
Object Oriented Programming
Dr Andrew Rice

IA CST and NST (CS)

Michaelmas 2018/19

With thanks to Dr Robert Harle who
designed this course and wrote the

material.

annotations by me

these are still examinable

The OOP Course

 So far you have studied some procedural programming in Java
and functional programming in ML

 Here we take your procedural Java and build on it to get
object-oriented Java

 You have ticks in Java

 This course complements the practicals

 Some material appears only here

 Some material appears only in the practicals

 Some material appears in both: deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate.

Taks released on friday due thefollowing friday

Outline

1. Types, Objects and Classes

2. Designing Classes

3. Pointers, References and Memory

4. Inheritance

5. Polymorphism

6. Lifecycle of an Object

7. Error Handling

8. Copying Objects

9. Java Collections

10. Object Comparison

11. Design Patterns

12. Design Pattern (cont.)

Books and Resources I

 OOP Concepts

 Look for books for those learning to first program in an OOP
language (Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly) if you already know another OOP
language

 Java specification book: http://java.sun.com/docs/books/jls/

 Lots of good resources on the web

 Design Patterns

 Design Patterns by Gamma et al.

 Lots of good resources on the web

Effective
JavaJoshua
Bloch

Books and Resources II

 Also check the course web page

 Updated notes (with annotations where possible)

 Code from the lectures

 Sample tripos questions

 And the Moodle site “Computer Science Paper 1 (1A)”

 Watch for course announcements

h�p://www.cl.cam.ac.uk/teaching/current/OOProg/

Lecture 1:

Types, Objects and Classes

Objectives 1 Remember procedural Jara
2 Understand function overloading
3 know the difference between a class

and an object
4 know how to construct an object
5 Understand the static keyword

Types of Languages

 Declarative - specify what to do, not how
to do it. i.e.
 E.g. HTML describes what should appear on a web page,

and not how it should be drawn to the screen

 E.g. SQL statements such as “select * from table” tell a
program to get information from a database, but not how to
do so

 Imperative – specify both what and how

 E.g. “triple x“ might be a declarative instruction that you
want the variable x tripled in value. Imperatively we would
have “x=x*3” or “x=x+x+x”

Top 20 Languages 2016

O

Top 20 Languages 2016 (Cont)

0

Top 20 Languages 2016 (Cont Cont)

Top 20 Languages 2016 (Cont Cont Cont)

O

ML as a Functional Language

 Functional languages are a subset of declarative
languages

 ML is a functional language

 It may appear that you tell it how to do everything,
but you should think of it as providing an explicit
example of what should happen

 The compiler may optimise i.e. replace your
implementation with something entirely different
but 100% equivalent.

fun fact 0 I

l fact n n faut n l

Function Side Effects

 Functions in imperative languages can use or
alter larger system state → procedures

Maths: m(x,y) = xy

ML: fun m(x,y) = x*y;

Java: int m(int x, int y) = x*y;

int y = 7;

int m(int x) {

y=y+1;

return x*y;

}

void Procedures

 A void procedure returns nothing:

int count=0;

void addToCount() {

 count=count+1;

}

Voidis
not

as
9Mt
Kesanemix

Ld ne
Count I counttt count

Control Flow: Looping

for(ini/alisa/on; termina/on; increment)

while(boolean_expression)

for (int i=0; i<8; i++) …

int j=0; for(; j<8; j++) …

for(int k=7;k>=0; j--) ...

int i=0; while (i<8) { i++; …}

int j=7; while (j>=0) { j--; ...}

demo

print
g y

l
he

nam
Xo
to

Control Flow: Looping Examples

int arr[] = {1,2,3,4,5};

for (int i=0; i<arr.length;i++) {

System.out.println(arr[i]);

}

int i=0;

while (i<arr.length) {

System.out.println(arr[i]);

i=i+1;

}

Control Flow: Branching I

 Branching statements interrupt the current control flow

 return

 Used to return from a function at any point

boolean linearSearch(int[] xs, int v) {

 for (int i=0;i<xs.length; i++) {

if (xs[i]==v) return true;

 }

 return false;

