But now applications can't do

much directly and must use OS to do it on their behalf

OS must be very stable to support apps, so becomes hard to extend

Alternative is microkernels: move OS services into

(local) servers, which may be privileged

Increases both modularity and extensibility

Still access kernel via system calls, but need new ways

to access servers: Inter-Process Communication (IPC)

schemes

Given talking to servers (largely) replaces trapping,

need IPC schemes to be extremely efficient

4 . 5

KERNELS VS MICROKERNELS

So why isn't everything a microkernel?

Lots of IPC adds overhead, so microkernels (perceived as) usually performing less

well

Microkernel implementation sometimes tricky: need to worry about

synchronisation

Microkernels often end up with redundant copies of OS data structures

Thus many common OSs blur the distinction between kernel and microkernel.

E.g. Linux is "kernel", but has kernel modules and certain servers.

E.g. Windows NT was originally microkernel (3.5), but now (4.0 onwards) pushed

lots back into kernel for performance

Unclear what the best OS structure is, or how much it really matters...

4 . 6

VIRTUAL MACHINES AND CONTAINERS
More recently, trend towards encapsulating applications differently. Roughly aimed
towards making applications appear as if they're the only application running on
the system. Particularly relevant when building systems using microservices.
Protection, or isolation at a different level

Virtual Machines encapsulate an entire running system, including the OS, and
then boot the VM over a hypervisor

E.g., Xen, VMWare ESX, Hyper-V

Containers expose functionality in the OS so that each container acts as a
separate entity even though they all share the same underlying OS functionality

E.g., Linux Containers, FreeBSD Jails, Solaris Zones

4 . 7

MANDATORY ACCESS CONTROL

https://xkcd.com/1200/From a user point of view, nowadays one often wants to

protect applications from each other, all owned by a

single user. Indeed, with personal single-user machines

now common (phones, tablets, laptops), arguable that

protection model is mismatched

Mandatory Access Control (MAC) mandates expression

of policies constraining interaction of system users

E.g., OSX and iOS Sandbox uses subject/object labelling

to implement access-control for privileges and various

resources (filesystem, communication, APIs, etc)

Dr Richard Mortier IA Operating Systems, 2018/19 10/60

4 . 8

PLEDGE(2)
One way to reduce the ability of a compromised program to do Bad Things™ is to
remove access to unnecessary system calls

Several attempts in different systems, with varying (limited) degrees of success:

Hard to use correctly (e.g., Capsicum), or
Introduce another component that needs to be watched (e.g., seccomp)

Observation:

Most programs follow a pattern of initialization() then main_loop(),
and
The main_loop() typically uses a much narrower class of system calls than
initialization()

Result? pledge(2) — ask the programmer to indicate explicitly which classes of
system call they wish to use at any point, e.g., stdio, route, inet

5 . 1

AUTHENTICATION
Protection

Low-level Mechanisms

OS Structures

Authentication
User to System, System to User
Mutual Suspicion

Access Matrix

5 . 2

AUTHENTICATING USER TO SYSTEM
Current practice: passwords

But people pick badly
And what about security of password file?

Restrict access to login programme (CAP, TITAN)
Store scrambled (Unix) using one-way function

Often now prefer key-based systems (e.g., SSH)

E.g., in Unix:

Password is DES-encrypted 25 times using a 2-byte per-user "salt" to produce a
11 byte string
Salt followed by these 11 bytes are then stored

Enhance with: biometrics, smart cards, etc.

...though most of these can be stolen

5 . 3

AUTHENTICATING USER TO SYSTEM
 https://xkcd.com/936/

5 . 4

AUTHENTICATION OF SYSTEM TO USER
Want to avoid user talking to:

Wrong computer
Right computer, but not the login program

Partial solution in old days for directly wired terminals:

Make login character same as terminal attention, or
Always do a terminal attention before trying login
E.g., Windows NT's Ctrl-Alt-Del to login — no-one else can trap it

But, today micros used as terminals

Local software may have been changed — so carry your own copy of the terminal
program
...but hardware / firmware in public machine may also have been modified
Wiretapping is easy

(When your bank phones, how do you know it's them?)
5 . 5

MUTUAL SUSPICION

Encourage lots and lots of suspicion:

System of user

Users of each other

User of system

Also, called programs should be suspicious of caller

E.g., OS calls always need to check parameters

And caller should be suspicious of called program

E.g., Trojan horse: a "useful" looking program, a game perhaps, inherits user

privileges when called

Can then copy files, modify files, change password, send mail, etc...

E.g. Multics editor trojan horse, copied files as well as edited.

Dr Richard Mortier IA Operating Systems, 2018/19 11/60

6 . 1

ACCESS MATRIX
Protection

Low-level Mechanisms

OS Structures

Authentication

Access Matrix
Access Control Lists (ACLs) vs Capabilities

6 . 2

ACCESS MATRIX
A matrix of subjects against objects.

Subject (or principal) might be:

Users e.g. by UID, or sets thereof
Executing process in a protection domain, or sets thereof

Objects are things like:

Files, devices
Domains, processes
Message ports (in microkernels)

Matrix is large and sparse so don't store it all. Two common representations:

1. By object (Access Control List): store list of subjects and rights with each object
2. By subject (Capabilities): store list of objects and rights with each subject

6 . 3

ACCESS CONTROL LISTS

Often used in storage systems:

System naming scheme provides for ACL to be inserted in naming path, e.g. files

If ACLs stored on disk, check is made in software, so use only on low duty cycle

For higher duty cycle must cache results of check

E.g. Multics: open file is a memory "segment" (see later) — on first reference,

causes a fault which raises an interrupt which allows OS to check against ACL

ACL is checked when file opened for read or write, or when code file is to be

executed

In (e.g.) Unix, access control is by program, allowing arbitrary policies

6 . 4

CAPABILITIES
Associated with active subjects, so:

Store in address space of subject

Must make sure subject can't forge capabilities

Easily accessible to hardware

Can be used with high duty cycle e.g. as part of addressing hardware

Hardware capabilities:

Have special machine instructions to modify (restrict) capabilities

Support passing of capabilities on procedure (program) call

Software capabilities:

Checked by encryption

Nice for distributed systems

7

SUMMARY
Protection

Motivation, Requirements, Subjects & Objects

Design of Protection Systems

Covert Channels

Low-level Mechanisms

IO, Memory, CPU

OS Structures

Dual-mode Operation, Kernels & Microkernels

Mandatory Access Control, pledge(2)
Authentication

User to System, System to User

Mutual Suspicion

Access Matrix

Access Control Lists (ACLs) vs Capabilities

Dr Richard Mortier IA Operating Systems, 2018/19 12/60

1 . 1

[03] PROCESSES

1 . 2

OUTLINE

Process Concept
Relationship to a Program
What is a Process?

Process Lifecycle
Creation
Termination
Blocking

Process Management
Process Control Blocks
Context Switching
Threads

Inter-Process Communication
Requirements
Concept
Mechanisms

2 . 1

PROCESS CONCEPTS

Process Concept
Relationship to a Program
What is a Process?

Process Lifecycle
Process Management
Inter-Process Communication

2 . 2

WHAT IS A PROCESS?
The computer is there to execute programs, not the operating system!

Process Program

A program is static, on-disk

A process is dynamic, a program in execution

On a batch system, might refer to jobs instead of processes

2 . 3

WHAT IS A PROCESS?
Unit of protection and resource allocation

So you may have multiple copies of a process running

Each process executed on a virtual processor

Has a virtual address space (later)

Has one or more threads, each of which has

1. Program Counter: which instruction is executing

2. Stack: temporary variables, parameters, return addresses, etc.

3. Data Section: global variables shared among threads

2 . 4

PROCESS STATES

New: being created
Running: instructions are being executed
Ready: waiting for the CPU, ready to run
Blocked: stopped, waiting for an event to occur
Exit: has finished execution

Dr Richard Mortier IA Operating Systems, 2018/19 13/60

3 . 1

PROCESS LIFECYCLE

Process Concept
Process Lifecycle

Creation
Termination
Blocking

Process Management
Inter-Process Communication

3 . 2

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

Resource sharing:
Parent and children share all resources
Children share subset of parent's resources
Parent and child share no resources

3 . 3

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

Resource sharing
Execution:

Parent and children execute concurrently
Parent waits until children terminate

3 . 4

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

Resource sharing
Execution
Address space:

Child duplicate of parent
Child has a program loaded into it

3 . 5

EXAMPLES
Unix:

fork() system call creates a child process, cloned from parent; then
execve() system call used to replace the process' memory space with a new
program

NT/2K/XP:

CreateProcess() system call includes name of program to be executed

3 . 6

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the OS to delete it (exit):

Output data from child to parent (wait)

Process' resources are deallocated by the OS

Dr Richard Mortier IA Operating Systems, 2018/19 14/60

3 . 7

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the OS to delete it

2. Process performs an illegal operation, e.g.,

Makes an attempt to access memory to which it is not authorised

Attempts to execute a privileged instruction

3 . 8

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the OS to delete it

2. Process performs an illegal operation

3. Parent may terminate execution of child processes (abort, kill), e.g. because

Child has exceeded allocated resources

Task assigned to child is no longer required

Parent is exiting ("cascading termination")

EXAMPLES

Unix: wait(), exit() and kill()

NT/2K/XP: ExitProcess() for self, TerminateProcess() for others

3 . 9

BLOCKING

In general a process blocks on an event, e.g.,

An IO device completes an operation

Another process sends a message

Assume OS provides some kind of general-purpose blocking primitive, e.g.,

await()
Need care handling concurrency issues, e.g.,

What happens if a key is pressed at the first {?

Complicated! For next year... :)

 if(no key being pressed) {
 await(keypress);
 print("Key has been pressed!\n");
 }
 // handle keyboard input

3 . 10

CPU IO BURST CYCLE

Process execution consists of a cycle of CPU execution and IO wait

Processes can be described as either:

1. IO-bound:

spends more time doing IO than computation

many short CPU bursts

2. CPU-bound:

spends more time doing computations

a few, very long, CPU bursts

3 . 11

CPU IO BURST CYCLE

Observe that most processes execute for at most a few milliseconds before blocking

We need multiprogramming to obtain decent overall CPU utilisation

4 . 1

PROCESS MANAGEMENT

Process Concept
Process Lifecycle
Process Management

Process Control Blocks
Context Switching
Threads

Inter-Process Communication

Dr Richard Mortier IA Operating Systems, 2018/19 15/60

4 . 2

PROCESS CONTROL BLOCK

OS maintains information about every process in a

data structure called a process control block (PCB). The

Process Context (highlighted) is the machine

environment during the time the process is actively

using the CPU:

Program counter

General purpose registers

Processor status register

[Caches, TLBs, Page tables, ...]

CONTEXT SWITCHING
To switch between processes, the OS must:

Save the context of the currently

executing process (if any), and

Restore the context of that being

resumed.

Note this is wasted time — no useful work is

carried out while switching

Time taken depends on hardware support

From nothing, to

Save/load multiple registers to/from

memory, to

Complete hardware "task switch"

4 . 34 . 4

THREADS

A thread represents an individual execution context

Threads are managed by a scheduler that determines which thread to run

Each thread has an associated Thread Control Block (TCB) with metadata about the

thread: saved context (registers, including stack pointer), scheduler info, etc.

