
Object Oriented Programming
Dr Andrew Rice

IA CST and NST (CS)
Michaelmas 2018/19

1

The Course

The OOP Course

 So far you have studied some procedural programming in Java
and functional programming in ML

 Here we take your procedural Java and build on it to get
object-oriented Java

 You have ticks in Java

 This course complements the practicals

 Some material appears only here

 Some material appears only in the practicals

 Some material appears in both: deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate.

With thanks to Dr Robert Harle, who designed
this course and who wrote these course mate-
rials.

So far in this term you have been taught to program us-
ing the functional programming language ML. There
are many reasons we started with this, chief among
them being that everything is a well-formed function,
by which we mean that the output is dependent solely
on the inputs (arguments). This generally makes un-
derstanding easier since it maps directly to the func-
tions you are so familiar with from maths. In fact, if
you try any other functional language (e.g. Haskell)
you’ll probably discover that it’s very similar to ML
in many respects and translation is very easy. This
is a consequence of functional languages having very
carefully defined features and rules.

However, if you have any real-world experience of pro-
gramming, you’re probably aware that functional pro-
gramming is a niche choice. It is growing in popu-
larity, but the dominant paradigm is undoubtedly im-
perative programming. Unlike their functional equiv-
alents, imperative languages can look quite different
to each other, although as time goes on there does
seem to be more uniformity arising. Imperative pro-
gramming is much more flexible1 and, crucially, not all
imperative languages support all of the same language
concepts in the same way. So, if you just learn one
language (e.g. Java) you’ll probably struggle to sep-
arate the underlying programming concepts from the

1some would say it gives you more rope to hang yourself with!

Java-specific quirks. This means that when you want
to jump ship to the latest and greatest language, you
may have serious conceptual difficulties.

This is quite similar to learning ‘natural’ languages
(i.e. the languages we write and speak in). We are all
proficient, if not expert, in our mother tongue. Oddly
we are very good at spotting text that breaks the
‘rules’ of that language (grammar, spelling, etc.), but
almost hopeless at identifying the rules themselves.
Becoming fluent in a new language forces you to break
language down into its constituent rules, and you often
become better at your original language. Those who
are multilingual often comment that once you know
two languages well, picking up more is trivial: it’s just
a case of figuring out which rules to apply, possibly
adding a few new rules, and learning the vocabulary.
So it is with programming: once you’ve gone through
the effort of learning a couple of languages picking up
new ones is easy.

Outline

1. Types, Objects and Classes
2. Designing Classes
3. Pointers, References and Memory
4. Inheritance
5. Polymorphism
6. Lifecycle of an Object
7. Error Handling
8. Copying Objects
9. Java Collections
10. Object Comparison
11. Design Patterns
12. Design Pattern (cont.)

2

Books and Resources I

 OOP Concepts
 Look for books for those learning to first program in an OOP

language (Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly) if you already know another OOP
language

 Java specification book: http://java.sun.com/docs/books/jls/

 Lots of good resources on the web

 Design Patterns

 Design Patterns by Gamma et al.

 Lots of good resources on the web

Books and Resources II

 Also check the course web page

 Updated notes (with annotations where possible)

 Code from the lectures

 Sample tripos questions

 And the Moodle site “Computer Science Paper 1 (1A)”

 Watch for course announcements

http://www.cl.cam.ac.uk/teaching/current/OOProg/

There are many books and websites describing the
basics of OOP. The concepts themselves are quite
abstract, although most texts will use a specific
language to demonstrate them. The books I’ve
listed favour Java but you shouldn’t see that as
a dis-recommendation for other books. In terms
of websites, Oracle produce a series of tutorials
for Java, which cover OOP: http://java.sun.com/
docs/books/tutorial/ but you’ll find lots of other
good resources if you search.

0.1 Languages and Exams

The ‘examinable’ imperative language for this Paper
1 course is Java, and you won’t be required or ex-
pected to program in anything else. However,
Java doesn’t support all the interesting concepts found
in imperative programming (yet) so other languages
may be used to demonstrate certain features. The
languages are non-examinable insofar as they won’t
feature in the OOP questions. The concepts they il-
lustrate might, though.

This year I’ve added in some extra stuff on C++ and
Python. This is because those in the Natural Sciences
Tripos are likely to be looking at C++ next year. Sim-
ilarly, Computer Science Tripos students will be using
python for their Scientific Computing course over the
Christmas vacation. I’ve clearly marked out the C++
and python bits in coloured boxes. E.g.

C++

Things in these boxes will describe non-
examinable C++ or C-like languages

Python

Things in these boxes will describe non-
examinable python

0.2 Ticks

There are five OOP ticks, all in Java. They follow
on from the work you did in module three of the
Pre-arrival course, using the concepts from lectures to
build ever-better Game of Life implementations. Four
of the ticks have deadlines this term. The fifth you all
do over the vacation.

3

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/tutorial/

Lecture 1

Languages, Types, Objects and Classes

1.1 Imperative, Procedural,
Object Oriented

Types of Languages

 Declarative - specify what to do, not how
to do it. i.e.
 E.g. HTML describes what should appear on a web page,

and not how it should be drawn to the screen

 E.g. SQL statements such as “select * from table” tell a
program to get information from a database, but not how to
do so

 Imperative – specify both what and how
 E.g. “triple x“ might be a declarative instruction that you

want the variable x tripled in value. Imperatively we would
have “x=x*3” or “x=x+x+x”

Firstly a recap on declarative vs imperative:

Declarative languages specify what should be done
but not necessarily how it should be done. In a
functional language such as ML you specify what
you want to happen essentially by providing an
example of how it can be achieved. The ML com-
piler/interpreter can do exactly that or something
equivalent (i.e. it can do something else but it
must give the same output or result for a given
input).

Imperative languages specify exactly how something
should be done. You can consider an imperative
compiler to act very robotically—it does exactly
what you tell it to and you can easily map your
code to what goes on at a machine code level;

There’s a nice meme1 that helps here:

Functional programming is like describing
your problem to a mathematician. Imper-

1attributed to arcus, #scheme on Freenode

ative programming is like giving instructions
to an idiot.

Those of you who have done the Databases course will
have encountered SQL. Even those that haven’t can
probably decipher the language to a point—here’s a
trivial example:

select * from person_table where name="Bob";

This gets all entries from the database person table
where the name column contains “Bob”. This lan-
guage is highly functional: I have specified what I
want to achieve but given no indication as to how it
should be done. The point is that the SQL language
simply doesn’t have any way to specify how to look
something up—that functionality is built into the un-
derlying database and we (as users of the database)
shouldn’t concern ourselves.

On the other hand, the machine and assembly code
you saw in the pre-arrival course are arguably the ul-
timate imperative languages. However, as you can
imagine, programming in them directly isn’t much
fun. Other imperative languages have evolved from
these, each attempting to make the coding process
more human-friendly.

A key innovation was the use of procedures (equate
these to functions for now) to form procedural pro-
gramming. The idea is to group statements together
into procedures/functions that can be called to manip-
ulate the state. Code ends up as a mass of functions
plus some logic that calls them in an appropriate way
to achieve the desired result. That’s exactly how you
used Java in the pre-arrival course.

OOP is an extension to procedural programming (so
still imperative) where we recognise that these pro-
cedures/functions can themselves be usefully grouped
(e.g. all procedures that update a PackedLong vs all
procedures that draw to screen) and furthermore that
it often makes sense to group the state they affect with

4

them (e.g. group the PackedLong methods with the
underlying long).

Wait...

You might be struggling with the fact you specified
functions in ML that appear to fit the imperative
mould: there were statements expressing how to do
something. Think of these as specifying the desired
result by giving an example of how it might be ob-
tained. Exactly what the compiler does may or may
not be the same as the example—so long as it gives
the same outputs for all inputs, it doesn’t matter.

ML as a Functional Language

 Functional languages are a subset of declarative
languages
 ML is a functional language
 It may appear that you tell it how to do everything,

but you should think of it as providing an explicit
example of what should happen

 The compiler may optimise i.e. replace your
implementation with something entirely different
but 100% equivalent.

Although it’s useful to paint languages with these
broad strokes, the truth is today’s high-level languages
should be viewed more as a collection of features. ML
is a good example: it is certainly viewed as a func-
tional language but it also supports all sorts of imper-
ative programming constructs (e.g. references). Simi-
larly, the compilers for most imperative languages sup-
port optimisations where they analyse small chunks of
code and implement something different at machine-
level to increase performance—this is of course a trait
of declarative programming2. So the boundaries are
blurred, but ML is predominantly functional and Java
predominantly imperative, and we’ll take those narrow
views in this course.

1.1.1 Java as a Procedural Language

We used Java to introduce you to general procedural
programming in the pre-arrival course. This is not
ideal since Java is designed as an object oriented lan-

2Note that we need a way to switch off optimisations because
they don’t always work due to the presence of side effects in
functions. Tracking down an error in an optimisation is painful:
the ‘bug’ isn’t in the code you’ve written..!

guage through and through. Trying to force it to act
entirely procedurally required a number of ugly hacks
that you mat have noticed:

• all the functions had to be static (we’ll explain
that shortly);

• we had to create placeholder classes
(public class TinyLife...); and.

• we had a lot of annoying ‘boilerplate’
code that seemed rather unnecessary (e.g.
public static void main(...

Over the next few lectures the reason why these irrita-
tions are necessary should become apparent. Ideally,
we would have used a purely procedural language that
wouldn’t require such hacks, but we didn’t want to
force you to setup and learn yet another language in
one year.

1.2 Procedures, Functions,
Methods etc

Up to now, we’ve treated procedures as the same as
functions. Herein it’s useful for us to start making
some distinctions. One of the key properties of func-
tional languages is that they use proper functions. By
this I mean functions that have the same properties as
those you find in maths:

• All functions return a (non-void) result;

• the result is only dependent on the inputs (argu-
ments); and

• no state outside of the function can be modified
(i.e. no “side effects”).

Restricting ourselves to proper functions makes it eas-
ier for the compiler to assert declarative-like optimisa-
tions: a given function is completely standalone (i.e.
dependent on no state). You can pluck out an arbi-
trary function without reference to anything else in the
program and optimise it as you see fit.

5

Function Side Effects

 Functions in imperative languages can use or
alter larger system state → procedures

Maths: m(x,y) = xy

ML: fun m(x,y) = x*y;

Java: int m(int x, int y) = x*y;

int y = 7;
int m(int x) {

y=y+1;
return x*y;

}

Procedures have similarities to (proper) functions but
permit side effects and hence break the three rules
given above. Here’s another example:

fun add(x,y)=x+y;

add(1,2);

This ML (proper) function will always return 3 for
the input (1,2) regardless of the statements before or
after it. In Java, there is a direct equivalent:

static int addimp(int x, int y) {

return x+y;

}

addimp(1,2); // 3

but we could also write something a bit more nefarious:

static int z=0; // this is some global state

static int addimp(int x, int y) {

z=z+1;

return x+y+z;

}

addimp(1,2); // 4

addimp(1,2); // 5

addimp(1,2); // 6

Eeek! Three calls with the same arguments gives three
different answers. You certainly don’t see that in
maths. The problem is that the output is dependent
on some other state in the system (z), which it changes
(a side effect of calling it). Given only the procedure
name and its arguments, we cannot predict what the
state of the system will be after calling it without read-
ing the full procedure definition and analysing the cur-
rent state of the computer. One way of looking at this
is that the procedure is a proper function that takes

as input the argument you explicitly supply plus im-
plicitly all of the system state.

To really hammer this home, you can now have useful
functions with no arguments that return nothing (in-
dicated as void in Java)—both rather useless in maths:

void Procedures

 A void procedure returns nothing:

int count=0;

void addToCount() {
 count=count+1;
}

Health warning: Many imperative programmers use
the word ‘function’ as a synonym for ‘procedure’. Even
in these lectures I will use ‘function’ loosely. You will
have to use your intelligence when you hear the words.

Procedures are much more powerful, but as that awful
line in Spiderman goes, “with great power comes great
responsibility”. Now, that’s not to say that impera-
tive programming makes you into some superhuman
freak who runs around in his pyjamas climbing walls
and battling the evil functionals. It’s just that it in-
troduces a layer of complexity into programming that
might make the job run faster, but almost certainly
makes the job harder.

1.3 Recap: Control Flow

You’ve covered java’s control flow in the pre-arrival
course but it seems wrong not to at least mention it
here (albeit the coverage in lectures will be very brief).
The associated statements are classified into decision-
making, looping and branching.

Decision-making is quite simple:
if (...) {...} else {...} is the main thing
we care about. Java steals this syntax from C-like
languages, so it’s the same there.

Looping doesn’t require recursion (yay!) since we have
for and while:

6

Control Flow: Looping

for(initialisation; termination; increment)

while(boolean_expression)

for (int i=0; i<8; i++) …

int j=0; for(; j<8; j++) …

for(int k=7;k>=0; j--) ...

int i=0; while (i<8) { i++; …}

int j=7; while (j>=0) { j--; ...}

These examples all loop eight times. The following
code loops over the entirety of an array (the for ap-
proach is more usual for this task–why do you think
while is considered bad form here?):

Control Flow: Looping Examples

int arr[] = {1,2,3,4,5};

for (int i=0; i<arr.length;i++) {
System.out.println(arr[i]);

}

int i=0;
while (i<arr.length) {

System.out.println(arr[i]);
i=i+1;

}

For branching, we mainly care about return, break and
continue:

Control Flow: Branching I

 Branching statements interrupt the current control flow

 return

 Used to return from a function at any point

boolean linearSearch(int[] xs, int v) {
 for (int i=0;i<xs.length; i++) {

if (xs[i]==v) return true;
 }
 return false;
}

Control Flow: Branching II

 Branching statements interrupt the current control flow

 break

 Used to jump out of a loop

boolean linearSearch(int[] xs, int v) {
 boolean found=false;
 for (int i=0;i<xs.length; i++) {

if (xs[i]==v) {
found=true;
break; // stop looping

}
 }
 return found;
}

Control Flow: Branching III

 Branching statements interrupt the current control flow

 continue

 Used to skip the current iteration in a loop

void printPositives(int[] xs) {

 for (int i=0;i<xs.length; i++) {

if (xs[i]<0) continue;
System.out.println(xs[i]);

 }
}

In passing, a reminder about scopes since this caused
issues for some in the pre-arrival course. In Java a
scope is defined using curly braces—i.e. {...}. The
definition of a method used a scope, loops used a scope,
etc:

//...

public static void someMethod { // scope starts

} // scope ends

//...

In fact, you can create a scope anywhere in Java using
the braces. Recall that any variable you declared inside
a scope did not last beyond it. So:

//...

int x=1;

{ // Create an arbitrary scope

7

int y=2;

x=3;

System.out.println(x); // Fine: x is 3

System.out.println(y); // Fine: y is 2

} // End of scope

System.out.println(x); // Fine: x is 3

System.out.println(y); // Error: y is undefined

//...

C++

C++ (and all C-like languages) perform control
flow and define scopes in the same way.

Python

Python looks quite different, although the con-
cepts are all the same. Python defines the start
of a scope using a colon. It is notorious for us-
ing white space (spaces, tabs, etc) to define the
extent of the scope. Each scope has an indent;
when the indent goes, the scope is over. So you
get code like:

for i in range(0,10): # start scope 1

print i

for j in range(0,5): # start scope 2

print i*10+j

print "loop"

Here, scopes close when the associated indent
is lost. Scope 1 finishes just after the line
print "loop". Scope 2 finishes just before it.
The whitespace really matters here: one mis-
placed or missing space and it won’t compile..
This is very much a ‘marmite’ feature of python.