}

Control Flow: Branching II

 Branching statements interrupt the current control flow

 break

 Used to jump out of a loop

boolean linearSearch(int[] xs, int v) {

 boolean found=false;

 for (int i=0;i<xs.length; i++) {

if (xs[i]==v) {

found=true;

break; // stop looping

}

 }

 return found;

}

Control Flow: Branching III

 Branching statements interrupt the current control flow

 continue

 Used to skip the current iteration in a loop

void printPositives(int[] xs) {

 for (int i=0;i<xs.length; i++) {

if (xs[i]<0) continue;

System.out.println(xs[i]);

 }

}

Immutable to Mutable Data

- val x=5;

> val x = 5 : int

- x=7;

> val it = false : bool

- val x=9;

> val x = 9 : int

int x=5;

x=7;

int x=9;

Java

ML

ML is a language of expressions
Java is a language of statements

and expressions

Val
ref 5J

X
7

has
type

withas
type intand
value of demo returning

vs printing

Types and Variables

 Most imperative languages don't have type inference

 The high-level language has a series of primitive (built-in)
types that we use to signify what’s in the memory
 The compiler then knows what to do with them

 E.g. An “int” is a primitive type in C, C++, Java and many
languages. It’s usually a 32-bit signed integer

 A variable is a name used in the code to refer to a specific
instance of a type
 x,y,z are variables above

 They are all of type int

int x = 512;

int y = 200;

int z = x+y;

mm

Jara 10 Jara and Ctt have
limited forms of typear 512 inference

in Java its 32 bit
in 4C t it might

E.g. Primitive Types in Java

 “Primi/ve” types are the built in ones.

 They are building blocks for more complicated types that we will be
looking at soon.

 boolean – 1 bit (true, false)

 char – 16 bits

 byte – 8 bits as a signed integer (-128 to 127)

 short – 16 bits as a signed integer

 int – 32 bits as a signed integer

 long – 64 bits as a signed integer

 Doat – 32 bits as a Doa/ng point number

 double – 64 bits as a Doa/ng point number

Widening
us

horrooing

demo
of

byteKfyo

Overloading Functions

 Same function name

 Different arguments

 Possibly different return type

 But not just a different return type

int myfun(int a, int b) {…}

Doat myfun(Doat a, Doat b) {…}

double myfun(double a, double b) {...}

int myfun(int a, int b) {…}

Doat myfun(int a, int b) {…} x

Function Prototypes

 Functions are made up of a prototype and
a body

 Prototype specifies the function name,
arguments and possibly return type

 Body is the actual function code

fun myfun(a,b) = …;

int myfun(int a, int b) {...}

Custom Types

datatype 'a seq = Nil

 | Cons of 'a * (unit -> 'a seq);

public class Vector3D {

 Doat x;

 Doat y;

 Doat z;

}

State and Behaviour

datatype 'a seq = Nil

 | Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;

State and Behaviour

datatype 'a seq = Nil

 | Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;

public class Vector3D {

 Doat x;

 Doat y;

 Doat z;

 void add(Doat vx, Doat vy, Doat vz) {

 x=x+vx;

 y=y+vy;

 z=z+vz;

 }

}

STATE

BEHAVIOUR

Loose Terminology (again!)

Behaviour

Func/ons

Methods

Procedures

State

Fields

Instance Variables

Proper/es

Variables

Members

Classes, Instances and Objects

 Classes can be seen as templates for representing
various concepts

 We create instances of classes in a similar way.
e.g.

makes two instances of class MyCoolClass.

 An instance of a class is called an object

MyCoolClass m = new MyCoolClass();

MyCoolClass n = new MyCoolClass();

Defining a Class

public class Vector3D {

 Doat x;

 Doat y;

 Doat z;

 void add(Doat vx, Doat vy, Doat vz) {

 x=x+vx;

 y=y+vy;

 z=z+vz;

 }

}

v1 ETE

E
ve

Constructors

 You will have noticed that the RHS looks rather like a function
call, and that's exactly what it is.

 It's a method that gets called when the object is constructed,
and it goes by the name of a constructor (it's not rocket
science). It maps to the datatype constructors you saw in ML.