Context switches occur when the OS saves the state of one thread and restores the

state of another. If between threads in different processes, process state also

switches

Threads visible to the OS are kernel threads — may execute in kernel or address

user space

5 . 1

INTER-PROCESS

COMMUNICATION

Process Concept
Process Lifecycle
Process Management
Inter-Process Communication

Requirements
Concept
Mechanisms

5 . 2

REQUIREMENTS
For meaningful communication to take place, two or more parties have to exchange

information according to a protocol:

Data transferred must be in a commonly-understood format (syntax)

Data transferred must have mutually-agreed meaning (semantics)
Data must be transferred according to mutually understood rules

(synchronisation)

In computer communications, the parties in question come in a range of forms,

typically:

Threads

Processes

Hosts

Ignore problems of discovery, identification, errors, etc. for now

5 . 3

INTER-PROCESS COMMUNICATION

In the context of this course, we are concerned with Inter-Process Communication
(IPC)

What it says on the tin — communication between processes on the same host

Key point — it is possible to share memory between those processes

Given the protection boundaries imposed by the OS, by design, the OS must be

involved in any communication between processes

Otherwise it would be tantamount to allowing one process to write over

another's address space

We'll focus on POSIX mechanisms

Dr Richard Mortier IA Operating Systems, 2018/19 16/60

5 . 4

INTER-THREAD COMMUNICATION
It is a common requirement for two running threads to need to communicate

E.g., to coordinate around access to a shared variable

If coordination is not implemented, then all sorts of problems can occur. Range of
mechanisms to manage this:

Mutexes
Semaphores
Monitors
Lock-Free Data Structures
...

Not discussed here!

You'll get into the details next year in Concurrent and Distributed Systems
(Particularly the first half, on Concurrency)

5 . 5

INTER-HOST COMMUNICATION
Passing data between different hosts:

Traditionally different physical hosts
Nowadays often virtual hosts

Key distinction is that there is now no shared memory, so some form of transmission
medium must be used — networking

Also not discussed here!

In some sense it is "harder" than IPC because real networks are inherently:
Unreliable: data can be lost
Asynchronous: even if data is not lost, no guarantees can be given about
when it arrived

You'll see a lot more of this next year in Computer Networking

5 . 6

CONCEPT

For IPC to be a thing, first you need multiple processes

Initially created by running processes from a shell

Subsequently may be created by those processes, ad infinitum

(...until your machine dies from your fork bomb...)

Basic process mechanisms: fork(2) followed by execve(2) and/or wait(2)

Will look at that plus several other common POSIX mechanisms

5 . 7

FORK(2), WAIT(2)
Simply put, fork(2) allows a process to clone itself:

Parent process creates child process

Child receives copy-on-write (COW) snapshot of parent's address space

Parent typically then either:

Detaches from child — hands responsibility back to init process

Waits for child — calling wait(2), parent blocks until child exits

5 . 8

SIGNALS
Simple asynchronous notifications on another process

A range of signals (28 at my last count), defined as numbers
Mapped to standard #defines, a few of which have standard mappings to
numbers

Among the more common ones:

SIGHUP: hangup the terminal (1)
SIGINT: terminal interrupt (2)
SIGKILL: terminate the process [cannot be caught or ignored] (9)
SIGTERM: terminate process (15)
SIGSEGV: segmentation fault — process made an invalid memory reference
SIGUSR1/2: two user signals [system defined numbers]

Use sigaction(2) to specify what function the signalled process should invoke
on receipt of a given signal

5 . 9

PIPES

Simplest form of IPC: pipe(2) returns a pair of file descriptors

(fd[0], fd[1]) are the (read, write) fds

Coupled with fork(2), can now communicate between processes:

Invoke pipe(2) to get read/write fds
fork(2) to create child process
Parent and child then both have read/write fds available, and can communicate

Dr Richard Mortier IA Operating Systems, 2018/19 17/60

5 . 10

NAMED PIPES / FIFOS

The same as pipe(2) — except that it has a name, and isn't just an array of two

fds

This means that the two parties can coordinate without needing to be in a

parent/child relationship

All they need is to share the (path)name of the FIFO

Then simply treat as a file:

open(2)

read(2)

write(2)

open(2) will block by default, until some other process opens the FIFO for reading

Can set non-blocking via O_NDELAY

5 . 11

SHARED MEMORY SEGMENTS
What it says on the tin — obtain a segment of memory that is shared between two
(or more) processes

shmget(2) to get a segment
shmat(2) to attach to it

Then read and write simply via pointers — need to impose concurrency control to
avoid collisions though

Finally:

shmdt(2) to detach
shmctl(2) to destroy once you know no-one still using it

5 . 12

FILES
Locking can be mandatory (enforced) or advisory (cooperative)

Advisory is more widely available
fcntl(2) sets, tests and clears the lock status
Processes can then coordinate over access to files
read(2), write(2), seek(2) to interact and navigate

Memory Mapped Files present a simpler — and often more efficient — API

mmap(2) "maps" a file into memory so you interact with it via a pointer
Still need to lock or use some other concurrency control mechanism

5 . 13

UNIX DOMAIN SOCKETS

Sockets are commonly used in network programming — but there is (effectively) a
shared memory version for use between local processes, having the same API:

socket(2) creates a socket, using AF_UNIX
bind(2) attaches the socket to a file
The interact as with any socket

accept(2), listen(2), recv(2), send(2)
sendto(2), recvfrom(2)

Finally, socketpair(2) uses sockets to create a full-duplex pipe

Can read/write from both ends

6

SUMMARY
Process Concept

Relationship to a Program
What is a Process?

Process Lifecycle
Creation
Termination
Blocking

Process Management
Process Control Blocks
Context Switching
Threads

Inter-Process Communication
Requirements
Concept
Mechanisms

Dr Richard Mortier IA Operating Systems, 2018/19 18/60

1 . 1

[04] SCHEDULING

1 . 2

OUTLINE

Scheduling Concepts
Queues
Non-preemptive vs Preemptive
Idling

Scheduling Criteria
Utilisation
Throughput
Turnaround, Waiting, Response Times

2 . 1

SCHEDULING CONCEPTS
Scheduling Concepts

Queues
Non-preemptive vs Preemptive
Idling

Scheduling Criteria

2 . 2

QUEUES

Job Queue: batch processes awaiting admission

Ready Queue: processes in main memory, ready and waiting to execute

Wait Queue(s): set of processes waiting for an IO device (or for other processes)

Job scheduler selects processes to put onto the ready queue

CPU scheduler selects process to execute next and allocates CPU

2 . 3

PREEMPTIVE VS NON-PREEMPTIVE

OS needs to select a ready process and allocate it the CPU

When?

...a running process blocks (running blocked)

...a process terminates (running exit)

If scheduling decision is only taken under these conditions, the scheduler is said to

be non-preemptive

...a timer expires (running ready)

...a waiting process unblocks (blocked ready)

Otherwise it is preemptive

2 . 4

NON-PREEMPTIVE

Simple to implement:

No timers, process gets the CPU for as long as desired

Open to denial-of-service:
Malicious or buggy process can refuse to yield

Typically includes an explicit yield system call or similar, plus implicit yields, e.g.,

performing IO, waiting

Examples: MS-DOS, Windows 3.11

Dr Richard Mortier IA Operating Systems, 2018/19 19/60

2 . 5

PREEMPTIVE
Solves denial-of-service:

OS can simply preempt long-running process

More complex to implement:

Timer management, concurrency issues

Examples: Just about everything you can think of :)

2 . 6

IDLING
We will usually assume that there's always something ready to run. But what if
there isn't?

This is quite an important question on modern machines where the common case is
>50% idle

2 . 7

IDLING

Three options

1. Busy wait in scheduler, e.g., Windows 9x
Quick response time
Ugly, useless

2 . 8

IDLING

Three options

1. Busy wait in scheduler
2. Halt processor until interrupt arrives, e.g., modern OSs

Saves power (and reduces heat!)
Increases processor lifetime
Might take too long to stop and start

2 . 9

IDLING

Three options

1. Busy wait in scheduler

2. Halt processor until interrupt arrives

3. Invent an idle process, always available to run

Gives uniform structure

Could run housekeeping

Uses some memory

Might slow interrupt response

In general there is a trade-off between responsiveness and usefulness. Consider the

important resources and the system complexity

3 . 1

SCHEDULING CRITERIA

Scheduling Concepts
Scheduling Criteria

Utilisation
Throughput
Turnaround, Waiting, Response Times

Dr Richard Mortier IA Operating Systems, 2018/19 20/60

3 . 2

SCHEDULING CRITERIA

Typically one expects to have more than one option — more than one process is

runnable

On what basis should the CPU scheduler make its decision?

Many different metrics may be used, exhibiting different trade-offs and leading to

different operating regimes

3 . 3

CPU UTILISATION

Maximise the fraction of the time the CPU is actively being
used

Keep the (expensive?) machine as busy as possible

But may penalise processes that do a lot of IO as they appear to result in the CPU

not being used

3 . 4

THROUGHPUT

Maximise the number of processes that complete their
execution per time unit

Get useful work completed at the highest rate possible

But may penalise long-running processes as short-run processes will complete
sooner and so are preferred

3 . 5

TURNAROUND TIME

Minimise the amount of time to execute a particular process

Ensures every processes complete in shortest time possible

3 . 6

WAITING TIME

Minimise the amount of time a process has been waiting in
the ready queue

Ensures an interactive system remains as responsive as possible

But may penalise IO heavy processes that spend a long time in the wait queue

3 . 7

RESPONSE TIME

Minimise the amount of time it takes from when a request
was submitted until the first response is produced

Found in time-sharing systems. Ensures system remains as responsive to clients as
possible under load

But may penalise longer running sessions under heavy load

Dr Richard Mortier IA Operating Systems, 2018/19 21/60

4

SUMMARY
Scheduling Concepts

Queues
Non-preemptive vs Preemptive
Idling

Scheduling Criteria
Utilisation
Throughput
Turnaround, Waiting, Response Times

Dr Richard Mortier IA Operating Systems, 2018/19 22/60

1 . 1

[05] SCHEDULING ALGORITHMS

1 . 2

OUTLINE

First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
Round Robin
Static vs Dynamic Priority

2 . 1

FIRST-COME FIRST-SERVED (FCFS)

Simplest possible scheduling algorithm, depending only on the order in which
processes arrive

E.g. given the following demand:

Process Burst Time

2 . 2

EXAMPLE: FCFS
Consider the average waiting time under different arrival orders

, , :

Waiting time , ,
Average waiting time:

, , :

Waiting time , ,
Average waiting time:

Arriving in reverse order is three times as good!

The first case is poor due to the convoy effect: later processes are held up behind
a long-running first process
FCFS is simple but not terribly robust to different arrival processes

2 . 3

SHORTEST JOB FIRST (SJF)
Intuition from FCFS leads us to shortest job first (SJF) scheduling

Associate with each process the length of its next CPU burst

Use these lengths to schedule the process with the shortest time

Use, e.g., FCFS to break ties

2 . 4

EXAMPLE: SJF
Process Arrival Time Burst Time

Waiting time for , , , . Average waiting time:

SJF is optimal with respect to average waiting time:

It minimises average waiting time for a given set of processes
What might go wrong?

Dr Richard Mortier IA Operating Systems, 2018/19 23/60

2 . 5

SHORTEST REMAINING-TIME FIRST (SRTF)
Simply a preemptive version of SJF: preempt the running process if a new process
arrives with a CPU burst length less than the remaining time of the current
executing process

2 . 6

EXAMPLE: SRTF
As before:

Process Arrival Time Burst Time

Waiting time for , , ,

Average waiting time:

2 . 7

EXAMPLE: SRTF
Surely this is optimal in the face of new runnable processes arriving? Not
necessarily — why?

Context switches are not free: many very short burst length processes may thrash
the CPU, preventing useful work being done

More fundamentally, we can't generally know what the future burst length is!

2 . 8

PREDICTING BURST LENGTHS

For both SJF and SRTF require the next "burst length" for each process means we
must estimate it

Can be done by using the length of previous CPU bursts, using exponential
averaging:

1. = actual length of CPU burst.
2. = predicted value for next CPU burst.
3. For define:

2 . 9

PREDICTING BURST LENGTHS

If we expand the formula we get:

where is some constant

Choose value of according to our belief about the system, e.g., if we believe
history irrelevant, choose and then get
In general an exponential averaging scheme is a good predictor if the variance is
small
Since both and are less than or equal to one, each successive term has
less weight than its predecessor
NB. Need some consideration of load, else get (counter-intuitively) increased
priorities when increased load

2 . 10

ROUND ROBIN

A preemptive scheduling scheme for time-sharing systems.