1.4 Values, Variables and Types

1.4.1 State Mutability

Immutable to Mutable Data

- val x=5;
> val x = 5 : int
- x=7;
> val it = false : bool
- val x=9;
> val x = 9 : int

int x=5;
x=7;

int x=9;

Java

ML

In ML you had values and in Java you have variables.
A simple way to ensure that functions in ML do not
depend on external state is to make all state constant,
or immutable. In ML you could write:

val x = 5;

x=7;

val x=9;

But these almost certainly didn’t do what you ex-
pected the first time you tried them. The first line
(val x = 7) creates a chunk of memory, sets the con-
tents to 7 and associates it with a label x. The second
(x = 5) you probably wanted to reassign the value,
but—since the values are constant—it actually per-
formed a comparison of x and 5, giving false! The third
line val x=5 actually creates another value in memory,
sets the value to 5 and reassigns the label x to point
to it. The original value of 7 remains untouched in
memory: you just can’t update it. So now you should
be able to understand the behaviour of:

val x = 7;

fun f(a)=x*a;

f(3);

val x=5;

f(3);

Java doesn’t have the shackles of proper functions so
we can have variables that can be updated (i.e. mu-
table state)–this is actually the essence of imperative
programming:

int x = 7; // create x and init to 7

8

x=5; // change the value of x

x==5; // compare the value of x

int x = 9; // error: x already created

1.4.2 Explicit Types vs Type Inference

Types and Variables

 Most imperative languages don't have type inference

 The high-level language has a series of primitive (built-in)
types that we use to signify what’s in the memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many

languages. It’s usually a 32-bit signed integer

 A variable is a name used in the code to refer to a specific
instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

In ML you created values of various types (real, int,
etc). You were (correctly) taught to avoid explicitly
assigning types wherever possible: ML had the capa-
bility to infer types. This was particularly useful be-
cause it allowed polymorphism to avoid writing sepa-
rate functions for integers, reals, etc. Every now and
then you had to help it out and manually specify a
type, but ML’s type inference is essentially a really
nice feature to have baked in. (I acknowledge that
ML’s error messages about type errors could be a lit-
tle less... cryptic).

Java and C-like languages are statically typed. This
means that every variable name must be bound to a
type, which is given when it is declared. So you must
say int x=1; and not x=1—the latter only works if you
are updating a previously-declared x. You can’t rede-
clare the type:

int x = 1;

String x = "Hi"; // Compile error

For methods, you must specify the type of the output
(its ‘return type’) and the type(s) of its argument(s).3

Python

Python is dynamically typed, which means each
variable name is not assigned a type. It can be

3Soon we meet Generics, where the type is left more open.
However, there is a type assigned to everything, even if it’s just
a placeholder.

bound to something that does have a type. E.g.

x = 1;

x = "Hi";

This is fine. The first line creates a name x and
binds it to an integer. The second line binds it to
a string. Similarly methods don’t need to have
declared types for the return or the arguments.
This gives us interesting ML-like flexibility:

def f(a,b):

return a+b

f(1,2) # return 3

f(1.0,2.0) # returns 3.0

f("He","llo") # returns "Hello"

However, not needing to declare a name can
catch you out:

myVariable=7

myvariable=myVariable*myVariable # Typo!!

Here I made a typo: myvariable not myVariable.
Jave would spot this and complain. But python
just assumes I wanted a new variable with the
name myvariable...

If you’re sticking around in CST next yer, you’ll
learn a lot more about this concept.

You have already met the primitive (built-in) types of
Java in the pre-arrival course, but here’s a recap

E.g. Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types that we will be

looking at soon.

 boolean – 1 bit (true, false)

 char – 16 bits

 byte – 8 bits as a signed integer (-128 to 127)

 short – 16 bits as a signed integer

 int – 32 bits as a signed integer

 long – 64 bits as a signed integer

 float – 32 bits as a floating point number

 double – 64 bits as a floating point number

9

C++

For any C/C++ programmers out there: yes,
Java looks a lot like the C syntax. But watch
out for the obvious gotcha—a char in C is a byte
(an ASCII character), whilst in Java it is two
bytes (a Unicode character). If you have an 8-bit
number in Java you may want to use a byte, but
you also need to be aware that a byte is signed..!

1.4.3 Polymorphism vs Overloading

Overloading Functions

 Same function name
 Different arguments
 Possibly different return type

 But not just a different return type

int myfun(int a, int b) {…}
float myfun(float a, float b) {…}
double myfun(double a, double b) {...}

int myfun(int a, int b) {…}
float myfun(int a, int b) {…} x

Since Java demands that all types are explicit (disre-
garding Generics, which we’ll come to soon), we rather
lose the ability to write one function that can be ap-
plied to multiple types—the cool4 polymorphism you
saw in ML. Instead we can make use of procedure
overloading. This allows you to write multiple meth-
ods with the same name but different argument types
and/or numbers:

int myfun(int a,int b,int c) {

// blah blah blah

}

int myfun(double a, double b, double c) {

// blah blah blah

}

When you call myfun the compiler looks at the argu-
ment types and picks the function that best matches.
This is nowhere near as elegant as in ML (I have to
write out a separate function for every argument set)
but at least when it’s being used there is naming con-
sistency.

4Your definition of ‘cool’ may vary

Python

Python’s dynamic typing means that you don’t
get method overloading:

def func(a,b):

return a+b

def func(a,b,c):

return a+b+c

func(1,2) # Error - func needs

3 srguments

func(1,2,3) # returns 6

That said, since you don’t specify the types, you
get some ML-like polymorphism (note that the
mechanism by which this is achieved is different
to ML, which is statically typed—see Part IB):

def func(a,b):

return a+b

func(1,2) # returns 3

func(1.0,2.0) # returns 3.0

func("A","B") # returns "AB"

func("A",1) # Error

In passing, we note that we talk about func-
tion prototypes or signatures to mean the
combination of return type, function name
and argument set—i.e. the first line such as
int myfun(double a, double b, double c).

Function Prototypes

 Functions are made up of a prototype and
a body
 Prototype specifies the function name,

arguments and possibly return type
 Body is the actual function code

fun myfun(a,b) = …;

int myfun(int a, int b) {...}

10

1.5 Classes and Objects

Sooner or later, using just the built-in primitive types
becomes restrictive. You saw this in ML, where you
could create your own types. This is also possible in
imperative programming and is, in fact, the crux of
object oriented programming.

Custom Types

datatype 'a seq = Nil
 | Cons of 'a * (unit -> 'a seq);

public class Vector3D {
 float x;
 float y;
 float z;
}

Let’s take a simple example: representing 3D vectors
(x,y,z). We could keep independent variables in our
code. e.g.

float x3=0.0;

float y3=0.0;

float z3=0.0;

void add_vec(float x1, float y1, float z1,

float x2, float y2, float z2) {

x3=x1+x2;

y3=y1+y2;

z3=z1+z2;

}

Clearly, this is not very elegant code. Note that, be-
cause I can only return one thing from a function, I
can’t return all three components of the answer (ML’s
tuples don’t exist here—sorry!). Instead, I had to ma-
nipulate external state. You see a lot of this style of
coding in procedural C coding. Yuk.

We would rather create a new type (call it Vector3D)
that contains all three components, as per the slide. In
OOP languages, the definition of such a type is called
a class. But it goes further than just being a grouping
of variables...

1.5.1 State and Behaviour

State and Behaviour

datatype 'a seq = Nil
 | Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;

public class Vector3D {
 float x;
 float y;
 float z;

 void add(float vx, float vy, float vz) {
 x=x+vx;
 y=y+vy;
 z=z+vz;
 }
}

What we’ve done so far looks a lot like procedu-
ral programming. There you create custom types to
hold your data or state, then write a ton of func-
tions/procedures to manipulate that state, and finally
create your program by sequencing the various proce-
dure calls appropriately. ML was similar: each time
you created a new type (such as sequences), you also
had to construct a series of helper functions to ma-
nipulate it (e.g. hd(), tail(), merge(), etc.). There was
an implicit link between the data type and the helper
functions, since one was useless without the other.

OOP goes a step further, making the link explicit by
having the class represent the type and the helper
functions that manipulate it. OOP classes therefore
glue together the state (i.e. variables) and the be-
haviour (i.e. functions or procedures) to create a com-
plete unit of the type.

Loose Terminology (again!)

Behaviour
Functions
Methods

Procedures

State
Fields

Instance Variables
Properties
Variables
Members

Having made all that fuss about ‘function’ and ‘pro-
cedure’, it only gets worse here: when we’re talking
about a procedure inside a class, it’s more properly

11

called a method. In the wild, you’ll find people use
‘function’, ‘procedure’ and ‘method’ interchangeably.
Thankfully you’re all smart enough to cope!

1.5.2 Instantiating classes: Objects

Classes, Instances and Objects

 Classes can be seen as templates for representing
various concepts

 We create instances of classes in a similar way.
e.g.

makes two instances of class MyCoolClass.

 An instance of a class is called an object

MyCoolClass m = new MyCoolClass();
MyCoolClass n = new MyCoolClass();

So a class is a grouping of state (data/variables) and
behaviour (methods). Whenever we create an instance
of a class, we call it an object. The difference between
a class and an object is thus very simple, but you’d be
surprised how much confusion it can cause for novice
programmers. Classes define what properties and pro-
cedures every object of the type should have (a tem-
plate if you like), while each object is a specific im-
plementation with particular values. So a Person class
might specify that a Person has a name and an age.
Our program may instantiate two Person objects—one
might represent 40-year old Bob; another might repre-
sent 20 year-old Alice. Programs are made up of lots
of objects, which we manipulate to get a result (hence
“object oriented programming”).

We’ve already seen how to create (define) objects in
the very last lesson of the pre-arrival course. There we
had:

// Define p as a new Vector3 object

Vector3 p = new Vector3();

// Reassign p to a new Vector3 object

p = new Vector3()

The things to note are that we needed a special new
keyword to instantiate an object; and that we pass it
what looks to be a method call (Vector3()). Indeed, it
is a method, but a special one: it’s called a constructor
for the class.

1.5.3 Defining Classes

Defining a Class

public class Vector3D {
 float x;
 float y;
 float z;

 void add(float vx, float vy, float vz) {
 x=x+vx;
 y=y+vy;
 z=z+vz;
 }
}

To define a class we need to declare the state and define
the methods it is to contain. Here’s a very simple Java
class containing one integer as its state and a single
method:

class MyShinyClass {

int x;

void setX(int xinput) {

x=xinput;

}

}

You were defining classes like this in your Pre-arrival
course code. Except there it was peppered with the
words public and static—we’ll look at both shortly.

1.5.4 Constructors

Constructors

 You will have noticed that the RHS looks rather like a function
call, and that's exactly what it is.

 It's a method that gets called when the object is constructed,
and it goes by the name of a constructor (it's not rocket
science). It maps to the datatype constructors you saw in ML.

 We use constructors to initialise the state of the class in a
convenient way

 A constructor has the same name as the class

 A constructor has no return type

MyObject m = new MyObject();

You can define one or more constructors for a class.

12

These are simply methods that are run when the ob-
ject is created. As with many OOP features, not all
languages support it. Python, for example, doesn’t
have constructors.

Python

Python classes do have a single init method
in each class that acts a bit like a constructor
but technically isn’t. Python fully constructs the
object, then passes it to the init method if it
exists—similar, but not quite the same thing as
i Java. In particular, you can only have one init
method in a class.

In Java, C++ and most other OOP languages, con-
structors have two properties:

1. they have the same name as the class; and

2. they have no return type.

You can’t specify a return type for a constructor be-
cause it is always called using the special new keyword,
which must return a reference to the newly constructed
object. You can, however, specify arguments for a con-
structor in the usual way for a method:

class MyShinyClass {

int x;

MyShinyClass(int x_init) {

setX(x_init);

}

void setX(int xinput) {

x=xinput;

}

}

Here, the constructor is used to initialise the member
variable x to a value passed in. We would specify this
when using the new keyword to create an object. e.g.

MyShinyClass m = new MyShinyClass(42);

C++

In C++, objects can be instantiated in two ways:

// Assume we have defined a class MyClass

MyClass x=MyClass();

MyClass *y = new MyClass();

The difference is subtle but important. The x
is associated with an object. When x dies (goes
out of scope), so does the object. y is actually
a pointer to a newly created object of type My-
Class. We discuss pointers soon, but for now
you can just note that when y goes out of scope,
the object it points too sticks around. We must
manually delete it (forgetting to do so is a classic
C++ error).

Overloaded Constructors

public class Vector3D {
 float x;
 float y;
 float z;

 Vector3D(float xi, float yi, float zi) {
 x=xi;
 y=yi;
 z=zi;
 }

 Vector3D() {
 x=0.f;
 y=0.f;
 z=0.f;
 }

 // ...
}

Vector3D v = new Vector3D(1.f,0.f,2.f);
Vector3D v2 = new Vector3D();

You can have multiple constructors in Java by over-
loading the method:

class MyShinyClass {

int x;

MyShinyClass() {

set

}

MyShinyClass(int x_init) {

setX(x_init);

}

void setX(int xinput) {

x=xInput;

}

}

//...

// An object with x set to 42

MyShinyClass m = new MyShinyClass(42);

// And object with x set to 0

MyShinyClass m2 = new MyShinyClass();

13

Default Constructor

public class Vector3D {
 float x;
 float y;
 float z;
}

Vector3D v = new Vector3D();

 No constructor provided

 So blank one generated with
no arguments

If you don’t specify any constructor at all, Java fills in
a default constructor for you. This takes no arguments
and does nothing, other than allowing you to make
objects. i.e.

class MyShinyClass {

}

is converted to

class MyShinyClass {

MyShinyClass() { }

}

so you can write MyShinyClass m = new MyShinyClass();.

1.5.5 Static

Sometimes there is state that is more logically asso-
ciated with a class than an object. An example may
help here:

Class-Level Data and Functionality I

 A static field is created only once in the program's execution,
despite being declared as part of a class

public class ShopItem {
 float mVATRate;
 static float sVATRate;

}

One of these created every
time a new ShopItem is
instantiated. Nothing keeps
them all in sync.

Only one of these created ever. Every
ShopItem object references it.

So a static variable is only instantiated once per
class not per object. You don’t even need to create
an object to access a static variable. Just writing
ShopItem.sVATRate would give you access.

You see examples of this in the Math class provided
by Java: you can just call Math.PI to get the value of
pi, rather than creating a Math object first. The same
goes for methods: you write Math.sqrt(...) rather than
having to first instantiate a Math object.

Class-Level Data and Functionality II

 Auto synchronised
across instances

 Space efficient
17.5

0.2

0.2

0.2

17.5

0.2

public class Whatever {
 public static void main(String[] args) {
 ...
 }
}

 Also static methods:

Methods can also be static. In this case they must
not use anything other than local or static variables.
So it can’t use anything that is instance-specific (i.e.
non-static member variables are out).

Looking back at the pre-arrival course, we really
wanted something that had no class notion at all. The
closest we could get in Java was to make everything
static so there weren’t any objects floating around.
Not pretty, but it got the job done.

Why use Static Methods?
 Easier to debug (only depends on static state)

 Self documenting

 Groups related methods in a Class without requiring an object

 The compiler can produce more efficient code since no specific
object is involved

public class Math {
 public float sqrt(float x) {…}
 public double sin(float x) {…}
 public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
 public static float sqrt(float x) {…}
 public static float sin(float x) {…}
 public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs

14

Lecture 2

Designing Classes

2.1 Identifying Classes

What Not to Do

 Your ML has doubtless been one big file where
you threw together all the functions and value
declarations

 Lots of C programs look like this :-(

 We could emulate this in OOP by having one
class and throwing everything into it

 We can do (much) better

Having one massive class, MyApplication perhaps, with
all the state and behaviour in it, is a surprisingly com-
mon novice error. This achieves nothing (in fact it just
adds boilerplate code). Instead we aim to have multi-
ple classes, each embodying a well-defined concept.

Identifying Classes

 We want our class to be a grouping of
conceptually-related state and behaviour

 One popular way to group is using grammar
 Noun → Object
 Verb → Method

“A simulation of the Earth's orbit around the
Sun”

Very often classes follow naturally from the problem
domain. So, if you are making a snooker game, you
might have an object to represent the table; to repre-

sent each ball; to represent the cue; etc. Identifying
the best possible set of classes for your program is
more of an art than a science and depends on many
factors. However, it is usually straightforward to de-
velop sensible classes, and then keep on refining them
(“refactoring”) until we have something better.

A helpful way to break your program down is in
term of tangible things—represented by the nouns you
would use when describing the program. Similarly, the
verbs often map well to the behaviour required of your
classes. Think of these as guidelines or rules of thumb,
not rules.

UML: Representing a Class Graphically

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means
public access

“-” means
private access

The graphical notation used here is part of UML (Uni-
fied Modeling Language). UML is a standardised set
of diagrams that can be used to describe software inde-
pendently of any programming language used to im-
plement it. UML contains many different diagrams.
In this course we will only be interested in basic UML
class diagrams such as the one in the slide.