 We use constructors to initialise the state of the class in a
convenient way

 A constructor has the same name as the class

 A constructor has no return type

MyObject m = new MyObject();

Constructors with Arguments

public class Vector3D {

 Doat x;

 Doat y;

 Doat z;

 Vector3D(Doat xi, Doat yi, Doat zi) {

 x=xi;

 y=yi;

 z=zi;

 }

 // ...

}

Vector3D v = new Vector3D(1.f,0.f,2.f);

you can use this to

disambiguate names if
needed

e g this so sci

Overloaded Constructors

public class Vector3D {

 Doat x;

 Doat y;

 Doat z;

 Vector3D(Doat xi, Doat yi, Doat zi) {

 x=xi;

 y=yi;

 z=zi;

 }

 Vector3D() {

 x=0.f;

 y=0.f;

 z=0.f;

 }

 // ...

}

Vector3D v = new Vector3D(1.f,0.f,2.f);

Vector3D v2 = new Vector3D();

Default Constructor

public class Vector3D {

 Doat x;

 Doat y;

 Doat z;

}

Vector3D v = new Vector3D();

 No constructor provided

 So blank one generated with

no arguments

if you don't initialize
a field it gets set
to the zero value
for that type
don't do this

Class-Level Data and Functionality I

 A static field is created only once in the program's execution,
despite being declared as part of a class

public class ShopItem {

 Doat mVATRate;

 sta/c Doat sVATRate;

}

One of these created every

/me a new ShopItem is

instan/ated. Nothing keeps

them all in sync.

Only one of these created ever. Every

ShopItem object references it.

static associated with the class
Instance associated with the object

Class-Level Data and Functionality II

 Auto synchronised
across instances

 Space efficient

17.5

0.2

0.2

0.2

17.5

0.2

public class Whatever {

 public sta/c void main(String[] args) {

 ...

 }

}

 Also static methods:

Eggs

Winenimm

static fields are good
for constants

Objectinstance static tip otherwise use with care

field field a

Why use Static Methods?
 Easier to debug (only depends on static state)

 Self documenting

 Groups related methods in a Class without requiring an object

 The compiler can produce more efficient code since no specific
object is involved

public class Math {

 public Doat sqrt(Doat x) {…}

 public double sin(Doat x) {…}

 public double cos(Doat x) {…}

}

…

Math mathobject = new Math();

mathobject.sqrt(9.0);

...

public class Math {

 public sta/c Doat sqrt(Doat x) {…}

 public sta/c Doat sin(Doat x) {…}

 public sta/c Doat cos(Doat x) {…}

}

…

Math.sqrt(9.0);

...

vs

do not worry about this in this car e

Lecture 2:

Designing Classes

Objectives 1 understand the static keyword
2 what shald be an objectMore on this

later is 3 Why does 000 help with modularity
the course 4 what does encapsulation mean

5 What do the different access modifiers
mean

G How to make an immutable object
and why is this good

7 A brief mention of generics

What Not to Do

 Your ML has doubtless been one big file where
you threw together all the functions and value
declarations

 Lots of C programs look like this :-(

 We could emulate this in OOP by having one
class and throwing everything into it

 We can do (much) better

Identifying Classes

 We want our class to be a grouping of
conceptually-related state and behaviour

 One popular way to group is using grammar

 Noun → Object

 Verb → Method

“A simulation of the Earth's orbit around the
Sun”

a quit program that asks questions
and checks the answers are correct

UML: Representing a Class Graphically

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means

public access

“-” means

private access

pro 7 tsiIT
Solution String

i

The has-a Association

College Student1 0...*

 Arrow going left to right says “a College has zero or more

students”

 Arrow going right to left says “a Student has exactly 1

College”

 What it means in real terms is that the College class will

contain a variable that somehow links to a set of Student

objects, and a Student will have a variable that references a

College object.

 Note that we are only linking classes: we don't start drawing

arrows to primitive types.