Define a small fixed unit of time called a quantum (or time-slice), typically 10 —
100 milliseconds
Process at the front of the ready queue is allocated the CPU for (up to) one
quantum
When the time has elapsed, the process is preempted and appended to the ready
queue

Dr Richard Mortier IA Operating Systems, 2018/19 24/60

2 . 11

ROUND ROBIN: PROPERTIES

Round robin has some nice properties:

Fair: given processes in the ready queue and time quantum , each process

gets of the CPU

Live: no process waits more than time units before receiving a CPU

allocation

Typically get higher average turnaround time than SRTF, but better average

response time

But tricky to choose the correct size quantum, :

 too large becomes FCFS/FIFO

 too small becomes context switch overhead too high

2 . 12

PRIORITY SCHEDULING
Associate an (integer) priority with each process, e.g.,

Prio Process type

0 system internal processes

1 interactive processes (staff)

2 interactive processes (students)

3 batch processes

Simplest form might be just system vs user tasks

2 . 13

PRIORITY SCHEDULING
Then allocate CPU to the highest priority process: "highest priority" typically
means smallest integer

Get preemptive and non-preemptive variants
E.g., SJF is a priority scheduling algorithm where priority is the predicted next
CPU burst time

2 . 14

TIE-BREAKING
What do with ties?

Round robin with time-slicing, allocating quantum to each process in turn

Problem: biases towards CPU intensive jobs (Why?)

Solution?
Per-process quantum based on usage?
Just ignore the problem?

2 . 15

STARVATION

Urban legend about IBM 7074 at MIT: when shut down in 1973, low-priority processes
were found which had been submitted in 1967 and had not yet been run...

This is the biggest problem with static priority systems: a low priority process is not
guaranteed to run — ever!

2 . 16

DYNAMIC PRIORITY SCHEDULING
Prevent the starvation problem: use same scheduling algorithm, but allow priorities

to change over time

Processes have a (static) base priority and a dynamic effective priority

If process starved for seconds, increment effective priority

Once process runs, reset effective priority

Dr Richard Mortier IA Operating Systems, 2018/19 25/60

2 . 17

EXAMPLE: COMPUTED PRIORITY

First used in Dijkstra's THE

Timeslots:
In each time slot , measure the CPU usage of process
Priority for process in slot :

E.g.,
Penalises CPU bound but supports IO bound

Once considered impractical but now such computation considered acceptable

3

SUMMARY
First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
Round Robin
Static vs Dynamic Priority

Dr Richard Mortier IA Operating Systems, 2018/19 26/60

1 . 1

[06] VIRTUAL ADDRESSING[06] VIRTUAL ADDRESSING

1 . 2

OUTLINEOUTLINE
Memory Management

Concepts

Relocation, Allocation, Protection, Sharing, Logical vs Physical Organisation

The Address Binding Problem

Relocation

Logical vs Physical Addresses

Allocation

Scheduling

Fragmentation

Compaction

2 . 1

MEMORY MANAGEMENTMEMORY MANAGEMENT
Memory Management

Concepts

Relocation, Allocation, Protection, Sharing, Logical vs Physical Organisation

The Address Binding Problem

Allocation

2 . 2

CONCEPTSCONCEPTS
In a multiprogramming system, have many processes in memory simultaneously

Every process needs memory for:

Instructions ("code" or "text")

Static data (in program)

Dynamic data (heap and stack)

In addition, operating system itself needs memory for instructions and data

Must share memory between OS and processes

2 . 3

1. RELOCATION1. RELOCATION
Memory typically shared among processes, so programmer cannot know address

that process will occupy at runtime

May want to swap processes into and out of memory to maximise CPU utilisation

Silly to require a swapped-in process to always go to the same place in memory

Processes incorporate addressing info (branches, pointers, etc.)

OS must manage these references to make sure they are sane

Thus need to translate logical to physical addresses

2. ALLOCATION2. ALLOCATION
This is similar to sharing below, but also related to relocation

I.e. OS may need to choose addresses where things are placed to make linking or

relocation easier

2 . 4

3. PROTECTION3. PROTECTION
Protect one process from others

May also want sophisticated RWX protection on small memory units

A process should not modify its own code (...yuck...)

Dynamically computed addresses (array subscripts) should be checked for sanity

4. SHARING4. SHARING
Multiple processes executing same binary: keep only one copy

Shipping data around between processes by passing shared data segment

references

Operating on same data means sharing locks with other processes

Dr Richard Mortier IA Operating Systems, 2018/19 27/60

2 . 5

5. LOGICAL ORGANISATION5. LOGICAL ORGANISATION
Most physical memory systems are linear address spaces from 0 to max
Doesn't correspond with modular structure of programs: want segments

Modules can contain (modifiable) data, or just code

Useful if OS can deal with modules: can be written, compiled independently

Can give different modules diff protection, and can be shared thus easy for user

to specify sharing model

6. PHYSICAL ORGANISATION6. PHYSICAL ORGANISATION
Main memory: single linear address space, volatile, more expensive

Secondary storage: cheap, non-volatile, can be arbitrarily structured

One key OS function is to organise flow between main memory and the

secondary store (cache?)

Programmer may not know beforehand how much space will be available

3 . 1

THE ADDRESS BINDINGTHE ADDRESS BINDING
PROBLEMPROBLEM

Memory Management

The Address Binding Problem

Relocation

Logical vs Physical Addresses

Allocation

3 . 2

THE ADDRESS BINDING PROBLEMTHE ADDRESS BINDING PROBLEM
Consider the following simple program:

int x, y;
x = 5;
y = x + 3;

We can imagine that this would result in some assembly code which looks

something like:

str #5, [Rx] ; store 5 into x
ldr R1, [Rx] ; load value of x from memory
add R2, R1, #3 ; and add 3 to it
str R2, [Ry] ; and store result in y

where the expression [addr] means the contents of the memory at address addr.

Then the address binding problem is: what values do we give Rx and Ry?

Arises because we don't know where in memory our program will be loaded when

we run it: e.g. if loaded at 0x1000, then x and y might be stored at 0x2000,

0x2004, but if loaded at 0x5000, then x and y might be at 0x6000, 0x6004

3 . 3

ADDRESS BINDING AND RELOCATIONADDRESS BINDING AND RELOCATION
Solution requires translation between program addresses and real addresses which

can be done:

At compile time:

Requires knowledge of absolute addresses, e.g. DOS .EXE files

At load time:

Find position in memory after loading, update code with correct addresses

Must be done every time program is loaded

Ok for embedded systems / boot-loaders

At run-time:

Get hardware to automatically translate between program and real addresses

No changes at all required to program itself

The most popular and flexible scheme, providing we have the requisite

hardware (MMU)

Note that, nowadays, tend not to use only one of these for everything anyway -- will

use a mixture.

3 . 4

LOGICAL VS PHYSICAL ADDRESSESLOGICAL VS PHYSICAL ADDRESSES
Mapping of logical to physical addresses is done at run-time by Memory

Management Unit (MMU)

1. Relocation register holds the value of the base address owned by the process

2. Relocation register contents are added to each memory address before it is sent

to memory

3. e.g. DOS on 80x86 — 4 relocation registers, logical address is a tuple

NB. Process never sees physical address — simply manipulates logical

addresses

4. OS has privilege to update relocation register

4 . 1

ALLOCATIONALLOCATION
Memory Management

The Address Binding Problem

Allocation

Scheduling

Fragmentation

Compaction

Dr Richard Mortier IA Operating Systems, 2018/19 28/60

4 . 2

CONTIGUOUS ALLOCATIONCONTIGUOUS ALLOCATION

How do we support multiple virtual processors in a single

address space? Where do we put processes in memory?

OS typically must be in low memory due to location of interrupt vectors

Easiest way is to statically divide memory into multiple fixed size partitions:

Bottom partition contains OS, remainder each contain exactly one process

When a process terminates its partition becomes available to new processes.

e.g. OS/360 MFT

Need to protect OS and user processes from malicious programs:

Use base and limit registers in MMU

Update values when a new process is scheduled

NB. Solving both relocation and protection problems at the same time!

4 . 3

STATIC MULTIPROGRAMMINGSTATIC MULTIPROGRAMMING
Partition memory when installing OS, and allocate pieces to different job queues

Associate jobs to a job queue according to size

Swap job back to disk when:

Blocked on IO (assuming IO is slower than the backing store)

Time sliced: larger the job, larger the time slice

Run job from another queue while swapping jobs

e.g. IBM OS/360 MVT, ICL System 4

Problems: fragmentation, cannot grow partitions

4 . 4

DYNAMIC PARTITIONINGDYNAMIC PARTITIONING
More flexibility if allow partition sizes to be dynamically chosen (e.g. OS/360 MVT):

OS keeps track of which areas of memory are available and which are occupied

e.g. use one or more linked lists:

For a new process, OS searches for a hole large enough to fit it:

First fit: stop searching list as soon as big enough hole is found

Best fit: search entire list to find "best" fitting hole

Worst fit: counterintuitively allocate largest hole (again, search entire list)

1. First and Best fit perform better statistically both in time and space utilisation —

typically for allocated blocks have another 0.5 in wasted space using first fit

2. Which is better depends on pattern of process swapping

3. Can use buddy system to make allocation faster

4. When process terminates its memory returns onto the free list, coalescing holes

where appropriate

4 . 5

SCHEDULING EXAMPLESCHEDULING EXAMPLE
Consider a machine with total of 2560kB memory, and an OS requiring 400kB

The following jobs are in the queue:

Process Memory Time

kB

kB

kB

kB

kB

4 . 6

EXTERNAL FRAGMENTATIONEXTERNAL FRAGMENTATION
Dynamic partitioning algorithms suffer from

external fragmentation: as processes are

loaded they leave little fragments which may

not be used. Can eventually block due to

insufficient memory to swap in

External fragmentation exists when the total

available memory is sufficient for a request,

but is unusable as it is split into many holes

Can also have problems with tiny holes when keeping track of hole costs more

memory than hole! Requires periodic compaction

4 . 7

COMPACTIONCOMPACTION

Choosing optimal strategy quite tricky. Note that:

Require run-time relocation

Can be done more efficiently when process is moved into memory from a

swap

Some machines used to have hardware support (e.g., CDC Cyber)

Also get fragmentation in backing store, but in this case compaction not really

viable

Dr Richard Mortier IA Operating Systems, 2018/19 29/60

5

SUMMARYSUMMARY
Memory Management

Concepts

Relocation, Allocation, Protection, Sharing, Logical vs Physical Organisation

The Address Binding Problem

Relocation

Logical vs Physical Addresses

Allocation

Scheduling

Fragmentation

Compaction

Dr Richard Mortier IA Operating Systems, 2018/19 30/60

1 . 1

[07] PAGING

1 . 2

OUTLINE

Paged Virtual Memory
Concepts
Pros and Cons
Page Tables
Translation Lookaside Buffer (TLB)
Protection & Sharing

Virtual Memory
Demand Paging Details
Page Replacement
Page Replacement Algorithms

Performance
Frame Allocation
Thrashing & Working Set
Pre-paging
Page Sizes

2 . 1

PAGED VIRTUAL MEMORY

Paged Virtual Memory
Concepts
Pros and Cons
Page Tables
Translation Lookaside Buffer (TLB)
Protection & Sharing

Virtual Memory
Performance

2 . 2

PAGED VIRTUAL MEMORY

Another solution is to allow a process to exist in non-contiguous memory, i.e.,

Divide physical memory into frames, small fixed-size blocks
Divide logical memory into pages, blocks of the same size (typically 4kB)
Each CPU-generated address is a page number with page offset
Page table contains associated frame number
Usually have so also record whether mapping valid

2 . 3

PAGING PROS AND CONS

Hardware support required — frequently defines the page size, typically a power

of 2 (making address fiddling easy) ranging from 512B to 8192B (0.5kB — 8kB)

Logical address space of and page size gives bits and

bits

Note that paging is itself a form of dynamic relocation: simply change page table

to reflect movement of page in memory. This is similar to using a set of base +
limit registers for each page in memory

2 . 4

PAGING PROS AND CONS

Memory allocation becomes easier but OS must maintain a page table per

process

No external fragmentation (in physical memory at least), but get internal

fragmentation: a process may not use all of final page

Indicates use of small page sizes — but there's a significant per-page

overhead: the Page Table Entries (PTEs) themselves, plus that disk IO is more

efficient with larger pages

Typically 4kB (memory is cheaper)

Dr Richard Mortier IA Operating Systems, 2018/19 31/60

2 . 5

PAGING PROS AND CONS

Clear separation between user (process) and system (OS) view of memory usage

Process sees single logical address space; OS does the hard work

Process cannot address memory they don't own — cannot reference a page it

doesn't have access to

OS can map system resources into user address space, e.g., IO buffer

OS must keep track of free memory; typically in frame table
Adds overhead to context switching

Per process page table must be mapped into hardware on context switch

The page table itself may be large and extend into physical memory

2 . 6

PAGE TABLES
Page Tables (PTs) rely on hardware support:

Simplest case: set of dedicated relocation registers

One register per page, OS loads registers on context switch

E.g., PDP-11 16 bit address, 8kB pages thus 8 PT registers

Each memory reference goes through these so they must be fast

Ok for small PTs but what if we have many pages (typically)

Solution: Keep PT in memory, then just one MMU register needed, the Page
Table Base Register (PTBR)

OS switches this when switching process

Problem: PTs might still be very big

Keep a PT Length Register (PTLR) to indicate size of PT

Or use a more complex structure (see later)

Problem: need to refer to memory twice for every "actual" memory reference

Solution: use a Translation Lookaside Buffer (TLB)

2 . 7

TLB OPERATION

When memory is referenced, present TLB with logical memory address

If PTE is present, get an immediate result

Otherwise make memory reference to PTs, and update the TLB

Latter case is typically 10% slower than direct memory reference

2 . 8

TLB ISSUES
As with any cache, what to do when it's full, how are entries shared?