15

The has-a Association

College Student1 0...*

 Arrow going left to right says “a College has zero or more
students”

 Arrow going right to left says “a Student has exactly 1
College”

 What it means in real terms is that the College class will
contain a variable that somehow links to a set of Student
objects, and a Student will have a variable that references a
College object.

 Note that we are only linking classes: we don't start drawing
arrows to primitive types.

Note that the arrowhead must be ‘open’. It is normal
to annotate the head with the multiplicity (i.e. how
many of these something has), but some programmers
are lax on this (for examination purposes, you are ex-
pected to annotate the heads). I’ve shown a dual-
headed arrow; if the multiplicity value is zero, you can
leave off the arrowhead and annotation entirely.

2.2 OOP Concepts

OOP Concepts

 OOP provides the programmer with a
number of important concepts:

 Modularity
 Code Re-Use
 Encapsulation
 Inheritance
 Polymorphism

 Let's look at these more closely...

Let’s be clear here: OOP doesn’t enforce the correct
usage of the ideas we’re about to look at. Nor are
the ideas exclusively found in OOP languages. The
main point is that OOP encourages the use of these
concepts, which we believe is good for software design.

2.2.1 Modularity and Code Re-Use

Modularity and Code Re-Use

 You've long been taught to break down complex
problems into more tractable sub-problems.

 Each class represents a sub-unit of code that (if
written well) can be developed, tested and updated
independently from the rest of the code.

 Indeed, two classes that achieve the same thing
(but perhaps do it in different ways) can be swapped
in the code

 Properly developed classes can be used in other
programs without modification.

Modularity is extremely important in OOP. It’s a com-
mon Computer Science trick: break big problems down
into chunks and solve each chunk. In this case, we
have large programs, meaning scope for lots of cod-
ing bugs. By identifying objects in our problem, we
can write classes that represent them. Each class can
be developed, tested and maintained independently of
the others. Then, when we sequence hem together to
make our larger program, there are far fewer places
where it can go wrong.

There is a further advantage to breaking a program
down into self-contained objects: those objects can be
ripped from the code and put into other programs. So,
once you’ve developed and tested a class that embodies
everything about donkey, say, you can use it in lots
of other programs with minimal effort. Even better,
the classes can be distributed to other programmers so
they don’t have to reinvent the wheel. Therefore OOP
strongly encourages software re-use.

As an aside, modularity often goes further than the
classes/objects. Java has the notion of packages to
group together classes that are conceptually linked.
We use them in the ticks to group together the code
you write. It allows us to distinguish between the
ArrayLife class you write and the ArrayLife class some-
one else writes (e.g. uk.ac.cam.rkh23.ArrayLife rather
than the ambiguous ArrayLife).

C++

C++ has namespaces, which are very similar to
Java’s packages.

Python

Python has modules and packages.

16

2.2.2 Encapsulation and Information
Hiding

Encapsulation I

class Student {
 int age;
};

void main() {
 Student s = new Student();
 s.age = 21;

 Student s2 = new Student();
 s2.age=-1;

 Student s3 = new Student();
 s3.age=10055;
}

This code defines a basic Student class, with only one
piece of state per Student. In the main() method we
create three instances of Students. We observe that
nothing stops us from assigning nonsensical values to
the age.

Encapsulation II

class Student {
 private int age;

 boolean setAge(int a) {
 if (a>=0 && a<130) {

age=a;
return true;

 }
 return false;
 }

 int getAge() {return age;}
}

void main() {
 Student s = new Student();
 s.setAge(21);
}

Here we have assigned an access modifier called private
to the age variable. This means nothing external to the
class (i.e. no piece of code defined outside of the class
definition) can read or write the age variable directly.

Another name for encapsulation is information hiding
or even implementation hiding in some texts. The idea
is that a class should expose a clean interface that al-
lows full interaction with it, but should expose nothing
about its internal state or how it manipulates it.

From now on, apply this rule: all state is private
unless there is a very good reason for it not to
be.

To get access to the age variable we define a getAge()
and a setAge() method to allow read and write, re-
spectively. On the face of it, this is just more code
to achieve the same thing. However, we have new op-
tions: by omitting setAge() altogether we can prevent
anyone modifying the age (thereby adding immutabil-
ity!); or we can provide sanity checks in the setAge()
code to ensure we can only ever store sensible values.

Encapsulation III

class Location {
 private float x;
 private float y;

 float getX() {return x;}
 float getY() {return y;}

 void setX(float nx) {x=nx;}
 void setY(float ny) {y=ny;}
}

class Location {

 private Vector2D v;

 float getX() {return v.getX();}
 float getY() {return v.getY();}

 void setX(float nx) {v.setX(nx);}
 void setY(float ny) {v.setY(ny);}
}

Here we have a simple example where we wish to
change the underlying representation of a co-ordinate
(x,y) from raw primitives to a custom Vector2D object.
We can do this without changing the public interface
to the class and hence without having to update any
piece of code that uses the Location class.

You may hear people talking about coupling and cohe-
sion. Coupling refers to how much one class depends
on another. High coupling is bad since it means chang-
ing one class will require you to fix up lots of others.
Cohesion is a qualitative measure of how strongly re-
lated everything in the class is—we strive for high co-
hesion. Encapsulation helps to minimise coupling and
maximise cohesion.

Access Modifiers

Everyone Subclass Same
package
(Java)

Same
Class

private X

package
(Java)

X X

protected X X X

public X X X X

17

OOP languages feature some set of access modifiers
that allow us to do various levels of data hiding.
Java uses public, protected, private} and package. We
haven’t yet talked about subclassing, so don’t worry
about that column yet.

C++

C++ has public, protected, and private, with the
same meanings as Java. There’s no package
equivalent.

Python

Here we see a big departure. Python doesn’t
have access modifiers, despite being considered
an OOP language! Everything in a python class
can be directly accessed by anything external to
it (i.e. the equivalent of public for everything).

Instead, there is a convention that variables
or functions starting with an underscore (e.g.
myvar or myfunc should be treated as private—

i.e. you shouldn’t touch them directly. The phi-
losophy is “we’re all adults here”. You can decide
yourself whether you think this is a good idea.
My betting is that you will be as suspicious of
this philosophy as I am once you have developed
anything substantial in a team!

2.3 Immutability

The discussion of access modifiers leads us naturally
to talk about immutability. You should recall from
FoCS that every value in ML is immutable: once it’s
set, it can’t be changed. From a low-level perspective,
writing val x=7; allocates a chunk of memory and
sets it to the value 7. Thereafter you can’t change
that chunk of memory. You could reassign the label by
writing val x=8; but this sets a new chunk of memory
to the value 8, rather than changing the original chunk
(which sticks around, but can’t be addressed directly
now since x points elsewhere).

It turns out that immutability has some serious ad-
vantages when concurrency is involved—knowing that
nothing can change a particular chunk of memory
means we can happily share it between threads with-
out worry of contention issues. It also has a tendency
to make code less ambiguous and more readable. It is,
however, more efficient to manipulate previously al-
located memory rather than constantly allocate new
chunks. In OOP, we can have the best of both worlds.

Immutability

 Everything in ML was immutable (ignoring the
reference stuff). Immutability has a number of
advantages:
 Easier to construct, test and use
 Can be used in concurrent contexts
 Allows lazy instantiation

 We can use our access modifiers to create
immutable classes

To make a class immutable:

• Make sure all state is private.

• Consider making state final (this just tells the
compiler that the value never changes once con-
structed).

• Make sure no method tries to change any internal
state.

To quote Effective Java by Joshua Bloch:

“Classes should be immutable unless there’s
a very good reason to make them mutable...
If a class cannot be made immutable, limit
its mutability as much as possible.”

C++

Java’s final is close in spirit to C++’s const key-
word. However, C++ lets you take a mutable
class and make a particular instance immutable
using the const keyword. This can be useful, but
it also tends to cause confusion: sometimes you
are mutating a variable without realising it is
const and you just see a host of compiler errors.
The problem isn’t applicable to Java due to the
way Java only deals with references (we’ll come
back to this soon).

2.4 Parameterised Types

We commented earlier that Java lacked the nice poly-
morphism that type inference gave us. Languages
evolve, however, and it has been retrofitted to the lan-
guage via something called Generics. It’s not quite
the same (it would have been too big a change to put

18

in full type inference), but it does give us similar flex-
ibility.

Parameterised Classes

 ML's polymorphism allowed us to specify functions that could
be applied to multiple types

 In Java, we can achieve something similar through Generics;
C++ through templates

 Classes are defined with placeholders (see later lectures)

 We fill them in when we create objects using them

> fun self(x)=x;
val self = fn : 'a -> 'a

LinkedList<Integer> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

Initially, you will most likely encounter Generics when
using Java’s built-in data structures such as LinkedList,
ArrayList, Map, etc. For example, say you wanted a
linked list of integers or Vector3D objects. You would
declare:

LinkedList<Integer> lli = new LinkedList<Integer>();

LinkedList<Vector3D> llv = new LinkedList<Vector3D>();

This was shoe-horned into Java relatively recently,
so if you are looking at old code on the web
or old books, you might see them using the
non-Generics versions that ignore the type e.g.
LinkedList ll = new LinkedList() allows you to
throw almost anything into it (including a mix of
types—a source of many bugs!).

The astute amongst you may have noted that I used
LinkedList<Integer> and not LinkedList<int>—it
turns out that, in order to keep old code working, we
simply can’t use primitive types directly in Generics
classes. This is a java-specific irritation and we will be
looking at why later on in the course. For now, just
be aware that every primitive has associated with it
an (immutable) class that wraps around a variable of
that type. For example, int has Integer,double has
Double, etc.

2.4.1 Creating Parameterised Types

Creating Parameterised Types

 These just require a placeholder type

class Vector3D<T> {
 private T x;
 private T y;

 T getX() {return x;}
 T getY() {return y;}

 void setX(T nx) {x=nx;}
 void setY(T ny) {y=ny;}
}

We already saw how to use Generics types in Java (e.g.
LinkedList<Integer>). Declaring them is not much
harder than a ‘normal’ class. The T is just a place-
holder (and I could have used any letter or word—T

is just the de-facto choice). Once declared we can cre-
ate Vector3D objects with different underlying storage
types, just like with LinkedList:

Vector3D<Integer> vi = new Vector3D<Integer>(); // Vector of integers

Vector3D<Float> vi = new Vector3D<Float>(); // Vector of single precision reals

Vector3D<Double> vi = new Vector3D<Double>(); // Vector of double precision reals

There is no problem having parame-
terised types as parameters—for example
LinkedList< Vector3D<Integer> > declares a
list of integer vector objects. And we can have
multiple parameters in our definitions:

public class Pair<U,V> {

private U mFirst;

private V mSecond;

...

}

You see this most commonly with Maps in Java,
which represent dictionaries, mapping keys of some
type to values of (potentially) some other type. e.g.
a TreeMap<String,Integer> could be used to map
names to ages).

C++

If you’ve used C++ you might be familiar with
template classes. These share a similar syntax
with Java Generics and, for now, it won’t hurt
to think of them as equivalent. However, they

19

are very different under the hood as we will see.

20

Lecture 3

Pointers, References and Memory

Imperative languages manipulate state held in system
memory. They more naturally extend from assembly
and before we go any further we need a mental model
of how the compiler uses all this memory.

3.1 Pointers and References

Memory and Pointers

 In reality the compiler stores a mapping from variable
name to a specific memory address, along with the type
so it knows how to interpret the memory (e.g. “x is an int
so it spans 4 bytes starting at memory address 43526”).

 Lower level languages often let us work with memory
addresses directly. Variables that store memory
addresses are called pointers or sometimes references

 Manipulating memory directly allows us to write fast,
efficient code, but also exposes us to bigger risks

 Get it wrong and the program 'crashes' .

The compiler must manipulate the computer’s mem-
ory, but the notion of type doesn’t exist at the lowest
level. Memory is simply a vast pool of bits, grouped
(usually) into bytes, and the compiler must manually
specify the byte it wants to read or change using the
memory address. This is little more than a number
uniquely identifying that specific byte. So when you
ask for an int to be created, the compiler knows to
find a 4-byte chunk of memory that isn’t being used
(assuming ints are 32 bits), mark it as used and set
the bytes appropriately.

Some languages allow us, as programmers, to move be-
yond the abstraction of memory provided by explicit
variable creation. They allow us to have variables that
contain the actual memory addresses and even to ma-
nipulate them. We call such variables pointers and
the traditional way to understand them is the “box
and arrow” model:

Pointers: Box and Arrow Model

 A pointer is just the memory address of the first memory slot
used by the variable

 The pointer type tells the compiler how many slots the whole
object uses

xptr2

xxptr1int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;

Example: Representing Strings I

 A single character is fine, but a text string is of variable length – how
can we cope with that?

 We simply store the start of the string in memory and require it to
finish with a special character (the NULL or terminating character,
aka '\0')

 So now we need to be able to store memory addresses → use
pointers

 We think of there being an array of characters (single letters) in
memory, with the string pointer pointing to the first element of that
array

C S R U L E S

11

\0

11 12 13 14 15 16 177 8 9 10 18

21

Example: Representing Strings II

stringPointer

h e l l o char letterArray[] = {'h','e','l','l','o','\0'};

 char *stringPointer = &(letterArray[0]);

 printf(“%s\n”,stringPointer);

 letterArray[3]='\0';

 printf(“%s\n”,stringPointer);

\0

Pointers are simply variables where the value is a mem-
ory address. We can arbitrarily modify them either
accidentally or intentionally and this can lead to all
sorts of problems. Although the symptom is usually
the same: a hard program crash.

References

 A reference is an alias for another thing
(object/array/etc)

 When you use it, you are 'redirected'
somehow to the underlying thing

 Properties:
 Either assigned or unassigned
 If assigned, it is valid
 You can easily check if assigned

References are aliases for other objects—i.e. they redi-
rect to the ‘real’ object. You have of course met them
in the last lecture on ML.

Implementing References

 A sane reference implementation in an
imperative language is going to use pointers

 So each reference is the same as a pointer
except that the compiler restricts operations
that would violate the properties of
references

 For this course, thinking of a reference as a
restricted pointer is fine

Any sane implementation of a reference is likely to
use pointers (and in FoCS they were directly equated).
However, the concept of a reference forbids you from
doing all of the things you can do with a pointer:

Distinguishing References and Pointers

Pointers References

Can be unassigned
(null)

Yes Yes

Can be assigned to
established object

Yes Yes

Can be assigned to an
arbitrary chunk of
memory

Yes No

Can be tested for validity No Yes

Can perform arithmetic Yes No

The ability to test for validity is particularly impor-
tant. A pointer points to something valid, something
invalid, or null (a special zero-pointer that indicates
it’s not initialised). References, however, either point
to something valid or to null. With a non-null ref-
erence, you know it’s valid. With a non-null pointer,
who knows? So references are going to be safer than
pointers.

For those with experience with pointers, you might
have found pointer arithmetic rather useful at times
(e.g. incrementing a pointer to move one place for-
ward in an array, etc). You can’t do that with a refer-
ence since it would lead to you being able to reference
arbitrary memory.

Languages and References

 Pointers are useful but dangerous
 C, C++: pointers and references
 Java: references only
 ML: references only

22

Arrays

byte[] arraydemo1 = new byte[6];
byte arraydemo2[] = new byte[6];

0x1AC594

0x1AC595

0x1AC596

0x1AC597

0x1AC598

0x1AC599

0x1AC5A0

0x1AC5A1

0x1AC5A2

References in Java

 Declaring unassigned

 Defining/assigning

SomeClass ref = null; // explicit

SomeClass ref2; // implicit

// Assign
SomeClass ref = new ClassRef();

// Reassign to alias something else
ref = new ClassRef();

// Reference the same thing as another reference
SomeClass ref2 = ref;

References Example (Java)
int[] ref1 = null;

ref1 = new int[]{1,2,3,4};

int[] ref2 = ref1;

ref1[3]=7;

ref2[1]=6;

ref1

ref1

ref1

ref2

1 2 3 4

1 2 3 4

ref1

ref2

ref1

ref2

1 2 3 7

1 6 3 7

<null>

Sun decided that Java would have only references and
no explicit pointers. Whilst slightly limiting, this
makes programming much safer (and it’s one of the
many reasons we teach with Java). Java has two
classes of types: primitive and reference. A primitive
type is a built-in type. Everything else is a reference
type, including arrays and objects.