I

Qu 5 Q

Demo wiplenet Quiz

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;

public String someText;

public void someMethod() {

}

public sta/c void main(String[] args) {

MyFancyClass c = new

MyFancyClass();

}

}

Class name

Class state (proper/es that an

object has such as colour or size)

Class behaviour (ac/ons an

object can do)

'Magic' start point for

the program (named

main by conven/on)

Create an object of type

MyFancyClass in memory
Create a reference to a

MyFancyClass object and call

it c

Access modiSer

class MyFancyClass {

public:

int someNumber;

public String someText;

void someMethod() {

}

};

void main(int argc, char **argv) {

MyFancyClass c;

MyFancyClass *cp = new MyFancyClass()

}

Anatomy of an OOP Program (C++)
Class name

Class state

Class behaviour

'Magic' start point for

the program

Create an object of type

MyFancyClass and call it cc

Access modiSer

Create an object of type

MyFancyClass and return a

reference to it

Create a pointer to a MyFancyClass object

and call it cp

ome
badthis
q

f
there

is
t.me

don't do this

OOP Concepts

 OOP provides the programmer with a
number of important concepts:

 Modularity

 Code Re-Use

 Encapsulation

 Inheritance

 Polymorphism

 Let's look at these more closely...

in Lecture 4
in Lecture 5

Modularity and Code Re-Use

 You've long been taught to break down complex
problems into more tractable sub-problems.

 Each class represents a sub-unit of code that (if
written well) can be developed, tested and updated
independently from the rest of the code.

 Indeed, two classes that achieve the same thing
(but perhaps do it in different ways) can be swapped
in the code

 Properly developed classes can be used in other
programs without modification.

Encapsulation I

class Student {

 int age;

};

void main() {

 Student s = new Student();

 s.age = 21;

 Student s2 = new Student();

 s2.age=-1;

 Student s3 = new Student();

 s3.age=10055;

}

Encapsulation II

class Student {

 private int age;

 boolean setAge(int a) {

 if (a>=0 && a<130) {

age=a;

return true;

 }

 return false;

 }

 int getAge() {return age;}

}

void main() {

 Student s = new Student();

 s.setAge(21);

}

Encapsulation III

class Loca/on {

 private Doat x;

 private Doat y;

 Doat getX() {return x;}

 Doat getY() {return y;}

 void setX(Doat nx) {x=nx;}

 void setY(Doat ny) {y=ny;}

}

class Loca/on {

 private Vector2D v;

 Doat getX() {return v.getX();}

 Doat getY() {return v.getY();}

 void setX(Doat nx) {v.setX(nx);}

 void setY(Doat ny) {v.setY(ny);}

}

Encapsulation 1 hiding internal state
2 bundling methods with state

Access Modifiers

Everyone Subclass Same
package
(Java)

Same
Class

private X

package
(Java)

X X

protected X X X

public X X X X

I findthis
onesurprising

g

Immutability

 Everything in ML was immutable (ignoring the
reference stuff). Immutability has a number of
advantages:

 Easier to construct, test and use

 Can be used in concurrent contexts

 Allows lazy instantiation

 We can use our access modifiers to create
immutable classes

Parameterised Classes

 ML's polymorphism allowed us to specify functions that could
be applied to multiple types

 In Java, we can achieve something similar through Generics;
C++ through templates

 Classes are defined with placeholders (see later lectures)

 We fill them in when we create objects using them

> fun self(x)=x;

val self = fn : 'a -> 'a

LinkedList<Integer> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

funfact identity is the
only function in ML with
type a x

Creating Parameterised Types

 These just require a placeholder type

class Vector3D<T> {

 private T x;

 private T y;

 T getX() {return x;}

 T getY() {return y;}

 void setX(T nx) {x=nx;}

 void setY(T ny) {y=ny;}

}

Java
implementsgenerics
usingSomething
calledtype

erasure
just

remember
this

for
now

and I
will

explain
later

Lecture 3:

Pointers, References and Memory

Objectives what is a call stack a heap
how is it used

difference between pointers and
references

argument passing styles

Memory and Pointers

 In reality the compiler stores a mapping from variable
name to a specific memory address, along with the type
so it knows how to interpret the memory (e.g. “x is an int
so it spans 4 bytes starting at memory address 43526”).