If full, discard entries typically Least Recently Used (LRU) policy
Context switch requires TLB flush to prevent next process using wrong PTEs
Mitigate cost through process tags (how?)

Performance is measured in terms of hit ratio, proportion of time a PTE is found in
TLB. Example:

Assume TLB search time of 20ns, memory access time of 100ns, hit ratio of 80%
Assume one memory reference required for lookup, what is the effective memory
access time?

0.8 x 120 + 0.2 x 220 = 140 ns
Now increase hit ratio to 98% — what is the new effective access time?

0.98 x 120 + 0.02 x 220 = 122 ns — just a 13% improvement
(Intel 80486 had 32 registers and claimed a 98% hit ratio)

2 . 9

MULTILEVEL PAGE TABLES
Most modern systems can support very large

, address spaces, leading to very
large PTs which we don't really want to keep
all of in main memory

Solution is to split the PT into several sub-
parts, e.g., two, and then page the page table:

Divide the page number into two parts
E.g., 20 bit page number, 12 bit page offset

Then divide the page number into outer and inner parts of 10 bits each

2 . 10

EXAMPLE: VAX
A 32 bit architecture with 512 byte pages:

Logical address space divided into 4 sections of bytes
Top 2 address bits designate section
Next 21 bits designate page within section
Final 9 bits designate page offset
For a VAX with 100 pages, one level PT would be 4MB; with sectioning, it's 1MB

For 64 bit architectures, two-level paging is not enough: add further levels.

For 4kB pages need entries in PT using 1 level PT
For 2 level PT with 32 bit outer PT, we'd still need 16GB for the outer PT

Even some 32 bit machines have > 2 levels: SPARC (32 bit) has 3 level paging
scheme; 68030 has 4 level paging

Dr Richard Mortier IA Operating Systems, 2018/19 32/60

2 . 11

EXAMPLE: X86

Page size is 4kB or 4MB. First lookup to the page directory, indexed using top 10
bits. The page directory address is stored in an internal processor register (cr3). The
lookup results (usually) in the address of a page table. Next 10 bits index the page
table, retrieving the page frame address. Finally, add in the low 12 bits as the page
offset. Note that the page directory and page tables are exactly one page each
themselves (not by accident)

2 . 12

PROTECTION ISSUES

Associate protection bits with each page, kept in page tables (and TLB), e.g. one bit

for read, one for write, one for execute (RWX). Might also distinguish whether may

only be accessed when executing in kernel mode, e.g.,

As the address goes through the page hardware, can check protection bits — though

note this only gives page granularity protection, not byte granularity

Any attempt to violate protection causes hardware trap to operating system code to

handle. The entry in the TLB will have a valid/invalid bit indicating whether the

page is mapped into the process address space. If invalid, trap to the OS handler to

map the page

Can do lots of interesting things here, particularly with regard to sharing,

virtualization, ...

2 . 13

SHARED PAGES

Another advantage of paged memory is code/data sharing, for example:

Binaries: editor, compiler etc.

Libraries: shared objects, DLLs

So how does this work?

Implemented as two logical addresses which map to one physical address

If code is re-entrant (i.e. stateless, non-self modifying) it can be easily shared

between users

Otherwise can use copy-on-write technique:

Mark page as read-only in all processes

If a process tries to write to page, will trap to OS fault handler

Can then allocate new frame, copy data, and create new page table mapping

(May use this for lazy data sharing too)

Requires additional book-keeping in OS, but worth it, e.g., many hundreds of MB

shared code on this laptop. (Though nowadays, see unikernels!)

3 . 1

VIRTUAL MEMORY

Paged Virtual Memory
Virtual Memory

Demand Paging Details
Page Replacement
Page Replacement Algorithms

Performance

3 . 2

VIRTUAL MEMORY

Virtual addressing allows us to introduce the idea of virtual memory

Already have valid or invalid page translations; introduce "non-resident"

designation and put such pages on a non-volatile backing store

Processes access non-resident memory just as if it were "the real thing"

Virtual Memory (VM) has several benefits:

Portability: programs work regardless of how much actual memory present;

programs can be larger than physical memory

Convenience: programmer can use e.g. large sparse data structures with

impunity; less of the program needs to be in memory at once, thus potentially

more efficient multi-programming, less IO loading/swapping program into

memory

Efficiency: no need to waste (real) memory on code or data which isn't used (e.g.,

error handling)

3 . 3

VM IMPLEMENTATION

Typically implemented via demand paging:

Programs (executables) reside on disk

To execute a process we load pages in on demand; i.e. as and when they are

referenced

Also get demand segmentation, but rare (eg., Burroughs, OS/2) as it's more

difficult (segment replacement is much harder due to segments having variable

size)

Dr Richard Mortier IA Operating Systems, 2018/19 33/60

3 . 4

DEMAND PAGING DETAILS
When loading a new process for execution:

Create its address space (page tables, etc)

Mark PTEs as either invalid or non-resident

Add PCB to scheduler

Then whenever we receive a page fault, check PTE:

If due to invalid reference, kill process

Otherwise due to non-resident page, so "page in" the desired page:

Find a free frame in memory

Initiate disk IO to read in the desired page

When IO is finished modify the PTE for this page to show that it is now valid

Restart the process at the faulting instruction

3 . 5

DEMAND PAGING: ISSUES
Above process makes the fault invisible to the process, but:

Requires care to save process state correctly on fault

Can be particularly awkward on a CPU with pipelined decode as we need to wind

back (e.g., MIPS, Alpha)

Even worse on on CISC CPU where single instruction can move lots of data,

possibly across pages — we can't restart the instruction so rely on help from

microcode (e.g., to test address before writing). Can possibly use temporary

registers to store moved data

Similar difficulties from auto-increment/auto-decrement instructions, e.g., ARM

Can even have instructions and data spanning pages, so multiple faults per

instruction; though locality of reference tends to make this infrequent

Scheme described above is pure demand paging: don't bring in pages until needed

so get lots of page faults and IO when process begins; hence many real systems

explicitly load some core parts of the process first

3 . 6

PAGE REPLACEMENT
To page in from disk, we need a free frame of physical memory to hold the data

we're reading in — but in reality, the size of physical memory is limited so either:

Discard unused pages if total demand for pages exceeds physical memory size

Or swap out an entire process to free some frames

Modified algorithm: on a page fault we:

1. Locate the desired replacement page on disk

2. Select a free frame for the incoming page:

1. If there is a free frame use it, otherwise select a victim page to free

2. Then write the victim page back to disk

3. Finally mark it as invalid in its process page tables

3. Read desired page into the now free frame

4. Restart the faulting process

...thus, having no frames free effectively doubles the page fault service time

3 . 7

PAGE REPLACEMENT
Can reduce overhead by adding a "dirty" bit to PTEs

Allows us to omit step (2.2) above: only write out page if it was modified

Similarly can omit step (2.2) if page is marked read-only, e.g., contains code

How do we choose our victim page?

A key factor in an efficient VM system: evicting a page that we'll need in a few

instructions time can get us into a really bad condition

We want to ensure that we get few page faults overall, and that any we do get

are relatively quick to satisfy

We will now look at a few page replacement algorithms:

All aim to minimise page fault rate

Candidate algorithms are evaluated by (trace driven) simulation using reference

strings

3 . 8

PAGE REPLACEMENT ALGORITHMS
FIRST-IN FIRST-OUT (FIFO)
Keep a queue of pages, discard from head. Performance is hard to predict as we've
no idea whether replaced page will be used again or not: eviction is independent of
page use frequency. In general this is very simple but pretty bad:

Can actually end up discarding a page currently in use, causing an immediate
fault and next in queue to be replaced — really slows system down
Possible to have more faults with increasing number of frames (Belady's
anomaly)

OPTIMAL ALGORITHM (OPT)
Replace the page which will not be used again for longest period of time. Can only
be done with an oracle or in hindsight, but serves as a good baseline for other
algorithms

3 . 9

LEAST RECENTLY USED (LRU)
Replace the page which has not been used for the longest amount of time.
Equivalent to OPT with time running backwards. Assumes that the past is a good
predictor of the future. Can still end up replacing pages that are about to be used

Generally considered quite a good replacement algorithm, though may require
substantial hardware assistance

But! How do we determine the LRU ordering?

Dr Richard Mortier IA Operating Systems, 2018/19 34/60

3 . 10

IMPLEMENTING LRU: COUNTERS

Give each PTE a time-of-use field and give the CPU a logical clock (counter)
Whenever a page is referenced, its PTE is updated to clock value
Replace page with smallest time value

Problems:

Requires a search to find minimum counter value
Adds a write to memory (PTE) on every memory reference
Must handle clock overflow

Impractical on a standard processor

3 . 11

IMPLEMENTING LRU: PAGE STACK
Maintain a stack of pages (doubly linked list) with most-recently used (MRU) page
on top
Discard from bottom of stack

Problem:

Requires changing (up to) 6 pointers per [new] reference
This is very slow without extensive hardware support

Also impractical on a standard processor

3 . 12

APPROXIMATING LRU

Many systems have a reference bit in the PTE, initially zeroed by OS, and then set by

hardware whenever the page is touched. After time has passed, consider those

pages with the bit set to be active and implement Not Recently Used (NRU)

replacement:

Periodically (e.g. 20ms) clear all reference bits

When choosing a victim to evict, prefer pages with clear reference bits

If also have a modified or dirty bit in the PTE, can use that too

Referenced? Dirty? Comment

no no best type of page to replace

no yes next best (requires writeback)

yes no probably code in use

yes yes bad choice for replacement

3 . 13

IMPROVING THE APPROXIMATION
Instead of just a single bit, the OS:

Maintains an 8-bit value per page, initialised to zero

Periodically (e.g. 20ms) shifts reference bit onto high order bit of the byte, and

clear reference bit

Then select lowest value page (or one of) to replace

Keeps the history for the last 8 clock sweeps

Interpreting bytes as u_ints, then LRU page is additional_bits
May not be unique, but gives a candidate set

3 . 14

FURTHER IMPROVMENT: SECOND-CHANCE FIFO

Store pages in queue as per FIFO

Before discarding head, check reference bit

If reference bit is 0, discard else reset reference bit, and give page a second

chance (add it to tail of queue)

Guaranteed to terminate after at most one cycle, with the worst case having the

second chance devolve into a FIFO if all pages are referenced. A page given a

second chance is the last to be replaced

3 . 15

IMPLEMENTING SECOND-CHANCE FIFO
Often implemented with a circular queue and a current pointer; in this case usually

called clock

If no hardware is provided, reference bit can emulate:

To clear "reference bit", mark page no access

If referenced then trap, update PTE, and resume

To check if referenced, check permissions

Can use similar scheme to emulate modified bit

Dr Richard Mortier IA Operating Systems, 2018/19 35/60

3 . 16

OTHER REPLACEMENT SCHEMES
Counting Algorithms: keep a count of the number of references to each page

Least Frequently Used (LFU): replace page with smallest count
Takes no time information into account
Page can stick in memory from initialisation
Need to periodically decrement counts

Most Frequently Used (MFU): replace highest count page
Low count indicates recently brought in

3 . 17

PAGE BUFFERING ALGORITHMS
Keep a minimum number of victims in a free pool
New page read in before writing out victim, allowing quicker restart of process
Alternative: if disk idle, write modified pages out and reset dirty bit

Improves chance of replacing without having to write dirty page

(Pseudo) MRU: Consider accessing e.g. large array.