3.2 Keeping Track of Function
Calls: The Call Stack

To this point we’ve been a bit woolly about what hap-
pens when we run (“call”) functions. We have used
nebulous terms like “the stack” or maybe “the call
stack”.

Keeping Track of Function Calls

 We need a way of keeping track of which
functions are currently running

public void a() {
 //...
}

public void b() {
 a();
}

When we call b(), the system must run a() while re-
membering that we return to b() afterwards. When
a function is called from another, this is called nest-
ing1 (just as loops-within-loops are considered nested).
The nesting can go arbitrarily deep (well, OK, until we
run out of memory to keep track). The data structure
widely used to keep track is the call stack

The Call Stack

Remember the way the fetch-execute cycle handles
procedure calls2: whenever a procedure is called we
jump to the machine code for the procedure, execute
it, and then jump back to where it was before and
continue on. This means that, before it jumps to the

1If the function is calling itself then it is of course recursive
2Review the pre-arrival course if not

23

procedure code, it must save where it is.

We do this using a call stack. A stack is a simple
data structure that is the digital analogue of a stack
of plates: you add and take from the top of the pile
only3. We say that we push new entries onto the stack
and pop entries from its top. Here the ‘plates’ are
called stack frames and they contain the function pa-
rameters, any local variables the function creates and,
crucially, a return address that tells the CPU where
to jump to when the function is done. When we finish
a procedure, we delete the associated stack frame and
continue executing from the return address it saved.

The Call Stack: Example

1 int twice(int d) return 2*d;
2 int triple(int d) return 3*d;
3 int a = 50;
4 int b = twice(a);
5 int c = triple(a);
6 ...

0 0

a=50

0

a=50

d=50

5

100

0

a=50

b=100

0

a=50

b=100

d=50

6

150

0

a=50

b=100

c=150

In this example I’ve avoided going down to assembly
code and just assumed that the return address can be
the code line number. This causes a small problem
with e.g. line 4, which would be a couple of machine
instructions (one to get the value of twice{) and one
to store it in b). I’ve just assumed the computer mag-
ically remembers to store the return value for brevity.
This is all very simple and the stack never gets very
big—things are more interesting if we start nesting
functions:

Nested Functions

0 0

a=50

0

a=50

d=50

5

0

a=50

d=50

5

d=50

2

100

0

a=50

d=50

5

d=100

2

200

0

a=50

d=50

5

a=200

0

a=50

b=200

1 int twice(int d) return 2*d;
2 int quadruple(int d) return twice(twice(d));
3 int a=50;
4 int b = quadruple(a);
5 ...

3See Algorithms next term for a full analysis

And even more interesting if we add nesting/recursion
into the mix:

Recursive Functions

1 int pow (int x, int y) {
2 if (y==0) return 1;
3 int p = pow(x,y-1);
4 return x*p;
5 }
6 int s=pow(2,7);
7 ...

0

y=7
4

x=2

0

y=7
4

x=2

0

y=6
4

x=3

y=7
4

x=2

0

y=6
4

x=2

y=7
4

x=2

0

y=6
4

x=2

...

y=5
4

x=2
y=5

4

x=2

y=4
4

x=2

y=7
4

x=2

0

y=6
4

x=2

y=5
4

x=2

p=16

y=7
4

x=2

0

y=6
4

x=2

p=32

...

0
s=128

We immediately see a problem: computers only have
finite memory so if our recursion is really deep, we’ll be
throwing lots of stack frames into memory and, sooner
or later, we will run out of memory. We call this stack
overflow and it is an unrecoverable error that you’re
almost certainly familiar with from ML. You know that
tail-recursion does better, but:

Tail-Recursive Functions I

1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...

0

y=7

3

x=2

0

...

128

t=1
y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

128

128

0
s=128

If you’re in the habit of saying tail-recursive functions
are better, be careful—they’re only better if the com-
piler/interpreter knows that it can optimise them to
use O(1) space. Java compilers don’t...4

4Language designers usually speak of ‘tail-call optimisation’
since there is actually nothing special about recursion in this
case: functions that call other functions may be written to use
only tail calls, allowing the same optimisations.

24

Tail-Recursive Functions II

1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...

0

y=7

3

x=2

0

t=1

0 0

y=5

3

x=2

t=4

0
s=128

y=6

3

x=2

t=2
y=4

3

x=2

0

t=8

0 0

y=2

3

x=2

t=32
y=3

3

x=2

t=16

0

y=1

3

x=2

t=64

3.3 The Heap

There’s a subtlety with the stack that we’ve passed
over until now. What if we want a function to create
something that sticks around after the it finishes? Or
to resize something (say an array)? We talk of mem-
ory being dynamically allocated rather than statically
allocated as per the stack.

Why can’t we dynamically allocate on the stack? Well,
imagine that we do everything on a stack and you have
a function that resizes an array. We’d have to grow the
stack, but not from the top, but where the stack was
put. This rather invalidates our stack and means that
every memory address we have will need to be updated
if it comes after the array.

The Heap

int[] x = new int[3];
public void resize(int size) {
 int tmp=x;
 x=new int[size];
 for (int=0; i<3; i++)
 x[i]=tmp[i];
}
resize(5);

0

x

size=5

0

x

size=3
5 7 9

5 7 9 0

x

size=5

Heap

Stack

0

x

We avoid this by using a heap5. Quite simply we al-
locate the memory we need from some large pool of
free memory, and store a pointer to the chunk we al-

5Note: you meet something called a ‘heap’ in Algorithms: it
is NOT the same thing

located in the stack. Pointers are of known size so
won’t ever increase. If we want to resize our array, we
create a new, bigger array, copy the contents across
and update the pointer within the stack. In the slide
above the array exists on the stack and ends up being
replaced with a new, bigger stack. The reference to it
(x) is updated to point to the new one. Note: there’s
some missing Java code in the slide, since the contents
of the initial array would need to be manually copied
across to the new one.

For those who do the Paper 2 O/S course, you will find
that the heap gets fragmented : as we create and delete
stuff we leave holes in memory. Occasionally we have
to spend time ‘compacting’ the holes (i.e. shifting all
the stuff on the heap so that it’s used more efficiently.

3.4 Pass-by-value and Pass-by-
reference

Argument Passing

 Pass-by-value. Copy the object into a new value in
the stack

 Pass-by-reference. Create a reference to the
object and pass that.

y=3

x=3
void test(int x) {...}
int y=3;
test(y);

y=3

xvoid test(int &x) {...}
int y=3;
test(y);

Note I had to use C here since Java doesn’t have a
pass-by-reference operator such as &.

Pass-by-value. The value of the argument is copied
into a new argument variable (this is what we as-
sumed in the call stack earlier)

Pass-by-reference. Instead of copying the object
(be it primitive or otherwise), we pass a reference
to it. Thus the function can access the original
and (potentially) change it.

When arguments are passed to java functions, you may
hear it said that primitive values are “passed by value”
and arrays are “passed by reference”. I think this is
misleading (and technically wrong).

25

Passing Procedure Arguments In Java

class Reference {

 public static void update(int i, int[] array) {
 i++;
 array[0]++;
 }

 public static void main(String[] args) {
 int test_i = 1;
 int[] test_array = {1};
 update(test_i, test_array);
 System.out.println(test_i);
 System.out.println(test_array[0]);
 }

}

This example is taken from your practicals, where
you observed the different behaviour of test i and
test array—the former being a primitive int and the
latter being a reference to an array.

Let’s create a model for what happens when we pass
a primitive in Java, say an int like test i. A new stack
frame is created and the value of test i is copied into
the stack frame. You can do whatever you like to this
copy: at the end of the function it is deleted along
with the stack frame. The original is untouched.

Now let’s look at what happens to the test array vari-
able. This is a reference to an array in memory. When
passed as an argument, a new stack frame is created.
The value of test array (which is just a memory ad-
dress) is copied into a new reference in the stack frame.
So, we have two references pointing at the same thing.
Making modifications through either changes the orig-
inal array.

So we can see that Java actually passes all arguments
by value, it’s just that arguments are either primitives
or references. i.e. Java is strictly pass-by-value6.

The confusion over this comes from the fact that many
people view test array to be the array and not a refer-
ence to it. If you think like that, then Java passes it
by reference, as some texts (incorrectly) claim. The
examples sheet has a question that explores this fur-
ther.

C++

6If your supervisor frowns at this, point them to the Java
specification, section 8.4.1.

Passing Procedure Arguments In C++

void update(int i, int &iref){
 i++;
 iref++;
}

int main(int argc, char** argv) {
 int a=1;
 int b=1;
 update(a,b);
 printf("%d %d\n",a,b);
}

Things are a bit clearer in other languages, such
as C++. They may allow you to specify how
something is passed. In this C++ example,
putting an ampersand (‘&’) in front of the ar-
gument tells the compiler to pass by reference
and not by value.

Having the ability to choose how you pass vari-
ables can be very powerful, but also problematic.
Look at this code:

bool testA(HugeInt h) {

if (h > 1000) return TRUE;

else return FALSE;

}

bool testB(HugeInt &h) {

if (h > 1000) return TRUE;

else return FALSE;

}

Here I have made a fictional type HugeInt which
is meant to represent something that takes a lot
of space in memory. Calling either of these func-
tions will give the same answer, but what hap-
pens at a low level is quite different. In the first,
the variable is copied (lots of memory copying
required—bad) and then destroyed (ditto). In
the second, only a reference is created and de-
stroyed, and that’s quick and easy.

So, even though both pieces of code work fine,
if you miss that you should pass by reference
(just one tiny ampersand’s difference) you incur
a large overhead and slow your program.

I see this sort of mistake a lot in C++ program-

26

ming and I guess the Java designers did too—
they stripped out the ability to specify pass by
reference or value from Java!

27

Lecture 4

Inheritance

Inheritance I

class Student {
 public int age;
 public String name;
 public int grade;
}

class Lecturer {
 public int age;
 public String name;
 public int salary;
}

 There is a lot of duplication here

 Conceptually there is a hierarchy that we're
not really representing

 Both Lecturers and Students are people
(no, really).

 We can view each as a kind of
specialisation of a general person

 They have all the properties of a person

 But they also have some extra stuff
specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance II

class Person {
 public int age;
 public String name;
}

class Student extends Person {
 public int grade;
}

class Lecturer extends Person {
 public int salary;
}

 We create a base class (Person)
and add a new notion: classes can
inherit properties from it

 Both state and functionality

 We say:

 Person is the superclass of
Lecturer and Student

 Lecturer and Student subclass
Person

Java uses the keyword extends to indicate inheritance
of classes.

C++

In C++ it’s a more opaque colon:

class Parent {...};

class Student : public Parent {...};

class Lecturer : public Parent {...};

Representing Inheritance Graphically

exam_score

Student

salary

Lecturer

name
age

Person Also known as an “is-a” relation

As in “Student is-a Person”

Sp
e

cial ise

G
e

n
er

al
is

e

name and age
inherited if not
private

Inheritance is an extremely powerful concept that is
used extensively in good OOP. We discussed the “has-
a” relation amongst classes; inheritance adds an “is-a”
concept. E.g. A car is a vehicle that has a steering
wheel.

We speak of an inheritance tree where moving down
the tree makes things more specific and up the tree
more general. Unfortunately, we tend to use an array
of different names for things in an inheritance tree.
For B extends A, you might hear any of:

• A is the superclass of B

• A is the parent of B

• A is the base class of B

• B is the child of A

• B derives from A

• B extends A

• B inherits from A

• B subclasses A

Many students confuse “is-a” and “has-a” arrows in
their UML class diagrams: please make sure you don’t!
Inheritance has an empty triangle for the arrowhead,
whilst association has two ‘wings’.

28

4.1 Casting

Casting

 Many languages support type casting
between numeric types

 With inheritance it is reasonable to type
cast an object to any of the types above it
in the inheritance tree...

int i = 7;
float f = (float) i; // f==7.0
double d = 3.2;
int i2 = (int) d; // i2==3

Widening

 Student is-a Person

 Hence we can use a Student object
anywhere we want a Person object

 Can perform widening conversions
(up the tree)

Person

Student

Student s = new Student()

Person p = (Person) s;

“Casting”

public void print(Person p) {...}

Student s = new Student();
print(s);

Implicit cast

Narrowing

 Narrowing conversions move down
the tree (more specific)

 Need to take care...

Person

Student

Person p = new Person();

Student s = (Student) p;

FAILS. Not enough info
In the real object to represent
a Student

Student s = new Student();
Person p = (Person) s;
Students s2 = (Student) p;

OK because underlying object
really is a Student

When we create an object, a specific chunk of memory
is allocated with all the necessary info and a reference
to it returned (in Java). Casting just creates a new
reference with a different type and points it to the
same memory chunk. Everything we need will be in

the chunk if we cast to a parent class (plus some extra
stuff).

If we try to cast to a child class, there won’t be all
the necessary info in the memory so it will fail. But
beware—you don’t get a compiler error in the failed
example above! The compiler is fine with the cast and
instead the program chokes when we try to run that
piece of code—a runtime error.

Note the example of casting primitive numeric types
in the slide is a bit different, since a new variable of
the primitive type is created and assigned the relevant
value.

4.2 Shadowing

Fields and Inheritance

class Person {
 public String mName;
 protected int mAge;
 private double mHeight;
}

class Student extends Person {

 public void do_something() {
 mName=”Bob”;
 mAge=70;
 mHeight=1.70;
 }

}

Student inherits this as a public
variable and so can access it

Student inherits this as a
protected variable and so can
access it

Student inherits this but as a
private variable and so cannot
access it directly

You will see that the protected access modifier can now
be explained. A protected variable is exposed for read
and write within a class, and within all subclasses of
that class. Code outside the class or its subclasses
can’t touch it directly1.

1At least, that’s how it is in most languages. Java actually
allows any class in the same Java package to access protected
variables as discussed previously.

29

Fields and Inheritance: Shadowing
class A { public int x; }

class B extends A {
 public int x;
}

class C extends B {
 public int x;

 public void action() {
 // Ways to set the x in C
 x = 10;
 this.x = 10;

 // Ways to set the x in B
 super.x = 10;
 ((B)this).x = 10;

 // Ways to set the x in A
 ((A)this.x = 10;
 }
}

What happens here?? There is an inheritance tree (A
is the parent of B is the parent of C). Each of these
declares an integer field with the name x. In memory,
you will find three allocated integers for every object
of type C. We say that variables in parent classes with
the same name as those in child classes are shadowed.

Note that the variables are genuinely being shadowed
and nothing is being replaced. This is in contrast to
the behaviour with methods...

NB: A common novice error is to assume that we have
to redeclare a field in its subclasses for it to be inher-
ited: not so. Every non-private field is inherited by a
subclass.

There are two new keywords that have appeared here:
super and this. The this keyword can be used in any
class method2 and provides us with a reference to the
current object. In fact, the this keyword is what you
need to access anything within a class, but because
we’d end up writing this all over the place, it is taken
as implicit. So, for example:

public class A {

private int x;

public void go() {

this.x=20;

}

}

becomes:

public class A {

private int x;

public void go() {

x=20;

}

2By this I mean it cannot be used outside of a class, such as
within a static method: see later for an explanation of these.

}

The super keyword gives us access to the direct parent
(one step up in the tree). You’ve met both keywords
in your Java practicals.

4.3 Overloading

We have already discussed function overloading, where
we had multiple functions with the same name, but a
different prototype (i.e. set of arguments). The same
is possible within classes.

4.4 Overriding

The remaining question is what happens to methods
when they are inherited and rewritten in the child
class. The obvious possibility is that they are treated
the same as fields, and shadowed. When this occurs
we say that the method is overridden. As it happens,
we can’t do this in Java, but it is the default in C++
so we can use that to demonstrate:

Methods and Inheritance: Overriding

 We might want to require that every Person can dance. But the way
a Lecturer dances is not likely to be the same as the way a Student
dances...

class Person {
 public void dance() {
 jiggle_a_bit();
 }
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
}

Person defines a
'default' implementation
of dance()

Lecturer just inherits the
default implementation
and jiggles

Student overrides the
default

Every object that has Person for a parent must have a
dance() method since it is defined in the Person class
and is inherited. If we override it in Child then Child
objects will behave differently. There are some sub-
tleties to this that we’ll return to next lecture.