 Lower level languages often let us work with memory
addresses directly. Variables that store memory
addresses are called pointers or sometimes references

 Manipulating memory directly allows us to write fast,
efficient code, but also exposes us to bigger risks

 Get it wrong and the program 'crashes' .

switch to other handout

Pointers: Box and Arrow Model

 A pointer is just the memory address of the Srst memory slot
used by the variable

 The pointer type tells the compiler how many slots the whole
object uses

xptr2

xxptr1
int x = 72;

int *xptr1 = &x;

int *xptr2 = xptr1;

Skipped

Example: Representing Strings I

 A single character is fine, but a text string is of variable length – how
can we cope with that?

 We simply store the start of the string in memory and require it to
finish with a special character (the NULL or terminating character,
aka '\0')

 So now we need to be able to store memory addresses → use
pointers

 We think of there being an array of characters (single letters) in
memory, with the string pointer pointing to the first element of that
array

C S R U L E S

11

\0

11 12 13 14 15 16 177 8 9 10 18

pipe

Example: Representing Strings II

stringPointer

h e l l o char le�erArray[] = {'h','e','l','l','o','\0'};

 char *stringPointer = &(le�erArray[0]);

 prinY(“%s\n”,stringPointer);

 le�erArray[3]='\0';

 prinY(“%s\n”,stringPointer);

\0

Essie

References

 A reference is an alias for another thing
(object/array/etc)

 When you use it, you are 'redirected'
somehow to the underlying thing

 Properties:

 Either assigned or unassigned

 If assigned, it is valid

 You can easily check if assigned

Sk
Hey

Implementing References

 A sane reference implementation in an
imperative language is going to use pointers

 So each reference is the same as a pointer
except that the compiler restricts operations
that would violate the properties of
references

 For this course, thinking of a reference as a
restricted pointer is fine

Q
Pag

Distinguishing References and Pointers

Pointers References

Can be unassigned
(null)

Yes Yes

Can be assigned to
established object

Yes Yes

Can be assigned to an
arbitrary chunk of
memory

Yes No

Can be tested for validity No Yes

Can perform arithmetic Yes No

in Java

null

Languages and References

 Pointers are useful but dangerous

 C, C++: pointers and references

 Java: references only

 ML: references only

References in Java

 Declaring unassigned

 Defining/assigning

SomeClass ref = null; // explicit

SomeClass ref2; // implicit

// Assign

SomeClass ref = new ClassRef();

// Reassign to alias something else

ref = new ClassRef();

// Reference the same thing as another reference

SomeClass ref2 = ref;

Arrays

byte[] arraydemo1 = new byte[6];

byte arraydemo2[] = new byte[6];

0x1AC594

0x1AC595

0x1AC596

0x1AC597

0x1AC598

0x1AC599

0x1AC5A0

0x1AC5A1

0x1AC5A2

Sk
Hed

References Example (Java)

int[] ref1 = null;

ref1 = new int[]{1,2,3,4};

int[] ref2 = ref1;

ref1[3]=7;

ref2[1]=6;

ref1

ref1

ref1

ref2

1 2 3 4

1 2 3 4

ref1

ref2

ref1

ref2

1 2 3 7

1 6 3 7

<null>

demo

Keeping Track of Function Calls

 We need a way of keeping track of which
functions are currently running

public void a() {

 //...

}

public void b() {

 a();

}

Sf
Pried

The Call Stack

ke

The Call Stack: Example

1 int twice(int d) return 2*d;

2 int triple(int d) return 3*d;

3 int a = 50;

4 int b = twice(a);

5 int c = triple(a);

6 ...

0 0

a=50

0

a=50

d=50

5

100

0

a=50

b=100

0

a=50

b=100

d=50

6

150

0

a=50

b=100

c=150

Sk
brief

Nested Functions

0 0

a=50

0

a=50

d=50

5

0

a=50

d=50

5

d=50

2

100

0

a=50

d=50

5

d=100

2

200

0

a=50

d=50

5

a=200

0

a=50

b=200

1 int twice(int d) return 2*d;

2 int quadruple(int d) return twice(twice(d));

3 int a=50;

4 int b = quadruple(a);

5 ...

sie

Recursive Functions

1 int pow (int x, int y) {

2 if (y==0) return 1;

3 int p = pow(x,y-1);

4 return x*p;

5 }

6 int s=pow(2,7);

7 ...