The page to replace is one application has just finished with, i.e. most recently
used
Track page faults and look for sequences
Discard the th in victim sequence

Application-specific: stop trying to second-guess what's going on and provide hook
for application to suggest replacement, but must be careful with denial of service

4 . 1

PERFORMANCE

Paged Virtual Memory
Virtual Memory
Performance

Frame Allocation
Thrashing & Working Set
Pre-paging
Page Sizes

4 . 2

PERFORMANCE COMPARISON

This plot shows page-fault

rate against number of

physical frames for a

pseudo-local reference

string (note offset x origin).

We want to minimise area

under curve. FIFO could

exhibit (but

doesn't here). Can see that

getting frame allocation

right has major impact —

much more than which

algorithm you use!

Belady's Anomaly

4 . 3

FRAME ALLOCATION

A certain fraction of physical memory is reserved per-process and for core OS code

and data. Need an allocation policy to determine how to distribute the remaining

frames. Objectives:

Fairness (or proportional fairness)?

E.g. divide frames between processes as , remainder in free pool

E.g. divide frames in proportion to size of process (i.e. number of pages used)

Minimize system-wide page-fault rate?

E.g. allocate all memory to few processes

Maximize level of multiprogramming?

E.g. allocate min memory to many processes

Could also allocate taking process priorities into account, since high-priority

processes are supposed to run more readily. Could even care which frames we give

to which process ("page colouring")

4 . 4

FRAME ALLOCATION: GLOBAL SCHEMES
Most page replacement schemes are global: all pages considered for replacement

Allocation policy implicitly enforced during page-in
Allocation succeeds iff policy agrees
Free frames often in use so steal them!

For example, on a system with 64 frames and 5 processes:

If using fair share, each processes will have 12 frames, with four left over (maybe)
When a process dies, when the next faults it will succeed in allocating a frame
Eventually all will be allocated
If a new process arrives, need to steal some pages back from the existing
allocations

Dr Richard Mortier IA Operating Systems, 2018/19 36/60

4 . 5

FRAME ALLOCATION: COMPARISON TO LOCAL

Also get local page replacement schemes: victim always chosen from within process

In global schemes the process cannot control its own page fault rate, so
performance may depend entirely on what other processes page in/out

In local schemes, performance depends only on process behaviour, but this can
hinder progress by not making available less/unused pages of memory

Global are optimal for throughput and are the most common

4 . 6

THE RISK OF THRASHING

More processes entering the system

causes the frames-per-process allocated

to reduce. Eventually we hit a wall:

processes end up stealing frames from

each other, but then need them back so

fault. Ultimately the number of runnable

processes plunges

A process can technically run with

minimum-free frames available but will

have a very high page fault rate. If we're

very unlucky, OS monitors CPU utilisation and increases level of multiprogramming

if utilisation is too low: machine dies

Avoid thrashing by giving processes as many frames as they "need" and, if we can't,

we must reduce the MPL — a better page-replacement algorithm will not help

4 . 7

LOCALITY OF REFERENCE

In a short time interval, the locations referenced by a process tend to be grouped
into a few regions in its address space:

Procedure being executed
Sub-procedures
Data access
Stack variables

4 . 8

AVOIDING THRASHING
We can use the locality of reference principle to help determine how many frames a
process needs:

Define the Working Set (WS) (Denning, 1967)

Set of pages that a process needs in store at "the same time"
to make any progress

Varies between processes and during execution
Assume process moves through phases
In each phase, get (spatial) locality of reference
From time to time get phase shift

4 . 9

CALCULATING WORKING SET

Then OS can try to prevent thrashing by maintaining sufficient pages for current

phase:

Sample page reference bits every, e.g., 10ms

Define window size of most recent page references

If a page is "in use", say it's in the working set

Gives an approximation to locality of program

Given the size of the working set for each process , sum working set sizes

to get total demand

If we are in danger of thrashing — suspend a process

This optimises CPU util but has the need to compute (moving window across

stream). Can approximate with periodic timer and some page reference script. After

some number of intervals (i.e., of bits of state) consider pages with count < 0 to be

in WS. In general, a working set can be used as a scheme to determine allocation for

each process

4 . 10

PRE-PAGING

Pure demand paging causes a large number of PF when process starts

Can remember the WS for a process and pre-page the required frames when
process is resumed (e.g. after suspension)

When process is started can pre-page by adding its frames to free list

Increases IO cost: How do we select a page size (given no hardware constraints)?

Dr Richard Mortier IA Operating Systems, 2018/19 37/60

4 . 11

PAGE SIZES

Trade-off the size of the PT and the degree of fragmentation as a result

Typical values are 512B to 16kB — but should we reduce the number of faults, or

ensure that the window is covered efficiently?

Larger page size means fewer page faults

Historical trend towards larger page sizes

Eg., 386: 4kB, 68030: 256B to 32kB

So, 28ms for a 1kB page, 56ms for two 512B pages – but the smaller page size

allows us to watch locality more accurately. Page faults remain costly because CPU

and memory much much faster than disk

5

SUMMARY
Paged Virtual Memory

Concepts
Pros and Cons
Page Tables
Translation Lookaside Buffer (TLB)
Protection & Sharing

Virtual Memory
Demand Paging Details
Page Replacement
Page Replacement Algorithms

Performance
Frame Allocation
Thrashing & Working Set
Pre-paging
Page Sizes

Dr Richard Mortier IA Operating Systems, 2018/19 38/60

1 . 1

[08] SEGMENTATION

1 . 2

OUTLINE

Segmentation
An Alternative to Paging

Implementing Segments
Segment Table
Lookup Algorithm

Protection and Sharing
Sharing Subtleties
External Fragmentation

Segmentation vs Paging
Comparison
Combination

Summary
Extras

Dynamic Linking & Loading

2 . 1

SEGMENTATION

Segmentation
An Alternative to Paging

Implementing Segments
Protection and Sharing
Segmentation vs Paging
Summary
Extras

2 . 2

AN ALTERNATIVE TO PAGING

View memory as a set of
segments of no particular size,
with no particular ordering

This corresponds to typical
modular approaches taken to
program development

The length of a segment
depends on the complexity of
the function (e.g., sqrt)

2 . 3

WHAT IS A SEGMENT?

Segmentation supports the user-view of memory that the logical address space

becomes a collection of (typically disjoint) segments

Segments have a name (or a number) and a length. Addresses specify segment, and

offset within segment

To access memory, user program specifies segment + offset, and the compiler (or, as

in MULTICS, the OS) translates

This contrasts with paging where the user is unaware of memory structure —

everything is managed invisibly by the OS

3 . 1

IMPLEMENTING SEGMENTS
Segmentation
Implementing Segments

Segment Table
Lookup Algorithm

Protection and Sharing
Segmentation vs Paging
Summary
Extras

Dr Richard Mortier IA Operating Systems, 2018/19 39/60

3 . 2

IMPLEMENTING SEGMENTS
Logical addresses are pairs, (segment, offset)

For example, the compiler might construct distinct segments for global variables,
procedure call stack, code for each procedure/function, local variables for each
procedure/function

Finally the loader takes each segment and maps it to a physical segment number

3 . 3

IMPLEMENTING SEGMENTS
Segment Access Base Size Others!

Maintain a Segment Table for each process:

If there are too many segments then the table is kept in memory, pointed to by
ST Base Register (STBR)
Also have an ST Length Register (STLR) since the number of segments used by
diferent programs will diverge widely
ST is part of the process context and hence is changed on each process switch
ST logically accessed on each memory reference, so speed is critical

3 . 4

IMPLEMENTING SEGMENTS: ALGORITHM
1. Program presents address .

2. If STLR then give up

3. Obtain table entry at reference +STBR, a tuple of form

4. If then this is a valid address at location , else fault

The two operations (concatenation) and can be done

simultaneously to save time

Still requires 2 memory references per lookup though, so care needed

E.g., Use a set of associative registers to hold most recently used ST entries

Similar performance gains to the TLB description earlier

4 . 1

PROTECTION AND SHARING
Segmentation
Implementing Segments
Protection and Sharing

Sharing Subtleties
External Fragmentation

Segmentation vs Paging
Summary
Extras

4 . 2

PROTECTION

Segmentation's big advantage is to provide protection between components

That protection is provided per segment; i.e. it corresponds to the logical view

Protection bits associated with each ST entry checked in usual way, e.g., instruction
segments should not be self-modifying, so are protected against writes

Could go further — e.g., place every array in its own segment so that array limits can
be checked by the hardware

4 . 3

SHARING

Segmentation also facilitates sharing of code/data:

Each process has its own STBR/STLR
Sharing is enabled when two processes have entries for the same physical
locations
Sharing occurs at segment level, with each segment having own protection bits

For data segments can use copy-on-write as per paged case
Can share only parts of programs, e.g., C library but there are subtleties

Dr Richard Mortier IA Operating Systems, 2018/19 40/60

4 . 4

SHARING: SUBTLETIES

For example, jumps within shared code
Jump specified as a condition + transfer address, i.e., (segment, offset)
Segment is (of course) this one
Thus all programs sharing this segment must use the same number to refer to
it, else confusion will result
As the number of users sharing a segment grows, so does difficulty of finding
a common shared segment number
Thus, specify branches as PC-relative or relative to a register containing the
current segment number
(Read only segments containing no pointers may be shared with different seg
numbers)

4 . 5

SHARING SEGMENTS

Wasteful (and dangerous) to store common information on shared segment in
each process segment table
Assign each segment a unique System Segment Number (SSN)
Process Segment Table simply maps from a Process Segment Number (PSN) to
SSN

4 . 6

EXTERNAL FRAGMENTATION RETURNS

Long term scheduler must find spots in memory for all segments of a program.
Problem is that segments are variable size — thus, we must handle fragmentation

1. Usually resolved with best/first fit algorithm
2. External frag may cause process to have to wait for sufficient space
3. Compaction can be used in cases where a process would be delayed

Tradeoff between compaction/delay depends on average segment size

Each process has just one segment reduces to variable sized partitions
Each byte has its own segment separately relocated quadruples memory use!
Fixed size small segments is equivalent to paging!
Generally, with small average segment sizes, external fragmentation is small —
more likely to make things fit with lots of small ones (box packing)

5 . 1

SEGMENTATION VS PAGING

Segmentation
Implementing Segments
Protection and Sharing
Segmentation vs Paging

Comparison
Combination

Summary
Extras

5 . 2

SEGMENTATION VERSUS PAGING

Protection, Sharing, Demand etc are all per segment or page, depending on

scheme

For protection and sharing, easier to have it per logical entity, i.e., per segment

For allocation and demand access (and, in fact, certain types of sharing such as

COW), we prefer paging because:

Allocation is easier

Cost of sharing/demand loading is minimised

logical view allocation

segmentation good bad

paging bad good

5 . 3

COMBINING SEGMENTATION AND PAGING

1. Paged segments, used in Multics, OS/2
Divide each segment into pages, where is the limit (length)
of the segment
Provision one page table per segment
Unfortunately: high hardware cost and complexity; not very portable

2. Software segments, used in most modern OSs
Consider pages to be a segment
OS must ensure protection and sharing kept consistent over region
Unfortunately, leads to a loss of granularity
However, it is relatively simple and portable

Arguably, main reason hardware segments lost is portability: you can do software
segments with just paging hardware, but cannot (easily) do software paging with
segmentation hardware

Dr Richard Mortier IA Operating Systems, 2018/19 41/60

6 . 1

SUMMARY
Segmentation
Implementing Segments
Protection and Sharing
Segmentation vs Paging
Summary
Extras

6 . 2

SUMMARY: VIRTUAL ADDRESSING
Direct access to physical memory is not great as have to handle:

Contiguous allocation: need a large lump, end up with external fragmentation
Address binding: handling absolute addressing
Portability: how much memory does a "standard" machine have?