A useful habit to get into is to annotate every function
you override using @Override. This serves two pur-
poses: firstly it tells anyone reading the code that it’s
an overridden method; secondly it allows the compiler
to check it really does override something. It’s surpris-
ingly easy to make a typo and think you’ve overridden
but actually not. We’ll see this later when we discuss

30

object comparison.

4.5 Abstract Methods and
Classes

Abstract Methods

 Sometimes we want to force a class to implement a method
but there isn't a convenient default behaviour

 An abstract method is used in a base class to do this

 It has no implementation whatsoever

class abstract Person {
 public abstract void dance();
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
 public void dance() {
 jiggle_a_bit();
 }
}

An abstract method can be thought of as a contractual
obligation: any non-abstract class that inherits from
this class will have that method implemented.

Abstract Classes

 Note that I had to declare the class abstract too. This is
because it has a method without an implementation so
we can't directly instantiate a Person.

 All state and non-abstract methods are inherited as
normal by children of our abstract class

 Interestingly, Java allows a class to be declared abstract
even if it contains no abstract methods!

public abstract class Person {
 public abstract void dance();
}

class Person {
 public:
 virtual void dance()=0;
}Java C++

Abstract classes allow us to partially define a type.
Because it’s not fully defined, you can’t make an ob-
ject from an abstract class (try it). Only once all of
the ‘blanks’ have been filled in can we create an ob-
ject from it. This is particularly useful when we want
to represent high level concepts that do not exist in
isolation.

Depending on who you’re talking to, you’ll find differ-
ent terminology for the initial declaration of the ab-
stract function (e.g. the public abstract void dance()
bit). Common terms include method prototype and
method stub.

C++

In C++, the syntax for abstract is a bit different.
Firstly you define the method as virtual to indi-
cate you want dynamic polymorphism (see next
lecture) and you use =0 to indicate you aren’t
filling it in here:

class Person {

public:

virtual void dance()=0;

}

Python

Abstract methods/base classes in python were
only added fairly recently. And they look very
much like the afterthought they are.

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the class
or method is abstract

You have to look at UML diagrams carefully since
the italics that represent abstract methods or classes
aren’t always obvious on a quick glance.

31

Lecture 5

Polymorphism

You should be comfortable with the polymorphism1

that you met in FoCS, where you wrote functions that
could operate on multiple types. It turns out that is
just one type of polymorphism in programming, and
it isn’t the form that most programmers mean when
they use the word. To understand that, we should look
back at our overridden methods:

Polymorphic Methods

 Assuming Person has a default
dance() method, what should
happen here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 General problem: when we refer to an object via a parent
type and both types implement a particular method: which
method should it run?

Polymorphic Concepts I

 Static polymorphism
 Decide at compile-time
 Since we don't know what the true type of the

object will be, we just run the parent method
 Type errors give compile errors

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler says “p is of type Person”
 So p.dance() should do the default

dance() action in Person

If we can get different method implementations by
casting the same object to different types, we have

1The etymology of the word polymorphism is from the an-
cient Greek: poly (many)–morph (form)–ism

static polymorphism. In general static polymor-
phism refers to anything where decisions are made at
compile-time (so-called “early binding”). You may re-
alise that all the polymorphism you saw in ML was
static polymorphism. The shadowing of fields also fits
this description.

Polymorphic Concepts II

 Dynamic polymorphism
 Run the method in the child
 Must be done at run-time since that's when we

know the child's type
 Type errors cause run-time faults (crashes!)

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler looks in memory and finds
that the object is really a Student

 So p.dance() runs the dance() action
in Student

Here we get the same method implementation regard-
less of what we cast the object to. In order to be
sure that it gets this right, we can’t figure out which
method to run when we are compiling. Instead, the
system has to run the program and, when a decision
needs to be made about which method to run, it must
look at the actual object in memory (regardless of the
type of the reference, which may be a cast) and act
appropriately.

This form of polymorphism is OOP-specific and is
sometimes called sub-type or ad-hoc polymorphism.
It’s crucial to good, clean OOP code. Because it
must check types at run-time (so-called “late bind-
ing”) there is a performance overhead associated with
dynamic polymorphism. However, as we’ll see, it gives
us much more flexibility and can make our code more
legible.

Beware: Most programmers use the word ‘polymor-
phism’ to refer to dynamic polymorphism.

32

The Canonical Example I

 A drawing program that can draw circles,
squares, ovals and stars

 It would presumably keep a list of all the
drawing objects

 Option 1

 Keep a list of Circle objects, a list of
Square objects,...

 Iterate over each list drawing each
object in turn

 What has to change if we want to add
a new shape?

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example II

 Option 2

 Keep a single list of Shape references

 Figure out what each object really is,
narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList
 if (s is really a Circle)
 Circle c = (Circle)s;
 c.draw();
 else if (s is really a Square)
 Square sq = (Square)s;
 sq.draw();
 else if...

The Canonical Example III

 Option 3 (Polymorphic)

 Keep a single list of Shape references

 Let the compiler figure out what to do
with each Shape reference

 What if we want to add a new shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
 s.draw();

Implementations

 Java
 All methods are dynamic polymorphic.

 Python

 All methods are dynamic polymorphic.

 C++
 Only functions marked virtual are dynamic

polymorphic

 Polymorphism in OOP is an extremely important concept
that you need to make sure you understand...

C++ allows you to choose whether methods are in-
herited statically (default) or dynamically (explicitly
labelled with the keyword virtual). This can be good
for performance (you only incur the dynamic overhead
when you need to) but gets complicated, especially if
the base method isn’t dynamic but a derived method
is...

The Java designers avoided the problem by enforcing
dynamic polymorphism. You may find reference to
final methods being Java’s static polymorphism since
this gives a compile error if you try to override it in
subclasses. But really, this isn’t the same: the com-
piler isn’t choosing between multiple implementations
but rather enforcing that there can only be one imple-
mentation.

5.1 Multiple Inheritance and
Interfaces

Harder Problems

 Given a class Fish and a class DrawableEntity, how do we
make a BlobFish class that is a drawable fish?

Fish

DrawableEntity

BlobFish

FishDrawableEntity BlobFish

X Dependency
between two
independent

concepts

X Conceptually wrong

33

Multiple Inheritance

 If we multiple inherit, we capture
the concept we want

 BlobFish inherits from both and
is-a Fish and is-a DrawableEntity

 C++:

 But...

Fish DrawableEntity

BlobFish

+ swim() + draw()

+ swim()
+ draw()

class Fish {…}
class DrawableEntity {…}

class BlobFish : public Fish,
 public DrawableEntity {...}

This is the obvious and (perhaps) sensible option that
manages to capture the concept nicely.

Multiple Inheritance Problems

 What happens here? Which of
the move() methods is inherited?

 Have to add some grammar to
make it explicit

 C++:

 Yuk.

Fish DrawableEntity

BlobFish

+ move() + move()

????

BlobFish *bf = new BlobFish();
bf->Fish::move();
bf->DrawableEntity::move();

Many texts speak of the “dreaded diamond”. This
occurs when a base class has two children who are the
parents of another class through multiple inheritance
(thereby forming a diamond in the UML diagram). If
the two classes in the middle independently override
a method from the top class, the bottom class suffers
from the problem in this slide.

Fixing with Abstraction

 Actually, this problem
goes away if one or more
of the conflicting
methods is abstract

Fish DrawableEntity

BlobFish

+ move() + move()

+ move()

The problem goes away here because the methods are
abstract and hence have no implementation that can
conflict.

Java's Take on it: Interfaces
 Classes can have at most one parent. Period.

 But special 'classes' that are totally abstract can do
multiple inheritance – call these interfaces

<<interface>>
 Drivable

+ turn()
+ brake()

Car

<<interface>>
 Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

interface Drivable {
 public void turn();
 public void brake();
}

interface Identifiable {
 public void getIdentifier();
}

class Bicycle implements Drivable {
 public void turn() {...}
 public void brake() {… }
}

class Car implements Drivable, Identifiable {
 public void turn() {...}
 public void brake() {… }
 public void getIdentifier() {...}
}

So Java allows you to inherit from one class only
(which may itself inherit from one other, which may
itself...). Many programmers coming from C++ find
this limiting, but it just means you have to think of
another way to represent your classes (often a better
way, although not always!).

A Java interface is essentially just a class that has:

• No state whatsoever; and

• All methods abstract.

This is a greatly simplified concept that allows for mul-
tiple inheritance without any chance of conflict. Inter-
faces are represented in our UML class diagram with
a preceding <<interface>> label and inheritance oc-
curs via the implements keyword rather than through
extends.

Interfaces are so important in Java they are considered

34

to be the third reference type (the other two being
classes and arrays). Using interfaces encourages a high
level of abstraction in code, which is generally a good
thing since it makes the code more flexible/portable.
However, it is possible to overdo it, ending up with 20
files where just one would do...

35

Lecture 6

Lifecycle of an Object

We met constructors earlier in the course as methods
that initialise objects. We can now add a bit more
detail. When you request a new object, Java will do
quite a lot of work:

Creating Objects in Java

new MyObject()

Load
MyObject.class

Create
java.lang.Class

object

Allocate any
static fields

Run static
initialiser blocks

Allocate memory
for object

Run non-static
initialiser blocks

Run constructor

Yes

No Is MyObject already loaded
in memory?

Note that Java maintains a java.lang.Class object for
every class it loads into memory from a .class file. This
object actually allows you query things about the class,
such as its name or to list all the methods it has. The
ability to do inspect (and possibly modify!) a pro-
gram’s structure is a feature called reflection. It’s quite
a powerful feature that exists in some (but certainly
not all) languages. It’s out of scope here but worth
exploring if you’re interested.

Initialisation Example

public class Blah {
 private int mX = 7;
 public static int sX = 9;

 {
 mX=5;
 }

 static {
 sX=3;
 }

 public Blah() {
 mX=1;

 sX=9;
 }
}

Blah b = new Blah();
Blah b2 = new Blah();

1. Blah loaded

2. sX created

3. sX set to 9

4. sX set to 3

5. Blah object allocated

6. mX set to 7

7. mX set to 5

8. Constructor runs (mX=1, sX=9)

9. b set to point to object

10. Blah object allocated

11. mX set to 7

12. mX set to 5

13. Constructor runs (mX=1, sX=9)

14. b2 set to point to object

Things get even more complex when we throw in some
inheritance:

Constructor Chaining

 When you construct an object of a type with parent
classes, we call the constructors of all of the parents
in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

In reality, Java asserts that the first line of a construc-
tor always starts with super(), which is a call to the
parent constructor (which itself starts with super(),
etc.). If it does not, the compiler adds one for you:

public class Person {

public Person() {

36

}

}

becomes:

public class Person {

public Person() {

super();

}

}

C++

In other languages that support multiple inher-
itance, this becomes more complex since there
may be more than one parent and a simple key-
word like super isn’t enough. Instead they sup-
port manually specifying the constructor param-
eters for the parents. E.g. for C++:

class Child : public Parent1, Parent2 {

public:

Child() : Parent1("Alice"),

Parent2("Bob") {...}

}

Chaining without Default Constructors

 What if your classes have explicit constructors that take
arguments? You need to explicitly chain

 Use super in Java:

Person

Student

-mName : String
+Person(String name)

+Student()

public Person (String name) {
 mName=name;
}

public Student () {
 super(“Bob”);
}

Deterministic Destruction

 Objects are created, used and (eventually) destroyed. Destruction is very language-
specific

 Deterministic destuction is what you would expect

 Objects are deleted at predictable times

 Perhaps manually deleted (C++):

 Or auto-deleted when out of scope (C++):

void UseRawPointer()
{
 MyClass *mc = new MyClass();
 // ...use mc...
 delete mc;
}

void UseSmartPointer()
{
 unique_ptr<MyClass> *mc = new MyClass();
 // ...use mc...
} // mc deleted here

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed

 Allows us to release any resources (open files, etc) or memory
that we might have created especially for the object

class FileReader {
 public:

 // Constructor
 FileReader() {
 f = fopen(“myfile”,”r”);
 }

 // Destructor
 ~FileReader() {
 fclose(f);
 }

 private :
 FILE *file;
}

int main(int argc, char ** argv) {

 // Construct a FileReader Object
 FileReader *f = new FileReader();

 // Use object here
 ...

 // Destruct the object
 delete f;

}

C++

It will shortly become apparent why I used C++ and
not Java for this example.

Non-Deterministic Destruction

 Deterministic destruction is easy to understand and seems simple
enough. But it turns out we humans are rubbish of keeping track of
what needs deleting when

 We either forget to delete (→ memory leak) or we delete multiple times
(→ crash)

 We can instead leave it to the system to figure out when to delete

 “Garbage Collection”

 The system someohow figures out when to delete and does it for
us

 In reality it needs to be cautious and sure it can delete. This leads
to us not being able to predict exactly when something will be
deleted!!

 This is the Java approach!!

37

What about Destructors?

 Conventional destructors don’t make
sense in non-deterministic systems
 When will they run?
 Will they run at all??

 Instead we have finalisers: same concept
but they only run when the system deletes
the object (which may be never!)

OK, so a finalizer is just a rebadged destructor, but the
rebadging is important. It reminds us as programmers
that it won’t run deterministically. Because you can’t
tell when finalizer methods will get called in Java, their
value is greatly reduced. It’s actually quite rare to see
them in Java in my experience.

Garbage Collection

 So how exactly does garbage collection work? How can a system
know that something can be deleted?

 The garbage collector is a separate process that is constantly
monitoring your program, looking for things to delete

 Running the garbage collector is obviously not free. If your
program creates a lot of short-term objects, you will soon notice
the collector running

 Can give noticeable pauses to your program!
 But minimises memory leaks (it does not prevent them...)

 There are various algorithms: we’ll look at two that can be found in
Java

 Reference counting

 Tracing

Reference Counting

 Java’s original GC. It keeps track of how many references
point to a given object. If there are none, the programmer
can't access that object ever again so it can be deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Note that reference counting has an associated cost

- every object needs more memory (to store the ref-
erence count) and we have to monitor changes to all
references to keep the counts up to date.

Reference Counting Gotcha

 Circular references are a pain

Person object
#ref = 2

r1 = null;
r2 = null;

r1

Person object
#ref = 2

field

field

r2

Person object
#ref = 1

Person object
#ref = 1

field

field

Objects
unreachable!!

Tracing

 Start with a list of all references you can get to

 Follow all refrences recursively, marking each object

 Delete all objects that were not marked

object

object

object

object

x

y

z

object

object

Unreachable
so deleted

38

Lecture 7

Java Collections and Object Comparison

Java Class Library

 Java the platform contains around 4,000 classes/interfaces
 Data Structures

 Networking, Files

 Graphical User Interfaces

 Security and Encryption

 Image Processing

 Multimedia authoring/playback

 And more...

 All neatly(ish) arranged into packages (see API docs)

Remember Java is a platform, not just a programming
language. It ships with a huge class library : that is to
say that Java itself contains a big set of built-in classes
for doing all sorts of useful things like:

• Complex data structures and algorithms

• I/O (input/output: reading and writing files, etc)

• Networking

• Graphical interfaces

Of course, most programming languages have built-
in classes, but Java has a big advantage. Because
Java code runs on a virtual machine, the underlying
platform is abstracted away. For C++, for example,
the compiler ships with a fair few data structures, but
things like I/O and graphical interfaces are completely
different for each platform (Windows, OSX, Linux,
whatever). This means you usually end up using lots
of third-party libraries to get such extras—not so in
Java.

There is, then, good reason to take a look at the Java
class library to see how it is structured.

7.1 Collections and Generics

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library

 A collection is some sort of grouping of things
(objects)

 Usually when we have some grouping we want
to go through it (“iterate over it”)

 The Collections framework has two main
interfaces: Iterable and Collection. They define
a set of operations that all classes in the
Collections framework support

 add(Object o), clear(), isEmpty(), etc.

The Java Collections framework is a set of interfaces
and classes that handles groupings of objects and al-
lows us to implement various algorithms invisibly to
the user (you’ll learn about the algorithms themselves
next term).