0

y=7

4

x=2

0

y=7

4

x=2

0

y=6

4

x=3

y=7

4

x=2

0

y=6

4

x=2

y=7

4

x=2

0

y=6

4

x=2

...

y=5

4

x=2

y=5

4

x=2

y=4

4

x=2

y=7

4

x=2

0

y=6

4

x=2

y=5

4

x=2

p=16

y=7

4

x=2

0

y=6

4

x=2

p=32

...

0

s=128

St
Koz

Tail-Recursive Functions I

1 int pow (int x, int y, int t) {

2 if (y==0) return t;

3 return pow(x,y-1, t*x);

4 }

5 int s = pow(2,7,1);

6 ...

0

y=7

3

x=2

0

...

128

t=1

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

128

128

0

s=128

Tail-Recursive Functions II

1 int pow (int x, int y, int t) {

2 if (y==0) return t;

3 return pow(x,y-1, t*x);

4 }

5 int s = pow(2,7,1);

6 ...

0

y=7

3

x=2

0

t=1

0 0

y=5

3

x=2

t=4

0

s=128

y=6

3

x=2

t=2

y=4

3

x=2

0

t=8

0 0

y=2

3

x=2

t=32

y=3

3

x=2

t=16

0

y=1

3

x=2

t=64

Java does not applythis optimisation

The Heap

int[] x = new int[3];

public void resize(int size) {

 int tmp=x;

 x=new int[size];

 for (int=0; i<3; i++)

 x[i]=tmp[i];

}

resize(5);

0

x

size=5

0

x

size=3
5 7 9

5 7 9 0

x

size=5

Heap

Stack

0

x

ok
see

Argument Passing

 Pass-by-value. Copy the object into a new value in
the stack

 Pass-by-reference. Create a reference to the
object and pass that.

y=3

x=3

void test(int x) {...}

int y=3;

test(y);

y=3

xvoid test(int &x) {...}

int y=3;

test(y);

thisg

InO Sb
doe
s
we

ath s
jd

3
nay

Passing Procedure Arguments In Java

class Reference {

 public sta/c void update(int i, int[] array) {

 i++;

 array[0]++;

 }

 public sta/c void main(String[] args) {

 int test_i = 1;

 int[] test_array = {1};

 update(test_i, test_array);

 System.out.println(test_i);

 System.out.println(test_array[0]);

 }

}

the value here is an int
r
k the value here is a reference

prints 1

prints 2

Passing Procedure Arguments In C++

void update(int i, int &iref){

 i++;

 iref++;

}

int main(int argc, char** argv) {

 int a=1;

 int b=1;

 update(a,b);

 prinY("%d %d\n",a,b);

}

pas by reference

pass by rake

Danser hoo do you know
this is P b r

T
b is charged

Check...

A. “1 1”

B. “1 2”

C. “2 1”

D. “2 2”

public sta/c void myfunc/on2(int x, int[] a) {

x=1;

x=x+1;

a = new int[]{1};

a[0]=a[0]+1;

}

public sta/c void main(String[] arguments) {

int num=1;

int numarray[] = {1};

myfunc/on2(num, numarray);

System.out.println(num+" "+numarray[0]);

}

Quiz

what
does

thisPrix

Lecture 4:

Inheritance

Objectives demo for referencealiasing Jlast leave
argument passing
code and type inhertiance
narrowing and widening again
fields and shadows
methods and overriding

Inheritance I

class Student {

 public int age;

 public String name;

 public int grade;

}

class Lecturer {

 public int age;

 public String name;

 public int salary;

}

 There is a lot of duplication here

 Conceptually there is a hierarchy that we're

not really representing

 Both Lecturers and Students are people

(no, really).