Avoid problems by separating concepts of virtual (logical) and physical addresses
(Atlas computer, 1962)

Needham's comment

"every problem in computer science can be solved by an
extra level of indirection"

6 . 3

SUMMARY: VIRTUAL TO PHYSICAL ADDRESS MAPPING

Runtime mapping of logical to physical addresses handled by the MMU. Make
mapping per-process, then:

Allocation problem split:
Virtual address allocation easy
Allocate physical memory 'behind the scenes'

Address binding solved:
Bind to logical addresses at compile-time
Bind to real addresses at load time/run time

Modern operating systems use paging hardware and fake out segments in
software

6 . 4

SUMMARY: IMPLEMENTATION CONSIDERATIONS

Hardware support

Simple base register enough for partitioning
Segmentation and paging need large tables

Performance

Complex algorithms need more lookups per reference plus hardware support
Simple schemes preferred eg., simple addition to base

Fragmentation: internal/external from fixed/variable size allocation units
Relocation: solves external fragmentation, at high cost

Logical addresses must be computed dynamically, doesn't work with load
time relocation

Swapping: can be added to any algorithm, allowing more processes to access
main memory
Sharing: increases multiprogramming but requires paging or segmentation
Protection: always useful, necessary to share code/data, needs a couple of bits

7 . 1

EXTRAS
Segmentation
Implementing Segments
Protection and Sharing
Segmentation vs Paging
Summary
Extras

Dynamic Linking & Loading

7 . 2

DYNAMIC LINKING
Relatively new appearance in OS (early 80's). Uses shared objects/libraries (Unix), or

dynamically linked libraries (DLLs; Windows). Enables a compiled binary to invoke, at

runtime, routines which are dynamically linked:

If a routine is invoked which is part of the dynamically linked code, this will be

implemented as a call into a set of stubs

Stubs check if routine has been loaded

If not, linker loads routine (if necessary) and replaces stub code by routing

If sharing a library, the address binding problem must also be solved, requiring

OS support: in the system, only the OS knows which libraries are being shared

among which processes

Shared libs must be stateless or concurrency safe or copy on write

Results in smaller binaries (on-disk and in-memory) and increase flexibility (fix a

bug without relinking all binaries)

Dr Richard Mortier IA Operating Systems, 2018/19 42/60

7 . 3

DYNAMIC LOADING

At runtime a routine is loaded when first invoked

The dynamic loader performs relocation on the fly

It is the responsibility of the user to implement loading

OS may provide library support to assist user

8

SUMMARY
Segmentation

An Alternative to Paging
Implementing Segments

Segment Table
Lookup Algorithm

Protection and Sharing
Sharing Subtleties
External Fragmentation

Segmentation vs Paging
Comparison
Combination

Summary
Extras

Dynamic Linking & Loading

Dr Richard Mortier IA Operating Systems, 2018/19 43/60

1 . 1

[09] IO SUBSYSTEM

1 . 2

OUTLINE

Input/Output (IO)
Hardware
Device Classes
OS Interfaces

Performing IO
Polled Mode
Interrupt Driven
Blocking vs Non-blocking

Handling IO
Buffering & Strategies
Other Issues
Kernel Data Structures
Performance

2 . 1

INPUT/OUTPUT

Input/Output (IO)
Hardware
Device Classes
OS Interfaces

Performing IO
Handling IO

2 . 2

IO HARDWARE
Very wide range of devices that interact with the computer via input/output (IO):

Human readable: graphical displays, keyboard, mouse, printers
Machine readable: disks, tapes, CD, sensors
Communications: modems, network interfaces, radios

All differ significantly from one another with regard to:

Data rate: orders of magnitude different between keyboard and network
Control complexity: printers much simpler than disks
Transfer unit and direction: blocks vs characters vs frame stores
Data representation
Error handling

2 . 3

IO SUBSYSTEM

Results in IO subsystem generally being the "messiest" part of the OS

So much variety of devices

So many applications

So many dimensions of variation:

Character-stream or block

Sequential or random-access

Synchronous or asynchronous

Shareable or dedicated

Speed of operation

Read-write, read-only, or write-only

Thus, completely homogenising device API is not possible so OS generally splits

devices into four classes

2 . 4

DEVICE CLASSES
Block devices (e.g. disk drives, CD)

Commands include read, write, seek
Can have raw access or via (e.g.) filesystem ("cooked") or memory-mapped

Character devices (e.g. keyboards, mice, serial):

Commands include get, put
Layer libraries on top for line editing, etc

Network Devices

Vary enough from block and character devices to get their own interface

Unix and Windows NT use the Berkeley Socket interface

Miscellaneous

Current time, elapsed time, timers, clocks

(Unix) ioctl covers other odd aspects of IO

Dr Richard Mortier IA Operating Systems, 2018/19 44/60

2 . 5

OS INTERFACES

Programs access virtual devices:

Terminal streams not terminals,

windows not frame buffer, event

streams not raw mouse, files not disk

blocks, print spooler not parallel port,

transport protocols not raw Ethernet

frames

OS handles the processor-device interface: IO instructions vs memory mapped

devices; IO hardware type (e.g. 10s of serial chips); Polled vs interrupt driven; CPU

interrupt mechanism

Virtual devices then implemented:

In kernel, e.g. files, terminal devices

In daemons, e.g. spooler, windowing

In libraries, e.g. terminal screen control, sockets

3 . 1

PERFORMING IO

Input/Output (IO)
Performing IO

Polled Mode

Interrupt Driven

Blocking vs Non-blocking

Handling IO

3 . 2

POLLED MODE

Consider a simple device with three registers:

status, data and command. Host can read

and write these via bus. Then polled mode

operation works as follows:

H repeatedly reads device-busy until clear

H sets e.g. write bit in command register, and puts data into data register

H sets command-ready bit in status register

D sees command-ready and sets device-busy
D performs write operation

D clears command-ready & then clears device-busy

What's the problem here?

3 . 3

INTERRUPT DRIVEN
Rather than polling, processors provide an interrupt mechanism to handle mismatch

between CPU and device speeds:

At end of each instruction, processor checks interrupt line(s) for pending interrupt

Need not be precise (that is, occur at definite point in instruction stream)

If line is asserted then processor:

Saves program counter & processor status

Changes processor mode

Jumps to a well-known address (or contents of a well-known address)

Once interrupt-handling routine finishes, can use e.g. rti instruction to resume

More complex processors may provide:

Multiple priority levels of interrupt

Hardware vectoring of interrupts

Mode dependent registers

3 . 4

HANDLING INTERRUPTS

Split the implementation into two parts:

At the bottom, the interrupt handler
At the top, interrupt service routines (ISR; per-device)

Processor-dependent interrupt handler may:

Save more registers and establish a language environment

Demultiplex interrupt in software and invoke relevant ISR

Device- (not processor-) dependent interrupt service routine will:

For programmed IO device: transfer data and clear interrupt

For DMA devices: acknowledge transfer; request any more pending; signal any

waiting processes; and finally enter the scheduler or return

Question: Who is scheduling whom?

Consider, e.g., network livelock

3 . 5

BLOCKING VS NON-BLOCKING

From programmer's point of view, IO system calls exhibit one of three kinds of

behaviour:

Blocking: process suspended until IO completed

Easy to use and understand.

Insufficient for some needs.

Nonblocking: IO call returns as much as available

Returns almost immediately with count of bytes read or written (possibly 0)

Can be used by e.g. user interface code

Essentially application-level "polled IO"

Asynchronous: process runs while IO executes

IO subsystem explicitly signals process when its IO request has completed

Most flexible (and potentially efficient)

Also most complex to use

Dr Richard Mortier IA Operating Systems, 2018/19 45/60

4 . 1

HANDLING IO
Input/Output (IO)

Performing IO

Handling IO
Buffering & Strategies
Other Issues
Kernel Data Structures
Performance

4 . 2

IO BUFFERING

To cope with various impedance mismatches between devices (speed, transfer size),

OS may buffer data in memory. Various buffering strategies:

Single buffering: OS assigns a system buffer to the user request

Double buffering: process consumes from one buffer while system fills the next

Circular buffering: most useful for bursty IO

Buffering is useful for smoothing peaks and troughs of data rate, but can't help if on

average:

Process demand > data rate (process will spend time waiting), or

Data rate > capability of the system (buffers will fill and data will spill)

Downside: can introduce jitter which is bad for real-time or multimedia

Details often dictated by device type: character devices often by line; network

devices particularly bursty in time and space; block devices make lots of fixed size

transfers and often the major user of IO buffer memory

4 . 3

SINGLE BUFFERING
OS assigns a single buffer to the user request:

OS performs transfer, moving buffer to userspace when complete (remap or copy)

Request new buffer for more IO, then reschedule application to consume

(readahead or anticipated input)
OS must track buffers

Also affects swap logic: if IO is to same disk as swap device, doesn't make sense

to swap process out as it will be behind the now queued IO request!

A crude performance comparison between no buffering and single buffering:

Let t be time to input block and c be computation time between blocks

Without buffering, execution time between blocks is

With single buffering, time is where is the time to move data

from buffer to user memory

For a terminal: is the buffer a line or a char? depends on user response required

4 . 4

DOUBLE BUFFERING

Often used in video rendering

Rough performance comparison: takes thus

possible to keep device at full speed if

while if , process will not have to wait for IO

Prevents need to suspend user process between IO operations

...also explains why two buffers is better than one buffer, twice as big

Need to manage buffers and processes to ensure process doesn't start consuming

from an only partially filled buffer

CIRCULAR BUFFERING

Allows consumption from the buffer at a fixed rate, potentially lower than the

burst rate of arriving data

Often use circular linked list FIFO buffer with queue length

4 . 5

OTHER ISSUES
Caching: fast memory holding copy of data for both reads and writes; critical to IO

performance

Scheduling: order IO requests in per-device queues; some OSs may even attempt

to be fair

Spooling: queue output for a device, useful if device is "single user" (e.g., printer),

i.e. can serve only one request at a time

Device reservation: system calls for acquiring or releasing exclusive access to a

device (care required)

Error handling: generally get some form of error number or code when request

fails, logged into system error log (e.g., transient write failed, disk full, device

unavailable, ...)

4 . 6

KERNEL DATA STRUCTURES
To manage all this, the OS kernel must maintain state for IO components:

Open file tables

Network connections

Character device states

Results in many complex and performance criticial data structures to track buffers,

memory allocation, "dirty" blocks

Consider reading a file from disk for a process:

Determine device holding file

Translate name to device representation

Physically read data from disk into buffer

Make data available to requesting process

Return control to process

Dr Richard Mortier IA Operating Systems, 2018/19 46/60

4 . 7

PERFORMANCE

IO a major factor in system performance

Demands CPU to execute device driver, kernel IO code, etc.

Context switches due to interrupts

Data copying

Improving performance:

Reduce number of context switches

Reduce data copying

Reduce number of interrupts by using large transfers, smart controllers, polling

Use DMA where possible

Balance CPU, memory, bus and IO performance for highest throughput.

Improving IO performance remains a significant challenge...