Sets

<<interface>> Set
 A collection of elements with no duplicates that

represents the mathematical notion of a set

 TreeSet: objects stored in order

 HashSet: objects in unpredictable order but fast
to operate on (see Algorithms course)

A
B

C

TreeSet<Integer> ts = new TreeSet<Integer>();
ts.add(15);
ts.add(12);
ts.contains(7); // false
ts.contains(12); // true
ts.first(); // 12 (sorted)

39

Lists

<<interface>> List
 An ordered collection of elements that may contain

duplicates

 LinkedLIst: linked list of elements

 ArrayList: array of elements (efficient access)

 Vector: Legacy, as ArrayList but threadsafe

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();
ll.add(1.0);
ll.add(0.5);
ll.add(3.7);
ll.add(0.5);
ll.get(1); // get element 2 (==3.7)

Queues

<<interface>> Queue
 An ordered collection of elements that may contain

duplicates and supports removal of elements from the head
of the queue

 offer() to add to the back and poll() to take from the front

 LinkedList: supports the necessary functionality

 PriorityQueue: adds a notion of priority to the queue so more
important stuff bubbles to the top

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();
ll.offer(1.0);
ll.offer(0.5);
ll.poll(); // 1.0
ll.poll(); // 0.5

Maps

<<interface>> Map

 Like dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and
(sometimes) null.

 TreeMap: keys kept in order

 HashMap: Keys not in order, efficient
(see Algorithms)

K1
A

B

B

K3 K2

TreeMap<String, Integer> tm = new TreeMap<String,Integer>();
tm.put(“A”,1);
tm.put(“B”,2);
tm.get(“A”); // returns 1
tm.get(“C”); // returns null
tm.contains(“G”); // false

There are other interfaces in the Collections class, and
you may want to poke around in the API documenta-
tion. In day-to-day programming, however, these are
likely to be the interfaces you use.

Now, don’t worry about too much what’s going on be-
hind the scenes (that comes in the Algorithms course),
just recognise that there are a series of implementa-

tions in the class library that you can use, and that
each has different properties. You should get into
the habit of reading the API descriptions to find best
choice for your specific problem.

Iteration

 for loop

 foreach loop (Java 5.0+)

LinkedList<Integer> list = new LinkedList<Integer>();
...
for (int i=0; i<list.size(); i++) {
 Integer next = list.get(i);
}

LinkedList list = new LinkedList();
...
for (Integer i : list) {
 ...
}

The foreach notation works for arrays too and it’s par-
ticularly neat when we have nested iteration. E.g. it-
eration over all students and their subjects:

for (Student stu : studentlist)

for (Subject sub : subjectlist)

getMarks(stu, sub);

versus:

for (int i=0; i<studentlist.size(); i++) {

Student stu = studentlist.get(i);

for (int j=0; i<subjectlist.size(); i++) {

Subject sub = subjectlist.get(j);

getMarks(stu, sub);

}

}

Iterators

 What if our loop changes the structure?

 Java introduced the Iterator class

 Safe to modify structure

for (int i=0; i<list.size(); i++) {
 If (i==3) list.remove(i);
}

Iterator<Integer> it = list.iterator();

while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}

while(it.hasNext()) {
 it.remove();
}

40

Note that the foreach structure isn’t useful with
Iterators. So we sacrifice some code readability for the
ability to adjust the Collection’s structure as we go.

7.2 Comparing Objects

Comparing Objects

 You often want to impose orderings on your data
collections

 For TreeSet and TreeMap this is automatic

 For other collections you may need to explicitly
sort

 For numeric types, no problem, but how do you
tell Java how to sort Person objects, or any
other custom class?

TreeMap<String, Person> tm = ...

LinkedList<Person> list = new LinkedList<Person>();
//...
Collections.sort(list);

Collections are great, but often you end up needing to
impose orderings (i.e. sort). Examples include print-
ing users by surname, or computing numerical metrics
such as the median.

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive

 But what does (ref1==ref2) do??

 Test whether they point to the same object?

 Test whether the objects they point to have the same
state?

The problem is that we deal with references to objects,
not objects. So when we compare two things, do we
compare the references of the objects they point to?
As it turns out, both can be useful so we want to
support both.

7.2.1 Object Equality

Reference Equality

 r1==r2, r1!=r2
 These test reference equality
 i.e. do the two references point ot the same chunk of

memory?

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references differ)

True (references differ)

True

Value Equality

 Use the equals() method in Object

 Default implementation just uses reference equality (==)
so we have to override the method

public EqualsTest {
 public int x = 8;

 @Override
 public boolean equals(Object o) {
 EqualsTest e = (EqualsTest)o;
 return (this.x==e.x);
 }

 public static void main(String args[]) {
 EqualsTest t1 = new EqualsTest();
 EqualsTest t2 = new EqualsTest();
 System.out.println(t1==t2);
 System.out.println(t1.equals(t2));
 }
}

I find this mildly irritating: every class you use will
support equals() but you’ll have to check whether or
not it has been overridden to do something other than
==. Personally, I try to limit my use of equals() to
objects from core Java classes, where I trust it to have
been done properly.

Aside: Use The Override Annotation

 It's so easy to mistakenly write:

public EqualsTest {
 public int x = 8;

 public boolean equals(EqualsTest e) {
 return (this.x==e.x);
 }

 public static void main(String args[]) {
 EqualsTest t1 = new EqualsTest();
 EqualsTest t2 = new EqualsTest();
 Object o1 = (Object) t1;
 Object o2 = (Object) t2;
 System.out.println(t1.equals(t2));
 System.out.println(o1.equals(o2));
 }
}

41

Aside: Use The Override Annotation II

 Annotation would have picked up the mistake:

public EqualsTest {
 public int x = 8;

 @Override
 public boolean equals(EqualsTest e) {
 return (this.x==e.x);
 }

 public static void main(String args[]) {
 EqualsTest t1 = new EqualsTest();
 EqualsTest t2 = new EqualsTest();
 Object o1 = (Object) t1;
 Object o2 = (Object) t2;
 System.out.println(t1.equals(t2));
 System.out.println(o1.equals(o2));
 }
}

What’s happening here is that the signature of our
overriding method doesn’t match the one in Object.
So, Java actually overloads it, keeping both methods.
By using @Override when we mean to override not over-
load, the compiler will spot our error.

For the geeks out there (i.e. non-examinable), we
could write a compiler that spots that EqualsTest is a
subclass of Object and therefore do overriding. This is
called covariant parameter types and is not supported
by Java.

Java Quirk: hashCode()

 Object also gives classes hashCode()
 Code assumes that if equals(a,b) returns

true, then a.hashCode() is the same as
b.hashCode()

 So you should override hashCode() at the
same time as equals()

I don’t want to go into this in too much detail since you
haven’t yet met hashes (it’s in the Algorithms course
next term). For now, just accept that a hash is a func-
tion that takes in chunks of information (e.g. all the
fields in an object) and spits out a number. Java uses
this in its HashMap implementation and other places
as a shortcut to having to sequentially compare each
field. I mention it here really for completeness so that
if any of you override equals() in production code then
you know you should also override hashCode(). Details
of doing so are easily found on the web and in books
(because it’s a very common mistake to make!).

7.3 Less Than and Greater
Than

In order to sort your classes using the built in classes,
you need to write something that allows two objects to
be ordered. Often our classes have a natural ordering
e.g. people are usually sorted first by surname and
then by forename. We can build-in natural ordering
to our classes using the Comparable interface:

Comparable<T> Interface I

int compareTo(T obj);

 Part of the Collections Framework

 Doesn't just tell us true or false, but smaller, same, or
larger: useful for sorting.

 Returns an integer, r:
 r<0 This object is less than obj

 r==0 This object is equal to obj

 r>0 This object is greater than obj

Comparable<T> Interface II

public class Point implements Comparable<Point> {
 private final int mX;
 private final int mY;
 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x
 public int compareTo(Point p) {
 if (mY>p.mY) return 1;
 else if (mY<p.mY) return -1;
 else {
 if (mX>p.mX) return 1;
 else if (mX<p.mX) return -1;
 else return 0.
 }
 }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

This is all very well, but sometimes we might want to
sort with a different ordering (e.g. sort just by fore-
name). Java Collections lets us do this by supplying a
custom piece of code for the ordering: a Comparator :

42

Comparator<T> Interface I

int compare(T obj1, T obj2)

 Also part of the Collections framework and allows us
to specify a specific ordering for a particular job

 E.g. a Person might have natural ordering that sorts
by surname. A Comparator could be written to sort
by age instead...

Comparator<T> Interface II

public class Person implements Comparable<Person> {
 private String mSurname;
 private int mAge;
 public int compareTo(Person p) {
 return mSurname.compareTo(p.mSurname);
 }
}

public class AgeComparator implements Comparator<Person> {
 public int compare(Person p1, Person p2) {
 return (p1.mAge-p2.mAge);
 }
}

…
ArrayList<Person> plist = …;
…
Collections.sort(plist); // sorts by surname
Collections.sort(plist, new AgeComparator()); // sorts by age

Note that a natural ordering uses compareTo() whilst
a comparator uses compare().

7.4 Operator Overloading

Operator Overloading

 Some languages have a neat feature that allows
you to overload the comparison operators. e.g. in
C++

class Person {
 public:
 Int mAge
 bool operator==(Person &p) {
 return (p.mAge==mAge);
 };
 }

Person a, b;
b == a; // Test value equality

Java doesn’t have this, but it’s good to know what it

is at this stage.

43

Lecture 8

Error Handling Revisited

As you have almost certainly discovered, errors crop
up all over the place when developing software. We
see various types:

Syntactic errors (missing brackets or whatever) are
usually quite easy to spot because you get a nice
explanatory compiler warning (ahem... unless
you’re using poly/ML...).

Logical errors (i.e. bugs) are more problematic, not
least because comprehensive testing (checking the
output for every possible input and system state)
is usually infeasible for anything but toy pro-
grams.

External errors occur for processes our code relies
on but we don’t control. Examples might be a
failing hard disk or an overheating CPU causing
them to do things that shouldn’t be possible.

So what do you do? Firstly you do what you can to
minimise the chance of bugs. Secondly, you accept
that there will still be problems (if nothing else the
external errors will persist) and you use techniques
to handle them. You’ve already seem the latter with
ML’s exceptions: we’ll look at Java’s exceptions here
too, but first let’s consider ways to reduce the bugs in
the code you deliver.

8.1 Minimising Bugs

8.1.1 Modular (Unit) Testing

OOP (strongly) pushes you to develop uncoupled
chunks of code in the form of classes. Each class should
be testable (mostly) independently of the others. It is
much easier to comprehensively test lots of small bits
of code and then stitch them together than the stitched
result!

8.1.2 Using Assertions

When you are debugging an algorithm, it can be useful
to use assertions at various stages to mark invariants
(things that should be true if your algorithm is work-
ing). You’ll see these next term in the Algorithms
course.

8.1.3 Defensive Programming Styles

You can also learn useful habits for each language that
can reduce errors. In C for example, if (exp) is true
whenever exp is greater than 0. The problem with this
is that you can accidentally do an assignment without
realising it:

if (x=5) {...}

else {....}

Here the programmer presumably wanted to test
whether x is 5. What actually happens is x is set to
5 and the expression itself is evaluated as 5, or always
true. All because they used = and not == by accident.

But you can remove this (very common) error alto-
gether by always writing (5==x) and not (x==5).
Then the error will be caught by the compiler because
(5=x) is not valid syntax!

8.1.4 Pair Programming etc.

Another quite effective way to spot bugs is via pair
programming. Here you program in pairs insofar as
one person writes code, while the other watches over
their shoulder, looking for errors or bugs. The writer
and the watcher switch roles regularly. Various other
such agile programming techniques exist.

44

8.2 Dealing with Errors

8.2.1 Return Codes

Return Codes

 The traditional imperative way to handle errors is to
return a value that indicates success/failure/error

 Problems:

 Could ignore the return value

 Have to keep checking what the return values are meant to
signify, etc.

 The actual result often can't be returned in the same way

public int divide(double a, double b) {
 if (b==0.0) return -1; // error
 double result = a/b;
 return 0; // success
}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Many older languages (C included) have no explicit
mechanism for error handling, Instead the common ap-
proach is to return the error status via the normal re-
turn type: a return code. If your function isn’t proper
and its ‘result’ is a side effect (i.e. it has a void return
type in Java) then we can just return the error code:

int setValue(LinkedList<int> list,

int element, int value) {

if (list.size()>element) {

list.set(element,value);

return 0; // no error to signal

}

else return -1; // this element doesn’t exist

}

Here the function can only return 0 or -1, the latter
being a signal that there was an error (the element
didn’t exist).

If you have a function that naturally returns a result,
you can pick some result values that are used (only)
to signal errors:

float sqrt(float a) {

if (a<0.0) return -1.0;

else {

...

}

}

Here the sqrt function only returns positive roots so
we can repurpose all negative floats to signal errors.

float sqrt(float a) {

if (a<0.0) return -1.0;

else {

...

}

}

If the return type isn’t something we can repurpose
(e.g. a custom class) then we can instead pass the
output by reference and have the function return an
integer to indicate the error state. E.g,

SomeCustomClass sqrt(float a) {

return new SomeCustomClass(...);

}

becomes

int func(float a, SomeCustomClass result) {

if (a<0.0) return -1.0;

else result.set(...);

return 0;

}

You might see functions that return null if they have
an error. This is a very bad practice since it relies on
the programmer using the function to check for null.
If they don’t, they’ll likely try to dereference null and
their program will die...

In fact, this is a larger problem with the general ap-
proach. We are dependent on the programmer test-
ing the return value. Two problems arise: firstly, they
could neglect to check (really common); secondly, they
end up with really nasty looking code such as:

int retval = somefunc();

if (retval==-1) {

// handle error type 1

}

else if (retval==-2) {

// handle error type 2

}

else if (retval==-3) {

// handle error type 3

}

Here, just writing one line to call one function results
in a screen-worth of error handling code. This constant
mixing of code and error handling makes the code all
but unreadable.

45

8.2.2 Deferred Error Handling

Deferred Error Handling

 A similar idea (with the same issues) is to set some state in
the system that needs to be checked for errors.

 C++ does this for streams:

ifstream file("test.txt");
if (file.good())
{
 cout << "An error occurred opening the file" << endl;
}

8.2.3 Exceptions

Exceptions

 An exception is an object that can be thrown or raised by a
method when an error occurs and caught or handled by the
calling code

 Example usage:

try {
 double z = divide(x,y);
}
catch(DivideByZeroException d) {
 // Handle error here
}

Of course, you already met Java’s exceptions in the
pre-arrival course, as well as ML’s in FoCS. We’ll cover
the Java concepts in a little more depth here, whilst
recapping the content you’ve done. Note there is a
tendency to use the terminology throw/catch rather
than raise/handle in OOP languages—I don’t know
why. First some recap:

Flow Control During Exceptions

 When an exception is thrown, any code left to run in the try
block is skipped

double z=0.0;
boolean failed=false;
try {
 z = divide(5,0);
 z = 1.0;
}
catch(DivideByZeroException d) {
 failed=true;
}
z=3.0;
System.out.println(z+” “+failed);

Throwing Exceptions

 An exception is an object that has Exception as an
ancestor

 So you need to create it (with new) before throwing

double divide(double x, double y) throws DivideByZeroException {
 if (y==0.0) throw new DivideByZeroException();
 else return x/y;
}

Multiple Handlers

 A try block can result in a range of different exceptions. We
test them in sequence

try {
 FileReader fr = new FileReader(“somefile”);
 Int r = fr.read();
}
catch(FileNoteFound fnf) {
 // handle file not found with FileReader
}
catch(IOException d) {
 // handle read() failed
}

46

finally

 With resources we often want to ensure
that they are closed whatever happens

try {
 fr,read();
 fr.close();
}
catch(IOException ioe) {
 // read() failed but we must still close the FileReader
 fr.close();
}

finally II

 The finally block is added and will always
run (after any handler)

try {
 fr,read();
}
catch(IOException ioe) {
 // read() failed
}
finally {
 fr.close();
}

Note that once any catch block is matched, the re-
maining catch blocks are skipped. Whilst you already
know about the flow control, you hadn’t considered
creating your own exceptions:

Creating Exceptions

 Just extend Exception (or RuntimeException if you need it to
be unchecked). Good form to add a detail message in the
constructor but not required.