 We can view each as a kind of

specialisation of a general person

 They have all the properties of a person

 But they also have some extra stuff

specific to them

(I should not have used public variables here, but I did it to keep things simple)

demo expression evaluator

Inheritance II

class Person {

 public int age;

 public String name;

}

class Student extends Person {

 public int grade;

}

class Lecturer extends Person {

 public int salary;

}

 We create a base class (Person)

and add a new notion: classes can

inherit properties from it

 Both state and functionality

 We say:

 Person is the superclass of

Lecturer and Student

 Lecturer and Student subclass

Person

and type
anywhere I
can use a
Person I

l

E
Extends in Java gives you both code and type inhertance
Note Java is a nominitive type language

rather than structurally typed important
word

Representing Inheritance Graphically

exam_score

Student

salary

Lecturer

name

age

Person
Also known as an “is-a” rela/on

As in “Student is-a Person”
Sp

e
cia

l ise

G
e

n
e

ra
lis

e

name and age

inherited if not

private

Casting

 Many languages support type casting
between numeric types

 With inheritance it is reasonable to type
cast an object to any of the types above it
in the inheritance tree...

int i = 7;

Doat f = (Doat) i; // f==7.0

double d = 3.2;

int i2 = (int) d; // i2==3

Widening

 Student is-a Person

 Hence we can use a Student object
anywhere we want a Person object

 Can perform widening conversions
(up the tree)

Person

Student

Student s = new Student()

Person p = (Person) s;

“Cas/ng”

public void print(Person p) {...}

Student s = new Student();

print(s);

Implicit cast

f
redamgfat

Narrowing

 Narrowing conversions move down
the tree (more specific)

 Need to take care...

Person

Student

Person p = new Person();

Student s = (Student) p;

FAILS. Not enough info

In the real object to represent

a Student

Student s = new Student();

Person p = (Person) s;

Students s2 = (Student) p;

OK because underlying object

really is a Student

redundant dangerous
castcost

y

Fields and Inheritance

class Person {

 public String mName;

 protected int mAge;

 private double mHeight;

}

class Student extends Person {

 public void do_something() {

 mName=”Bob”;

 mAge=70;

 mHeight=1.70;

 }

}

Student inherits this as a public

variable and so can access it

Student inherits this as a

protected variable and so can

access it

Student inherits this but as a

private variable and so cannot

access it directly

X

doesn't
compile

Fields and Inheritance: Shadowing

class A { public int x; }

class B extends A {

 public int x;

}

class C extends B {

 public int x;

 public void ac/on() {

 // Ways to set the x in C

 x = 10;

 this.x = 10;

 // Ways to set the x in B

 super.x = 10;

 ((B)this).x = 10;

 // Ways to set the x in A

 ((A)this.x = 10;

 }

}

this is a reference to
the current object

super is a reference to
the parent object

all classes extend object capital o
if you write class A 3
Don get class A extends objectE

Object a new AC

Methods and Inheritance: Overriding

 We might want to require that every Person can dance. But the way
a Lecturer dances is not likely to be the same as the way a Student
dances...

class Person {

 public void dance() {

 jiggle_a_bit();

 }

}

class Student extends Person {

 public void dance() {

 body_pop();

 }

}

class Lecturer extends Person {

}

Person deSnes a

'default' implementa/on

of dance()

Lecturer just inherits the

default implementa/on

and jiggles

Student overrides the

default

know the dfference overrides vs overloading

Abstract Methods

 Sometimes we want to force a class to implement a method
but there isn't a convenient default behaviour

 An abstract method is used in a base class to do this

 It has no implementation whatsoever

class abstract Person {

 public abstract void dance();

}

class Student extends Person {

 public void dance() {

 body_pop();

 }

}

class Lecturer extends Person {

 public void dance() {

 jiggle_a_bit();

 }

}

Abstract Classes

 Note that I had to declare the class abstract too. This is
because it has a method without an implementation so
we can't directly instantiate a Person.