5

SUMMARY
Input/Output (IO)

Hardware
Device Classes
OS Interfaces

Performing IO
Polled Mode
Interrupt Driven
Blocking vs Non-blocking

Handling IO
Buffering & Strategies
Other Issues
Kernel Data Structures
Performance

Dr Richard Mortier IA Operating Systems, 2018/19 47/60

1 . 1

[10] STORAGE

1 . 2

OUTLINE

File Concepts

Filesystems

Naming Files

File Metadata

Directories

Name Space Requirements

Structure

Implementation

Files

Operations

Implementation

Access Control, Existence Control, Concurrency Control

2 . 1

FILE CONCEPTS

File Concepts
Filesystems
Naming Files
File Metadata

Directories
Files

2 . 2

FILESYSTEM
We will look only at very simple
filesystems here, having two
main components:

1. Directory Service, mapping names to file identifiers, and handling access and
existence control

2. Storage Service, providing mechanism to store data on disk, and including means
to implement directory service

2 . 3

WHAT IS A FILE?

The basic abstraction for non-volatile storage:

User abstraction — compare/contrast with segments for memory
Many different types:

Data: numeric, character, binary
Program: source, object, executable
"Documents"

Typically comprises a single contiguous logical address space

Can have varied internal structure:

None: a simple sequence of words or bytes
Simple record structures: lines, fixed length, variable length
Complex internal structure: formatted document, relocatable object file

2 . 4

WHAT IS A FILE?

OS split between text and binary is quite common where text files are treated as

A sequence of lines each terminated by a special character, and

With an explicit EOF character (often)

Can map everything to a byte sequence by inserting appropriate control characters,

and interpretation in code. Question is, who decides:

OS: may be easier for programmer but will lack flexibility

Programmer: has to do more work but can evolve and develop format

Dr Richard Mortier IA Operating Systems, 2018/19 48/60

2 . 5

NAMING FILES
Files usually have at least two kinds of "name":

System file identifier (SFID): (typically) a unique integer value associated with a
given file, used within the filesystem itself
Human name, e.g. hello.java: what users like to use
May have a third, User File Identifier (UFID) used to identify open files in
applications

Mapping from human name to SFID is held in a directory, e.g.,

Note that directories are also non-volatile so they must
be stored on disk along with files — which explains why
the storage system sits "below" the directory service

2 . 6

FILE METADATA
NB. Having resolved the name to an SFID,
the actual mapping from SFID to File
Control Block (FCB) is OS and filesystem
specific

In addition to their contents and their
name(s), files typically have a number of
other attributes or metadata, e.g.,

Location: pointer to file location on device
Size: current file size
Type: needed if system supports different types
Protection: controls who can read, write, etc.
Time, date, and user identification: data for protection, security and usage
monitoring

3 . 1

DIRECTORIES

File Concepts
Directories

Name Space Requirements
Structure
Implementation

Files

3 . 2

REQUIREMENTS
A directory provides the means to translate a (user) name to the location of the file
on-disk. What are the requirements?

Efficiency: locating a file quickly.
Naming: user convenience

allow two (or, more generally, N) users to have the same name for different
files
allow one file have several different names

Grouping: logical grouping of files by properties, e.g., "all Java programs", "all
games"

3 . 3

EARLY ATTEMPTS
Single-level: one directory shared between all users

naming problem
grouping problem

Two-level directory: one directory per user
access via pathname (e.g., bob:hello.java)
can have same filename for different user
... but still no grouping capability.

Add a general hierarchy for more flexibility

3 . 4

STRUCTURE: TREE
Directories hold files or [further]
directories, reflecting structure of
organisation, users' files, etc

Create/delete files relative to a given
directory

Efficient searching and arbitrary grouping
capability

The human name is then the full path
name, though these can get unwiedly,

e.g., /usr/groups/X11R5/src/mit/server/os/4.2bsd/utils.c.
Resolve with relative naming, login directory, current working directory. Sub-
directory deletion either by requiring directory empty, or by recursively deleting

Dr Richard Mortier IA Operating Systems, 2018/19 49/60

3 . 5

STRUCTURE: DAG
Hierarchy useful but only allows one
name per file. Extend to directed acyclic
graph (DAG) structure: allow shared
subdirectories and files, and multiple
aliases for same thing

Manage dangling references: use back-
references or reference counts

Other issues include: deletion (more
generally, permissions) and knowing

when ok to free disk blocks; accounting and who gets "charged" for disk usage; and
cycles, and how we prevent them

3 . 6

DIRECTORY IMPLEMENTATION

Directories are non-volatile so store as "files" on disk, each with own SFID

Must be different types of file, for traversal

Operations must also be explicit as info in directory used for access control, or

could (eg) create cycles

Explicit directory operations include:

Create/delete directory

List contents

Select current working directory

Insert an entry for a file (a "link")

4 . 1

FILES
File Concepts
Directories
Files

Operations

Implementation

Access Control, Existence Control, Concurrency Control

4 . 2

OPERATIONS

Basic paradigm of use is: open, use, close

Opening or creating a file:

UFID = open(<pathname>) or

UFID = create(<pathname>)

Directory service recursively searching directories for components of

<pathname>
Eventually get SFID for file, from which UFID created and returned

Various modes can be used

Closing a file: status = close(UFID)

Copy [new] file control block back to disk and invalidate UFID

4 . 3

IMPLEMENTATION

Associate a cursor or file position with each open file (viz. UFID), initialised to start
of file

Basic operations: read next or write next, e.g., read(UFID, buf, nbytes),
or read(UFID, buf, nrecords)

Access pattern:

Sequential: adds rewind(UFID) to above
Direct Access: read(N) or write(N) using seek(UFID, pos)
Maybe others, e.g., append-only, indexed sequential access mode (ISAM)

4 . 4

ACCESS CONTROL

File owner/creator should be able to control what can be done, by whom

File usually only accessible if user has both directory and file access rights
Former to do with lookup process — can't look it up, can't open it
Assuming a DAG structure, do we use the presented or the absolute path

Access control normally a function of directory service so checks done at file open
time

E.g., read, write, execute, (append?), delete, list, rename
More advanced schemes possible (see later)

Dr Richard Mortier IA Operating Systems, 2018/19 50/60

4 . 5

EXISTENCE CONTROL

What if a user deletes a file?

Probably want to keep file in existence while there is a valid pathname
referencing it
Plus check entire FS periodically for garbage
Existence control can also be a factor when a file is renamed/moved.

CONCURRENCY CONTROL

Need some form of locking to handle simultaneous access

Can be mandatory or advisory
Locks may be shared or exclusive
Granularity may be file or subset

5

SUMMARY
File Concepts

Filesystems

Naming Files

File Metadata

Directories

Name Space Requirements

Structure

Implementation

Files

Operations

Implementation

Access Control, Existence Control, Concurrency Control

Dr Richard Mortier IA Operating Systems, 2018/19 51/60

1 . 1

[11] CASE STUDY: UNIX

1 . 2

OUTLINE

Introduction
Design Principles

Structural, Files, Directory Hierarchy
Filesystem

Files, Directories, Links, On-Disk Structures
Mounting Filesystems, In-Memory Tables, Consistency

Summary

2 . 1

INTRODUCTION

Introduction
Design Principles
Filesystem
Summary

2 . 2

HISTORY (I)
First developed in 1969 at Bell Labs (Thompson & Ritchie) as reaction to bloated

Multics. Originally written in PDP-7 asm, but then (1973) rewritten in the "new"

high-level language C so it was easy to port, alter, read, etc. Unusual due to need for

performance

6th edition ("V6") was widely available (1976), including source meaning people

could write new tools and nice features of other OSes promptly rolled in

V6 was mainly used by universities who could afford a minicomputer, but not

necessarily all the software required. The first really portable OS as same source

could be built for three different machines (with minor asm changes)

Bell Labs continued with V8, V9 and V10 (1989), but never really widely available

because V7 pushed to Unix Support Group (USG) within AT&T

AT&T did System III first (1982), and in 1983 (after US government split Bells),

System V. There was no System IV

2 . 3

HISTORY (II)
By 1978, V7 available (for both the 16-bit PDP-11 and the new 32-bit VAX-11).

Subsequently, two main families: AT&T "System V", currently SVR4, and Berkeley:

"BSD", currently 4.4BSD

Later standardisation efforts (e.g. POSIX, X/OPEN) to homogenise

USDL did SVR2 in 1984; SVR3 released in 1987; SVR4 in 1989 which supported the

POSIX.1 standard

In parallel with AT&T story, people at University of California at Berkeley (UCB)

added virtual memory support to "32V" [32-bit V7 for VAX] and created 3BSD

2 . 4

HISTORY (III)
4BSD development supported by DARPA who wanted (among other things) OS

support for TCP/IP

By 1983, 4.2BSD released at end of original DARPA project

1986 saw 4.3BSD released — very similar to 4.2BSD, but lots of minor tweaks. 1988

had 4.3BSD Tahoe (sometimes 4.3.1) which included improved TCP/IP congestion

control. 19xx saw 4.3BSD Reno (sometimes 4.3.2) with further improved congestion

control. Large rewrite gave 4.4BSD in 1993; very different structure, includes LFS,

Mach VM stuff, stackable FS, NFS, etc.

Best known Unix today is probably Linux, but also get FreeBSD, NetBSD, and

(commercially) Solaris, OSF/1, IRIX, and Tru64

Dr Richard Mortier IA Operating Systems, 2018/19 52/60

SIMPLIFIED UNIX FAMILY TREE (NON-EXAMINABLE)

https://commons.wikimedia.org/wiki/File:Unix_history-simple.svg

2 . 53 . 1

DESIGN PRINCIPLES
Introduction
Design Principles

Structural, Files, Directory Hierarchy

Filesystem
Summary

3 . 2

DESIGN FEATURES
Ritchie & Thompson (CACM, July 74), identified the (new) features of Unix:

A hierarchical file system incorporating demountable volumes
Compatible file, device and inter-process IO (naming schemes, access control)
Ability to initiate asynchronous processes (i.e., address-spaces = heavyweight)
System command language selectable on a per-user basis

Completely novel at the time: prior to this, everything was "inside" the OS. In Unix
separation between essential things (kernel) and everything else

Among other things: allows user wider choice without increasing size of core OS;
allows easy replacement of functionality — resulted in over 100 subsystems
including a dozen languages

Highly portable due to use of high-level language

Features which were not included: real time, multiprocessor support

3 . 3

STRUCTURAL OVERVIEW

Clear separation between user and kernel

portions was the big difference between

Unix and contemporary systems — only

the essential features inside OS, not the

editors, command interpreters, compilers,

etc.

Processes are unit of scheduling and

protection: the command interpreter

("shell") just a process

No concurrency within kernel

All IO looks like operations on files: in

Unix, everything is a file

4 . 1

FILESYSTEM
Introduction
Design Principles
Filesystem

Files, Directories, Links, On-Disk Structures

Mounting Filesystems, In-Memory Tables, Consistency

Summary

4 . 2

FILE ABSTRACTION

File as an unstructured sequence of bytes which was relatively unusual at the time:
most systems lent towards files being composed of records

Cons: don't get nice type information; programmer must worry about format of
things inside file
Pros: less stuff to worry about in the kernel; and programmer has flexibility to
choose format within file!

Represented in user-space by a file descriptor (fd) this is just an opaque identifier —
a good technique for ensuring protection between user and kernel

Dr Richard Mortier IA Operating Systems, 2018/19 53/60

4 . 3

FILE OPERATIONS

Operations on files are:

fd = open(pathname, mode)
fd = creat(pathname, mode)
bytes = read(fd, buffer, nbytes)
count = write(fd, buffer, nbytes)
reply = seek(fd, offset, whence)
reply = close(fd)

The kernel keeps track of the current position within the file

Devices are represented by special files:

Support above operations, although perhaps with bizarre semantics

Also have ioctl for access to device-specific functionality

4 . 4

DIRECTORY HIERARCHY
Directories map names to files (and
directories) starting from distinguished root
directory called /

Fully qualified pathnames mean performing
traversal from root

Every directory has . and .. entries: refer to
self and parent respectively. Also have
shortcut of current working directory (cwd)
which allows relative path names; and the
shell provides access to home directory as ~username (e.g. ~mort/). Note that
kernel knows about former but not latter

Structure is a tree in general though this is slightly relaxed

4 . 5

ASIDE: PASSWORD FILE

/etc/passwd holds list of password entries of the form user-
name:encrypted-passwd:home-directory:shell
Also contains user-id, group-id (default), and friendly name.