 You can also add more data to the exception class to provide
more info on what happened (e.g. store the numerator and
denominator of a failed division)

public class DivideByZero extends Exception {}

public class ComputationFailed extends Exception {
 public ComputationFailed(String msg) {
 super(msg);
 }
}

Exception Hierarchies

 You can use inheritance hierarchies

 And catch parent classes

public class MathException extends Exception {...}
public class InfiniteResult extends MathException {…}
public class DivByZero extends MathException {…}

try {
 …
}
catch(InfiniteResult ir) {
 // handle an infinite result
}
catch(MathException me) {
 // handle any MathException or DivByZero
}

Checked vs Unchecked Exceptions

 Checked: must be handled or passed up.

 Used for recoverable errors

 Java requires you to declare checked exceptions that your
method throws

 Java requires you to catch the exception when you call the
function

 Unchecked: not expected to be handled. Used for
programming errors

 Extends RuntimeException

 Good example is NullPointerException

double somefunc() throws SomeException {}

There is an ongoing debate about the value of checked
exceptions and they feature in some OOP languages
but not others. Most of the time you’ll be writing
and dealing with checked exceptions in Java. You’ll
encounter unchecked exceptions only when you mess
up in your code.

Aside: It turns out with Java they decided
that RuntimeException should inherit from
Exception. This means that if you ever write
catch(Exception e) {...} then you will also catch
the unchecked exceptions. So don’t ever write that
unless you know what you are doing!

47

Evil I: Exceptions for Flow Control

 At some level, throwing an exception is like a GOTO

 Tempting to exploit this

 This is not good. Exceptions are for exceptional circumstances
only

 Harder to read

 May prevent optimisations

try {
 for (int i=0; ; i++) {
 System.out.println(myarray[i]);
 }
}
catch (ArrayOutOfBoundsException ae) {
 // This is expected
}

The code readability argument should be obvious but
the second argument warrants more discussion. If you
Google the notion of flow control with exceptions, you
will probably find many comments that suggest excep-
tion throwing is very slow compared to ‘normal’ code
execution. This is attributed variously to the need to
create an Exception object; the need to create a stack
trace; or even just the need to create a message string.
Some people report Exception handling was 50 times
slower on the first JVMs!

Now, you could write a JVM that handled exception
throwing efficiently, such that code like that in the
slide would carry little performance penalty. But the
crucial point is that there is no guarantee that a JVM
will do so (and many still don’t). Exceptions are in-
tended to be rare occurrences and it is perfectly rea-
sonable (if not natural) for a JVM creator to assume
this and therefore not need to worry about optimising
exception handling. Bottom line: this smells bad.

Evil II: Blank Handlers

 Checked exceptions must be handled

 Constantly having to use try...catch blocks to do this can be
annoying and the temptation is to just gaffer-tape it for now

 ...but we never remember to fix it and we could easily be missing
serious errors that manifest as bugs later on that are extremely
hard to track down

try {
 FileReader fr = new FileReader(filename);
}
catch (FileNotFound fnf) {
}

This is a bad habit that novices tend to adopt—
try not to develop it yourself. Eclipse at least
discourages blank handlers, automatically filling in
e.printStackTrace() so there’s some record of the

problem printed to the screen. However, in large pro-
grams, where there’s often lots of debug output flow-
ing to the console, these messages are easily missed...
Better to fill in your handlers!

Evil III: Circumventing Exception Handling

 Just don't.

try{
 // whatever
}
catch(Exception e) {}

Advantages of Exceptions

 Advantages:

 Class name can be descriptive (no need to look up error
codes)

 Doesn't interrupt the natural flow of the code by requiring
constant tests

 The exception object itself can contain state that gives lots of
detail on the error that caused the exception

 Can't be ignored, only handled

http://java.sun.com/docs/books/tutorial/

essential/exceptions/

48

http://java.sun.com/docs/books/tutorial/essential/exceptions/
http://java.sun.com/docs/books/tutorial/essential/exceptions/

8.2.4 Assertions

Assertions

 Assertions are a form of error checking designed for debugging
(only)

 They are a simple statement that evaluates a boolean: if it's true
nothing happens, if it's false, the program ends.

 In Java:

assert (x>0);

// or

assert (a==0) : “Some error message here”;

Assertions are a simple addition to many languages
that can really help development, but they comple-
ment exceptions (or other error handling techniques)
rather than replace them.

Assertions are NOT for Production Code!

 Assertions are there to help you check the logic of your code is
correct i.e. when you're trying to get an algorithm working

 They should be switched OFF for code that gets released
(“production code”)

 In Java, the JVM takes a parameter that enables (-ea) or disables
(-da) assertions. The default is for them to be disabled.

> java -ea SomeClass

> java -da SomeClass

This is important: assertions will kill your program if
they detect an error. There’s no opportunity to handle
the error so they’re just for development, not produc-
tion.

As Oracle Puts It

“Assertions are meant to require that the program be
consistent with itself, not that the user be consistent

with the program”

Great for Postconditions

 Postconditions are things that must be true at the end of an
algorithm/function if it is functioning correctly

 E.g.

public float sqrt(float x) {
 float result = ….
 // blah
 assert(result>=0.f);
}

Sometimes for Preconditions

 Preconditions are things that are assumed true at the start of an
algorithm/function

 E.g.

 BUT you shouldn't use assertions to check for public
preconditions

 (you should use exceptions for this)

private void method(SomeObject so) {
 assert (so!=null);
 //...
}

public float method(float x) {
 assert (x>=0);
 //...
}

If a use of your method provides bad (nonsensical)
inputs, you should offer them the chance to remedy the
mistake by throwing an exception. Assertions would
just kill the program (if enabled for release , which they
shouldn’t be), or not catch the error because they are
disabled!

49

Sqrt Example

public float method(float x) throws InvalidInputException {
 .// Input sanitisation (precondition)
 if (x<0.f) throw new InvalidInputException();

 float result=0.f;
 // compute sqrt and store in result

 // Postcondition
 assert (result>=0);

 return result;
}

The distinction is subtle but important. The ‘assert‘
is only used to test the correctness of the algorithm
output when given a valid (positive) input. If the as-
sertion fires, it’s programmer error and not user error.

Assertions can be Slow if you Like

 Here, isSorted() is presumably quite costly (at least O(n)).

 That's OK for debugging (it's checking the sort algorithm is
working, so you can accept the slowdown)

 And will be turned off for production so that's OK

 (but your assertion shouldn't have side effects)

public int[] sort(int[] arr) {
 int[] result = ...
 // blah
 assert(isSorted(result));
}

NOT for Checking your Compiler/Computer

 If this isn't working, there is something much bigger wrong with
your system!

 It's pointless putting in things like this

public void method() {
 int a=10;
 assert (a==10);
 //...
}

For the Last Word on Assertions...

http://www.oracle.com/technetwork/articles/javase/javapch06.pdf

50

Lecture 9

Copying Objects

Cloning I

 Sometimes we really do want to copy an object

 Java calls this cloning

 We need special support for it

Person object
(name = “Bob”)

r

Person object
(name = “Bob”)

r

Person object
(name = “Bob”)

r_copy

Cloning II

 Every class in Java ultimately inherits from the Object
class

 This class contains a clone() method so we just call
this to clone an object, right?

 This can go horribly wrong if our object contains
reference types (objects, arrays, etc)

Java is unusual in that it really, really wants you to
use OOP. In your practicals you will have noticed that,
even to do simple procedural stuff, you had to encase
everything in a class—even the main() method. A fur-
ther decision they made is that ultimately all classes
will inherit from a special Object class. i.e. the top
of all inheritance trees is Object even though we never
explicitly say so in code...

Shallow and Deep Copies

public class MyClass {
 private MyOtherClass moc;
}

MyClass object
Shallo

w

MyOtherClass
object

MyClass object

MyOtherClass
object

MyClass object

MyOtherClass
object

MyClass objectMyClass object

MyOtherClass
object

Deep

Java Cloning

 So do you want shallow or deep?
 The default implementation of clone() performs a shallow copy

 But Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure that we'd
thought about whether this was appropriate

 Java has a Cloneable interface

 If you call clone on anything that doesn't extend this interface, it
fails

51

Clone Example I

 public class Velocity {
 public float vx;
 public float vy;
 public Velocity(float x, float y) {
 vx=x;
 vy=y;
 }
 };

 public class Vehicle {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }
 };

Clone Example II

 public class Vehicle implements Cloneable {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }

 public Object clone() {
 return super.clone();
 }

 };

Here we fill in the clone() method using super.clone().
You can think of this as doing a byte-for-byte copy of
an object in memory. Any primitive types (such as
age) will therefore be copied. And references will also
be copied, but not the objects they point to. Hence
this much gets us a shallow copy.

Clone Example III

 public class Velocity implement Cloneable {

 public Object clone() {
 return super.clone();
 }
 };

 public class Vehicle implements Cloneable {
 private int age;
 private Velocity v;
 public Student(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }

 public Object clone() {
 Vehicle cloned = (Vehicle) super.clone();
 cloned.vel = (Velocity)vel.clone();
 return cloned;
 }
 };

A deep clone requires that we clone the objects that

are referenced (and they, in turn clone any objects
they reference, and so on). Here we make Velocity
cloneable and make sure to clone the member variable
that Vehicle has.

Cloning Arrays

 Arrays have build in cloning but the
contents are only cloned shallowly

int intarray[] = new int[100];
Vector3D vecarray = new Vector3D[10];

...

int intarray2[] = intarray.clone();
Vector3D vecarray2 = vecarray.clone();

Covariant Return Types

 The need to cast the clone return is annoying

 Recent versions of Java allow you to override a method
in a subclass and change its return type to a subclass of
the original's class

public Object clone() {
 Vehicle cloned = (Vehicle) super.clone();
 cloned.vel = (Velocity)vel.clone();
 return cloned;
 }

class A {}

class B extends A {}

class C {
 A mymethod() {}
}

class D extends C {
 B mymethod() {}
}

This is a similar concept to the covariant parameter
tyoes we met breifly in lecture 7. We saw Java does
not support that, but it does support this. So if we
have:

public class A {

Object void work(Object o) {...}

}

then the following is not allowed (covariant parameter
types):

public class B extends A {

@Override

public Object work(Person p) {...}

}

but this is (covariant return types):

52

public class C extends A {

@Override

public Person work(Object o) {...}

}

Marker Interfaces

 If you look at what's in the Cloneable interface, you'll find it's empty!!
 What's going on?

 Well, the clone() method is already inherited from Object so it
doesn't need to specify it

 This is an example of a Marker Interface

 A marker interface is an empty interface that is used to label
classes

 This approach is found occasionally in the Java libraries

You might also see these marker interfaces referred to
as tag interfaces. They are simply a way to label or tag
a class. They can be very useful, but equally they can
be a pain (you can’t dynamically tag a class, nor can
you prevent a tag being inherited by all subclasses).

The clone() approach is unique to Java. It can be
a bit of a headache, but it was meant to address
the shortcomings of the de-facto copying approach in
OOP, which is the use of copy constructors:

Copy Constructors I

 Another way to create copies of objects is to define a
copy constructor that takes in an object of the same type
and manually copies the data

 public class Vehicle {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }
 public Vehicle(Vehicle v) {

age=v.age;
vel = v.vel.clone();

 }
}

Copy Constructors II

 Now we can create copies by:

 This is quite a neat approach, but has some drawbacks
which are explored on the Examples Sheet

Vehicle v = new Vehicle(5, 0.f, 5.f);

Vehicle vcopy = new Vehicle(v);

I won’t go into detail on these here. Instead they are
on the examples sheet.

53

Lecture 10

Language Evolution

Evolve or Die

 Modern languages start out as a programmer “scratching an
itch”: they create something that is particularly suitable for
some niche

 If the language is to 'make it' then it has to evolve to
incorporate both new paradigms and also the old paradigms
that were originally rejected but turn out to have value after
all

 The challenge is backwards compatability: you don't want to
break old code or require programmers to relearn your
language (they'll probably just jump ship!)

 Let's look at some examples for Java...

Ostensibly this course is about OOP, but in reality few
languages can claim to be a pure implementation of
any particular paradigm. Even ML offers you impera-
tive programming. Actual languages are a mish-mash
of concepts, some of which are inevitably retrofitted.
This retrofitting tends to produce ugly syntax and un-
expected quirks, so it’s good to explore some examples
(in Java of course).

Vector

 The original Java included the Vector class,
which was an expandable array

 They chose to make it synchronised, which just
means it is safe to use with multi-threaded
programs

 When they introduced Collections, they decided
everything should not be synchronised

 Created ArrayList, which is just an
unsynchronised (=better performing) Vector

 Had to retain Vector for backwards compatibility!

Vector v = new Vector()
v.add(x);

Vector has no place in modern Java really, and if you
are using it you should stop doing so, in favour of using
ArrayList. If you need it to be synchronised, this can

be done (see next year for those sticking around in the
CST). The only reason Vector remains is backwards
compatibility. It’s handy to know about it though,
since it features in a lot of legacy code.

10.1 Generics

The Origins of Generics

 The original Collections framework
just dealt with collections of Objects

 Everything in Java “is-a” Object
so that way our collections
framework will apply to any class

 But this leads to:
 Constant casting of the result

(ugly)
 The need to know what the

return type is
 Accidental mixing of types in

the collection

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

The Origins of Generics II

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Going to fail for the
second element!
(But it will compile: the
error will be at runtime)

This is pretty nasty. The OOP paradigm has let us
write a flexible data structure that can handle us wrap-

54

ping around various types, but it can’t apply the re-
striction that all the types in one object should be
the same. Additionally, all this casting makes for ugly
code. This is what convinced the Java designers that
parameterised types (Generics) were needed. But it
was already a bit late: there was tons of established
code using Collections (and still is). The Java designers
were faced with the problem of updating the language
to support parameterised types without breaking ev-
erything that went before.

The Generics Solution

 Java implements type erasure
 Compiler checks through your code to make sure you only

used a single type with a given Generics object

 Then it deletes all knowledge of the parameter, converting
it to the old code invisibly

LinkedList<Integer> ll =
 new LinkedList<Integer>();

…

for (Integer i : ll) {
 do_sthing(i);
}

LinkedList ll =
 new LinkedList();

…

for (Object i : ll) {
 do_sthing((Integer)i);
}

So now we see why we can’t use primitives as pa-
rameters: whatever we put there must be castable to
Object, which primitives simply aren’t.

The C++ Templates Solution

 Compiler first generates the class definitions from the
template

class MyClass<T> {
 T membervar;
};

class MyClass_float {
 float membervar;
};

class MyClass_int {
 int membervar;
};
class MyClass_double {
 double membervar;
};
...

class MyClass_float {
 float membervar;
};

C++ doesn’t suffer from the same problem since it just
generates a special class for each instance you request.

Generics and SubTyping

// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;

<<interface>>
Collection

Person

<<interface>>
Collection

So a list of Persons is a list of Animals, yes?

Animal

10.2 Java 8

Adding Functional Elements...

 Java is undeniably imperative, but there is
something seductive about some of the
highly succinct and efficient syntax

 Enter Java 8...

result=map (fn x => (x+1)*(x+1)) numlist;

int[] result = new int[numlist.length];
for (int i=0; i<numlist.length; i++) {
 result[i] = (numlist[i]+1)*(numlist[i]+1)
}

Java 8 is a major Java release. A lot has been added,
some of it controversial. Not much of it relates to
OOP but we discuss it partly for interest and partly
because it emphasises how (big) languages tend to just
subsume multiple paradigms, blurring the boundaries
more and more

55

Lambda Functions

 Supports anonymous functions

()->System.out.println("It's nearly over...");

s->s+”hello”;

s->{s=s+”hi”;
 System.out.println(s);}

(x,y)->x+y;

Functions as Values

// No arguments
Runnable r = ()->System.out.println("It's nearly over...");
r.run();

// No arguments, non-void return
Callable<Double> pi = ()->3.141;
pi.call();

// One argument, non-void return
Function<String,Integer> f = s->s.length();
f.apply(“Seriously, you can go soon”)

Method References

System.out::println

Person::doSomething

Person::new

 Can use established functions too

New forEach for Lists

List<String> list = new LinkedList<>();
list.add("Just a");
list.add("few more slides");

list.forEach(System.out::println);

list.forEach(s->System.out::println(s));

list.forEach(s->{s=s.toupperCase();
 System.out::println(s);};

Note this is effectively our beloved ‘map‘ function from
ML!

Sorting

List<String> list = new LinkedList<>();

….

Collections.sort(list, (s1, s2) -> s1.length() - s2.length());

 Who needs Comparators?

Streams

 Collections can be made into streams
(sequences)

 These can be filtered or mapped!

List<Integer> list = ...

list.stream().map(x->x+10).collect(Collectors.toList());

list.stream().filter(x->x>5).collect(Collectors.toList());

This is a more explicit introduction of the ‘filter‘ and
‘map‘ features seen in functional programming (you
didn’t actually meet ‘filter‘ formally in FoCS, but it
just filters a list according to some supplied predicate).
However, notice how ugly the syntax has become...

56

Lecture 11

Design Patterns

Design Patterns

 A Design Pattern is a general reusable solution to a
commonly occurring problem in software design

 Coined by Erich Gamma in his 1991 Ph.D. thesis

 Originally 23 patterns, now many more. Useful to look at
because they illustrate some of the power of OOP (and
also some of the pitfalls)

 We will only consider a subset

Coding anything more complicated than a toy pro-
gram usually benefits from forethought. After you’ve
coded a few medium-sized pieces of object-oriented
software, you’ll start to notice the same general prob-
lems coming up over and over. And you’ll start to au-
tomatically use the same solutions to them. We need
to make sure that set of default solutions is a good
one!

In his 1991 PhD thesis, Erich Gamma compared this to
the field of architecture, where recurrent problems are
tackled by using known good solutions. The follow-on
book (Design Patterns: Elements of Reusable
Object-Oriented Software, 1994) identified a se-
ries of commonly encountered problems in object-
oriented software design and 23 solutions that were
deemed elegant or good in some way. Each solution is
known as a Design Pattern:

A Design Pattern is a general reusable solution
to a commonly occurring problem in software
design.

The modern list of design patterns is ever-expanding
and there is no shortage of literature on them. In this
course we will look at a few key patterns and how they
are used.

11.0.1 So Design Patterns are like cod-
ing recipes?

No. Creating software by stitching together a series
of Design Patterns is like painting by numbers — it’s
easy and it probably works, but it doesn’t produce a
Picasso! Design Patterns are about intelligent solu-
tions to a series of generalised problems that you may
be able to identify in your software. You might find
they don’t apply to your problem, or that they need
adaptation. You simply can’t afford to disengage your
brain (sorry!).

11.0.2 Why Bother Studying Them?

Design patterns are useful for a number of things, not
least:

1. They encourage us to identify the fundamental
aims of given pieces of code

2. They save us time and give us confidence that our
solution is sensible

3. They demonstrate the power of object-oriented
programming

4. They demonstrate that näıve solutions are bad

5. They give us a common vocabulary to describe
our code

The last one is important: when you work in a team,
you quickly realise the value of being able to succinctly
describe what your code is trying to do. If you can re-
place twenty lines of comments1 with a single word, the
code becomes more readable and maintainable. Fur-
thermore, you can insert the word into the class name
itself, making the class self-describing.

1You are commenting your code liberally, aren’t you?

57

11.0.3 The Open-Closed Principle

The Open-Closed Principle

Classes should be open for extension
but closed for modification

 i.e. we would like to be able to modify the
behaviour without touching its source code

 This rule-of-thumb leads to more reliable
large software and will help us to evaluate
the various design patterns

To help understand why this is helpful, it’s useful to
think about multiple developers using a software li-
brary. If they want to alter one of the classes in the
library, they could edit its source code. But this would
mean they had a customised version of the library
that they wouldn’t be able to update when new (bug-
reduced) versions appeared. A better solution is to
use the library class as a base class and implement the
minor changes that are desired in the custom child.
So, if you’re writing code that others will use (and you
should always assume you are in OOP) you should
make it easy for them to extend your classes and dis-
courage direct editing of them.

58

11.0.4 The Decorator Pattern

Decorator

Abstract problem: How can we add state
or methods at runtime?

Example problem: How can we efficiently
support gift-wrapped books in an online
bookstore?

Solution 1: Add variables to the established Book
class that describe whether or not the product is to be
gift wrapped.

Solution 2: Extend Book to create WrappedBook.

Solution 3: (Decorator) Extend Book to create
WrappedBook and also add a member reference to a
Book object. Just pass through any method calls to
the internal reference, intercepting any that are to do
with shipping or price to account for the extra wrap-
ping behaviour.

Decorator in General

 The decorator pattern adds
state and/or functionality to
an object dynamically

So we take an object and effectively give it extra state
or functionality. I say ‘effectively’ because the actual
object in memory is untouched. Rather, we create a
new, small object that ‘wraps around’ the original. To
remove the wrapper we simply discard the wrapping
object. Real world example: humans can be ‘deco-
rated’ with contact lenses to improve their vision.

Note that we can use the pattern to add state
(variables) or functionality (methods), or both if we

want. In the diagram above, I have explicitly al-
lowed for both options by deriving StateDecorator and
FunctionDecorator. This is usually unnecessary — in
our book seller example we only want to decorate
one thing so we might as well just put the code into
Decorator.

59

11.0.5 The Singleton Pattern

Singleton

Abstract problem: How can we ensure
only one instance of an object is created
by developers using our code?

Example problem: You have a class that
encapsulates accessing a database over a
network. When instantiated, the object will
create a connection and send the query.
Unfortunately you are only allowed one
connection at a time.

A valid solution to this is to make sure you close the
database connection after using it, so you can just
create Database objects every time you have a query.
However, what if you forgot to close it? And what if
making the connection was slow (they always are in
computer time...).

Instead we exploit our access modifiers and create a
private constructor (to ensure no-one can create ob-
jects at will) and add in a static member (the only in-
stance we will ever have). Finally, we include a static
getter for this member.

Ideally the instantiation of the Database should be
lazy—i.e. only done on the first call to the getter.

Singleton in General

 The singleton pattern ensures
a class has only one instance
and provides global access to
it

There is a caveat with Java. If you choose to make
the constructor protected (this would be useful if you
wanted a singleton base class for multiple applications
of the singleton pattern, and is actually the ‘official’
solution) you have to be careful.

Protected members are accessible to the class, any sub-
classes, and all classes in the same package. Therefore,
any class in the same package as your base class will
be able to instantiate Singleton objects at will, using
the new keyword!

Additionally, we don’t want a crafty user to subclass
our singleton and implement Cloneable on their ver-
sion. How could you ensure this doesn’t happen?

60

11.0.6 The State Pattern

State

Abstract problem: How can we let an
object alter its behaviour when its internal
state changes?

Example problem: Representing
academics as they progress through the
rank

Solution 1: Have an abstract Academic class which
acts as a base class for Lecturer, Professor, etc.

Solution 2: Make Academic a concrete class with
a member variable that indicates rank. To get rank-
specific behaviour, check this variable within the rele-
vant methods.

Solution 3: (State) Make Academic a concrete
class that has-a AcademicRank as a member. Use
AcademicRank as a base for Lecturer, Professor, etc.,
implementing the rank-specific behaviour in each..

State in General

 The state pattern allows an
object to cleanly alter its
behaviour when internal
state changes

61

11.0.7 The Strategy Pattern

Strategy

Abstract problem: How can we select an
algorithm implementation at runtime?

Example problem: We have many possible
change-making implementations. How do
we cleanly change between them?

Solution 1: Use a lot of if...else statements in the
getChange(...) method.

Solution 2: (Strategy) Create an abstract
ChangeFinder class. Derive a new class for each of our
algorithms.

Strategy in General

 The strategy pattern allows us to cleanly interchange
between algorithm implementations

Note that this is essentially the same UML as the State
pattern! The intent of each of the two patterns is quite
different however:

• State is about encapsulating behaviour that is
linked to specific internal state within a class.

• Different states produce different outputs (exter-
nally the class behaves differently).

• State assumes that the state will continually
change at run-time.

• The usage of the State pattern is normally in-
visible to external classes. i.e. there is no set-
State(State s) function.

• Strategy is about encapsulating behaviour in a
class. This behaviour does not depend on internal
variables.

• Different concrete Strategys may produce exactly
the same output, but do so in a different way.
For example, we might have a new algorithm to
compute the standard deviation of some variables.
Both the old algorithm and the new one will pro-
duce the same output (hopefully), but one may be
faster than the other. The Strategy pattern lets
us compare them cleanly.

• Strategy in the strict definition usually assumes
the class is selected at compile time and not
changed during runtime.

• The usage of the Strategy pattern is normally vis-
ible to external classes. i.e. there will be a set-
Strategy(Strategy s) function or it will be set in
the constructor.

However, the similarities do cause much debate and
you will find people who do not differentiate between
the two patterns as strongly as I tend to.

62

11.0.8 The Composite Pattern

Composite

Abstract problem: How can we treat a
group of objects as a single object?

Example problem: Representing a DVD
box-set as well as the individual films
without duplicating info and with a 10%
discount

The solution is fairly straightforward. We want to be
able to treat a group of DVDs to just like a single DVD,
so BoxSet inherits from DVD. To avoid repeating the
description information and to keep pricing in sync,
BoxSet must also have access to the constituent DVD
objects.

Composite in General

 The composite pattern lets
us treat objects and groups
of objects uniformly

If you’re still awake, you may be thinking this looks
like the Decorator pattern, except that the new class
supports associations with multiple DVDs (note the *
by the arrowhead). Plus the intent is different—we
are not adding new functionality to objects but rather
supporting the same functionality for groups of those
objects.

If you try to make a graphical representation of com-
posites, you’ll end up with some form of tree with each
composite a node and each single entity a leaf. Many
texts use this terminology when discussing the com-
posite pattern.

63

11.0.9 The Observer Pattern

Observer

Abstract problem: When an object
changes state, how can any interested
parties know?

Example problem: How can we write
phone apps that react to accelerator
events?

This pattern is used regularly, but is particularly useful
for event-based programs. The process is analogous to
a magazine subscription: you subscribe with the pub-
lisher in order to receive publish events (magazines)
as soon as they are available. In design patterns par-
lance, you are an observer of the publisher, who is the
subject. It should be clear that this is also a very im-
portant pattern for the various proxy implementations
if the source information might change during use.

In an Android smartphone, the system provides a sub-
ject in the form of a SensorManager object, which is
actually a singleton (only one manager at any time).
So we get it by calling:

SensorManager sManager = (SensorManager)

getSystemService(SENSOR_SERVICE);

We then register with it with a line like:

sManager.registerListener(this,

sManager.getDefaultSensor(

Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_NORMAL);

Our class must implement SensorEventListener, which
forces us to specify a onSensorEvent() method. When-
ever the system gets a new accelerometer reading, it
cycles over all the objects that have registered with it,
feeding them the new reading.

Observer in General

 The observer pattern allows an object to have multiple
dependents and propagates updates to the dependents
automatically.

11.0.10 Classifying Patterns

Often patterns are classified according to what their
intent is or what they achieve. The original book de-
fined three classes:

Creational Patterns . Patterns concerned with
the creation of objects (e.g. Singleton,
Abstract Factory).

Structural Patterns . Patterns concerned with the
composition of classes or objects (e.g. Composite,
Decorator, Proxy).

Behavioural Patterns . Patterns concerned with
how classes or objects interact and distribute re-
sponsibility (e.g. Observer, State, Strategy).

11.0.11 Other Patterns

You’ve now met a few Design Patterns. There are
plenty more (23 in the original book and many, many
more identified since), but this course will not cover
them. What has been presented here should be suffi-
cient to:

• Demonstrate that object-oriented programming is
powerful.

• Provide you with (the beginnings of) a vocabulary
to describe your solutions.

• Make you look critically at your code and your
software architectures.

• Entice you to read further to improve your pro-
gramming.

Of course, you probably won’t get it right first time (if
there even is a ‘right’). You’ll probably end up refac-
toring your code as new situations arise. However, if

64

a Design Pattern is appropriate, you should probably
use it.

11.0.12 Performance

Note that all of the examples here have concentrated
on structuring code to be more readable and maintain-
able, and to incorporate constraints structurally where
possible. At no point have we discussed whether the
solutions perform better. Many of the solutions exploit
runtime polymorphic behaviour, for example, and that
carries with it certain overheads.

This is another reason why you can’t apply Design Pat-
terns blindly. [This is a good thing since, if it wasn’t
true, programming wouldn’t be interesting, and you
wouldn’t get jobs!].

65

Appendix I: Java, the JVM and Bytecode

Java is known for its cross-platform abilities, which has
given it strong internet credentials. Being able to send
a file compiled on one machine to another machine
with a different architecture and have it run is a neat
trick. It shouldn’t work because the machine code for
one machine shouldn’t make sense to another.

Interpreter to Virtual Machine

 Java was born in an era of internet connectivity. SUN wanted
to distribute programs to internet machines

 But many architectures were attached to the internet – how
do you write one program for them all?

 And how do you keep the size of the program small (for
quick download)?

 Could use an interpreter (→ Javascript). But:

 High level languages not very space-efficient

 The source code would implicitly be there for anyone to
see, which hinders commercial viability.

 Went for a clever hybrid interpreter/compiler

Java Bytecode I

 SUN envisaged a hypothetical Java Virtual Machine (JVM).
Java is compiled into machine code (called bytecode) for that
(imaginary) machine. The bytecode is then distributed.

 To use the bytecode, the user must have a JVM that has been
specially compiled for their architecture.

 The JVM takes in bytecode and spits out the correct machine
code for the local computer. i.e. is a bytecode interpreter

So the trick is to partially compile the Java code to a
machine code for a universal machine (that doesn’t ac-
tually exist). To actually use this special machine code
(“bytecode”) a machine must translate from bytecode
to its own local machine code. To that it must have a
Java Virtual Machine (JVM) installed that knows the
translation.

Java Bytecode II

Source Code Java Compiler Bytecode

Developer

Distribute

Unix User

JVM for
x86/Linux

Machine
code

Win User

JVM for
x86/win

Machine
code

Android User

JVM for
ARM

Machine
code ...

Java Bytecode III

+ Bytecode is compiled so not easy to reverse engineer

+ The JVM ships with tons of libraries which makes the
bytecode you distribute small

+ The toughest part of the compile (from human-
readable to computer readable) is done by the compiler,
leaving the computer-readable bytecode to be translated
by the JVM (→ easier job → faster job)

- Still a performance hit compared to fully compiled
(“native”) code

66

	Languages and Exams
	Ticks
	Languages, Types, Objects and Classes
	Imperative, Procedural, Object Oriented
	Java as a Procedural Language

	Procedures, Functions, Methods etc
	Recap: Control Flow
	Values, Variables and Types
	State Mutability
	Explicit Types vs Type Inference
	Polymorphism vs Overloading

	Classes and Objects
	State and Behaviour
	Instantiating classes: Objects
	Defining Classes
	Constructors
	Static

	Designing Classes
	Identifying Classes
	OOP Concepts
	Modularity and Code Re-Use
	Encapsulation and Information Hiding

	Immutability
	Parameterised Types
	Creating Parameterised Types

	Pointers, References and Memory
	Pointers and References
	Keeping Track of Function Calls: The Call Stack
	The Heap
	Pass-by-value and Pass-by-reference

	Inheritance
	Casting
	Shadowing
	Overloading
	Overriding
	Abstract Methods and Classes

	Polymorphism
	Multiple Inheritance and Interfaces

	Lifecycle of an Object
	Java Collections and Object Comparison
	Collections and Generics
	Comparing Objects
	Object Equality

	Less Than and Greater Than
	Operator Overloading

	Error Handling Revisited
	Minimising Bugs
	Modular (Unit) Testing
	Using Assertions
	Defensive Programming Styles
	Pair Programming etc.

	Dealing with Errors
	Return Codes
	Deferred Error Handling
	Exceptions
	Assertions

	Copying Objects
	Language Evolution
	Generics
	Java 8

	Design Patterns
	So Design Patterns are like coding recipes?
	Why Bother Studying Them?
	The Open-Closed Principle
	The Decorator Pattern
	The Singleton Pattern
	The State Pattern
	The Strategy Pattern
	The Composite Pattern
	The Observer Pattern
	Classifying Patterns
	Other Patterns
	Performance