Use one-way function to encrypt passwords i.e. a function which is easy to

compute in one direction, but has a hard to compute inverse. To login:

Get user name

Get password

Encrypt password

Check against version in /etc/password

If ok, instantiate login shell

Otherwise delay and retry, with upper bound on retries

Publicly readable since lots of useful info there but permits offline attack

Solution: shadow passwords (/etc/shadow)

4 . 6

FILE SYSTEM IMPLEMENTATION

Inside the kernel, a file is represented by a data structure called an index-node or i-
node which hold file meta-data: owner, permissions, reference count, etc. and
location on disk of actual data (file contents)

4 . 7

I-NODES

Why don't we have all blocks in a simple table?

Why have first few in inode at all?

How many references to access blocks at different places in the file?

If block can hold 512 block-addresses (e.g. blocks are 4kB, block addresses are 8

bytes), what is max size of file (in blocks)?

Where is the filename kept?

4 . 8

DIRECTORIES AND LINKS

Directory is (just) a file which
maps filenames to i-nodes —
that is, it has its own i-node
pointing to its contents

An instance of a file in a
directory is a (hard) link hence
the reference count in the i-
node. Directories can have at
most 1 (real) link. Why?

Also get soft- or symbolic-
links: a 'normal' file which contains a filename

Dr Richard Mortier IA Operating Systems, 2018/19 54/60

4 . 9

ON-DISK STRUCTURES

A disk consists of a boot block followed by one or more partitions. Very old disks

would have just a single partition. Nowadays have a boot block containing a

partition table allowing OS to determine where the filesystems are

Figure shows two completely independent filesystems; this is not replication for

redundancy. Also note |inode table| |superblock|; |data blocks| |inode table|

4 . 10

ON-DISK STRUCTURES

A partition is just a contiguous range of N fixed-size blocks of size k for some N and

k, and a Unix filesystem resides within a partition

Common block sizes: 512B, 1kB, 2kB, 4kB, 8kB

Superblock contains info such as:

Number of blocks and free blocks in filesystem

Start of the free-block and free-inode list

Various bookkeeping information

Free blocks and inodes intermingle with allocated ones

On-disk have a chain of tables (with head in superblock) for each of these.

Unfortunately this leaves superblock and inode-table vulnerable to head crashes so

we must replicate in practice. In fact, now a wide range of Unix filesystems that are

completely different; e.g., log-structure

4 . 11

MOUNTING FILESYSTEMS

Entire filesystems can be
mounted on an existing directory
in an already mounted
filesystem

At very start, only / exists so
must mount a root filesystem

Subsequently can mount other
filesystems, e.g.
mount("/dev/hda2",
"/home", options)

Provides a unified name-space: e.g. access /home/mort/ directly (contrast with
Windows9x or NT)

Cannot have hard links across mount points: why? What about soft links?

4 . 12

IN-MEMORY TABLES

Recall process sees files as file
descriptors

In implementation these are just
indices into process-specific open file
table

Entries point to system-wide open file
table. Why?

These in turn point to (in memory)
inode table

4 . 13

ACCESS CONTROL

Access control information held in each inode

Three bits for each of owner, group and world: read, write and execute
What do these mean for directories? Read entry, write entry, traverse directory

In addition have setuid and setgid bits:

Normally processes inherit permissions of invoking user
Setuid/setgid allow user to "become" someone else when running a given
program
E.g. prof owns both executable test (0711 and setuid), and score file (0600)

4 . 14

CONSISTENCY ISSUES

To delete a file, use the unlink system call — from the shell, this is rm
<filename>

Procedure is:

Check if user has sufficient permissions on the file (must have write access)

Check if user has sufficient permissions on the directory (must have write access)

If ok, remove entry from directory

Decrement reference count on inode

If now zero: free data blocks and free inode

If crash: must check entire filesystem for any block unreferenced and any block

double referenced

Crash detected as OS knows if crashed because root fs not unmounted cleanly

Dr Richard Mortier IA Operating Systems, 2018/19 55/60

4 . 15

UNIX FILESYSTEM: SUMMARY
Files are unstructured byte streams

Everything is a file: "normal" files, directories, symbolic links, special files

Hierarchy built from root (/)

Unified name-space (multiple filesystems may be mounted on any leaf directory)

Low-level implementation based around inodes

Disk contains list of inodes (along with, of course, actual data blocks)

Processes see file descriptors: small integers which map to system file table

Permissions for owner, group and everyone else

Setuid/setgid allow for more flexible control

Care needed to ensure consistency

5

SUMMARY
Introduction
Design Principles

Structural, Files, Directory Hierarchy
Filesystem

Files, Directories, Links, On-Disk Structures
Mounting Filesystems, In-Memory Tables, Consistency

Summary

Dr Richard Mortier IA Operating Systems, 2018/19 56/60

1 . 1

[12] CASE STUDY: UNIX

1 . 2

OUTLINE

IO

Implementation, The Buffer Cache

Processes

Unix Process Dynamics, Start of Day, Scheduling and States

The Shell

Examples, Standard IO

Main Unix Features

2 . 1

IO

IO

Implementation, The Buffer Cache

Processes
The Shell
Summary

2 . 2

IO IMPLEMENTATION

Everything accessed via the file system

Two broad categories: block and character; ignoring low-level gore:

Character IO low rate but complex — most functionality is in the "cooked"

interface

Block IO simpler but performance matters — emphasis on the buffer cache

2 . 3

THE BUFFER CACHE

Basic idea: keep copy of some parts of disk in memory for speed

On read do:

Locate relevant blocks (from inode)

Check if in buffer cache

If not, read from disk into memory

Return data from buffer cache

On write do same first three, and then update version in cache, not on disk

"Typically" prevents 85% of implied disk transfers

But when does data actually hit disk?

Call sync every 30 seconds to flush dirty buffers to disk

Can cache metadata too — what problems can that cause?

3 . 1

PROCESSES

IO

Processes
Unix Process Dynamics, Start of Day, Scheduling and States

The Shell

Main Unix Features

Dr Richard Mortier IA Operating Systems, 2018/19 57/60

3 . 2

UNIX PROCESSES

Recall: a process is a program in execution

Processes have three segments: text, data
and stack. Unix processes are heavyweight

Text: holds the machine instructions for the
program

Data: contains variables and their values

Stack: used for activation records (i.e.
storing local variables, parameters, etc.)

3 . 3

UNIX PROCESS DYNAMICS

Process is represented by an opaque process id (pid), organised hierarchically with

parents creating children. Four basic operations:

pid = fork ()
reply = execve(pathname, argv, envp)
exit(status)
pid = wait(status)

fork() nearly always

followed by exec()
leading to vfork()
and/or copy-on-write

(COW). Also makes a copy

of entire address space

which is not terribly

efficient

3 . 4

START OF DAY

Kernel (/vmunix) loaded from disk (how — where's the filesystem?) and execution

starts. Mounts root filesystem. Process 1 (/etc/init) starts hand-crafted

init reads file /etc/inittab and for each entry:

Opens terminal special file (e.g. /dev/tty0)

Duplicates the resulting fd twice.

Forks an /etc/tty process.

Each tty process next: initialises the terminal; outputs the string login: & waits

for input; execve()'s /bin/login

login then: outputs "password:" & waits for input; encrypts password and checks it

against /etc/passwd; if ok, sets uid & gid, and execve() shell

Patriarch init resurrects /etc/tty on exit

3 . 5

UNIX PROCESS SCHEDULING (I)
Priorities 0—127; user processes PUSER = 50. Round robin within priorities,
quantum 100ms.
Priorities are based on usage and nice, i.e.

gives the priority of process j at the beginning of interval i where:

and is a (partially) user controllable adjustment parameter in the range

 is the sampled average length of the run queue in which process resides,
over the last minute of operation

3 . 6

UNIX PROCESS SCHEDULING (II)
Thus if e.g. load is 1 this means that roughly 90% of 1s CPU usage is "forgotten"

within 5s

Base priority divides processes into bands; CPU and nice components prevent

processes moving out of their bands. The bands are:

Swapper; Block IO device control; File manipulation; Character IO device

control; User processes

Within the user process band the execution history tends to penalize CPU

bound processes at the expense of IO bound processes

3 . 7

UNIX PROCESS STATES

ru = running
(user-
mode)

rk = running
(kernel-
mode)

z = zombie p = pre-
empted

sl = sleeping rb = runnable

c = created

NB. This is simplified — see Concurrent
Systems section 23.14 for detailed
descriptions of all states/transitions

Dr Richard Mortier IA Operating Systems, 2018/19 58/60

4 . 1

THE SHELL

IO

Processes

The Shell

Examples, Standard IO

Main Unix Features

4 . 2

THE SHELL

Shell just a process like everything else.
Needn't understand commands, just files

Uses path for convenience, to avoid needing
fully qualified pathnames

Conventionally & specifies background

Parsing stage (omitted) can do lots: wildcard
expansion ("globbing"), "tilde" processing

4 . 3

SHELL EXAMPLES

$ pwd
/Users/mort/src
$ ls -F
awk-scripts/ karaka/ ocamllint/ sh-scripts/
backup-scripts/ mrt.0/ opensharingtoolkit/ sockman/
bib2x-0.9.1/ ocal/ pandoc-templates/ tex/
c-utils/ ocaml/ pttcp/ tmp/
dtrace/ ocaml-libs/ pyrt/ uon/
exapraxia-gae/ ocaml-mrt/ python-scripts/ vbox-bridge/
external/ ocaml-pst/ r/
junk/ ocaml.org/ scrapers/
$ cd python-scripts/
/Users/mort/src/python-scripts
$ ls -lF
total 224
-rw-r--r-- 1 mort staff 17987 2 Jan 2010 LICENSE
-rw-rw-r-- 1 mort staff 1692 5 Jan 09:18 README.md
-rwxr-xr-x 1 mort staff 6206 2 Dec 2013 bberry.py*
-rwxr-xr-x 1 mort staff 7286 14 Jul 2015 bib2json.py*
-rwxr-xr-x 1 mort staff 7205 2 Dec 2013 cal.py*
-rw-r--r-- 1 mort staff 1860 2 Dec 2013 cc4unifdef.py
-rwxr-xr-x 1 mort staff 1153 2 Dec 2013 filebomb.py*
-rwxr-xr-x 1 mort staff 1059 2 Jan 2010 forkbomb.py*

Prompt is $. Use man to find out about commands. User friendly?

4 . 4

STANDARD IO

Every process has three fds on creation:

stdin: where to read input from
stdout: where to send output
stderr: where to send diagnostics

Normally inherited from parent, but shell allows redirection to/from a file, e.g.,

ls >listing.txt
ls >&listing.txt
sh <commands.sh

Consider: ls >temp.txt; wc <temp.txt >results

Pipeline is better (e.g. ls | wc >results)
Unix commands are often filters, used to build very complex command lines
Redirection can cause some buffering subtleties

5 . 1

MAIN UNIX FEATURES
IO

Processes

The Shell

Main Unix Features

5 . 2

MAIN UNIX FEATURES
File abstraction

A file is an unstructured sequence of bytes
(Not really true for device and directory files)

Hierarchical namespace
Directed acyclic graph (if exclude soft links)
Thus can recursively mount filesystems

Heavy-weight processes
IO: block and character
Dynamic priority scheduling

Base priority level for all processes
Priority is lowered if process gets to run
Over time, the past is forgotten

But V7 had inflexible IPC, inefficient memory management, and poor kernel
concurrency
Later versions address these issues.

Dr Richard Mortier IA Operating Systems, 2018/19 59/60

6

SUMMARY
IO

Implementation, The Buffer Cache

Processes

Unix Process Dynamics, Start of Day, Scheduling and States

The Shell

Examples, Standard IO

Main Unix Features

Dr Richard Mortier IA Operating Systems, 2018/19 60/60