 All state and non-abstract methods are inherited as
normal by children of our abstract class

 Interestingly, Java allows a class to be declared abstract
even if it contains no abstract methods!

public abstract class Person {

 public abstract void dance();

}

class Person {

 public:

 virtual void dance()=0;

}Java C++

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the class

or method is abstract

Lecture 5:

Polymorphism and Multiple Inheritance

Objectives 1 recap on abstract from last time
2 dynamic and static polymorphs'm

3 problems that arise from multiple inheritance

4 Java interfaces type inheritance

Polymorphic Methods

 Assuming Person has a default
dance() method, what should
happen here??

Student s = new Student();

Person p = (Person)s;

p.dance();

 General problem: when we refer to an object via a parent

type and both types implement a particular method: which

method should it run?

demo
expressionsfrom

last
time

Polymorphism Values and variables can have more than one type
int eral Expression e

g
can be Literal Malt or Plus

Polymorphic Concepts I

 Static polymorphism

 Decide at compile-time

 Since we don't know what the true type of the
object will be, we just run the parent method

 Type errors give compile errors

Student s = new Student();

Person p = (Person)s;

p.dance();

 Compiler says “p is of type Person”

 So p.dance() should do the default

dance() ac/on in Person

mmmm

based on its
2 static type

Ctt can do this Java cannot

Polymorphic Concepts II

 Dynamic polymorphism

 Run the method in the child

 Must be done at run-time since that's when we
know the child's type

 Type errors cause run-time faults (crashes!)

Student s = new Student();

Person p = (Person)s;

p.dance();

 Compiler looks in memory and Snds

that the object is really a Student
 So p.dance() runs the dance() ac/on

in Student

TTR

Ctx can do this so does Jara

The Canonical Example I

 A drawing program that can draw circles,
squares, ovals and stars

 It would presumably keep a list of all the
drawing objects

 Option 1

 Keep a list of Circle objects, a list of
Square objects,...

 Iterate over each list drawing each
object in turn

 What has to change if we want to add
a new shape?

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

demo

The Canonical Example II

 Option 2

 Keep a single list of Shape references

 Figure out what each object really is,
narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList

 if (s is really a Circle)

 Circle c = (Circle)s;

 c.draw();

 else if (s is really a Square)

 Square sq = (Square)s;

 sq.draw();

 else if...

demo

The Canonical Example III

 Option 3 (Polymorphic)

 Keep a single list of Shape references

 Let the compiler figure out what to do
with each Shape reference

 What if we want to add a new shape?

Shape

- x_posi/on: int

- y_posi/on: int

+ draw()

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList

 s.draw();

demo

this is called dynamic dispatch

Implementations

 Java

 All methods are dynamic polymorphic.

 Python

 All methods are dynamic polymorphic.

 C++

 Only functions marked virtual are dynamic
polymorphic

 Polymorphism in OOP is an extremely important concept
that you need to make sure you understand...

Harder Problems

 Given a class Fish and a class DrawableEntity, how do we
make a BlobFish class that is a drawable fish?

Fish

DrawableEn/ty

BlobFish

FishDrawableEn/ty BlobFish

X Dependency

between two

independent

concepts

X Conceptually wrong

O I O I

f
as

I

remember
what

hthe
open

snowthe7g

Multiple Inheritance

 If we multiple inherit, we capture
the concept we want

 BlobFish inherits from both and
is-a Fish and is-a DrawableEntity

 C++:

 But...

Fish DrawableEn/ty

BlobFish

+ swim() + draw()

+ swim()

+ draw()

class Fish {…}

class DrawableEn/ty {…}

class BlobFish : public Fish,

 public DrawableEn/ty {...}

Multiple Inheritance Problems

 What happens here? Which of
the move() methods is inherited?

 Have to add some grammar to
make it explicit

 C++:

 Yuk.

Fish DrawableEn/ty

BlobFish

+ move() + move()

????

BlobFish *bf = new BlobFish();

bf->Fish::move();

bf->DrawableEn/ty::move();

This is like shadowing e g
Class A class B extends A

into int x
3

Fixing with Abstraction

 Actually, this problem
goes away if one or more
of the conflicting
methods is abstract

Fish DrawableEn/ty

BlobFish

+ move() + move()

+ move()

Java's Take on it: Interfaces

 Classes can have at most one parent. Period.

 But special 'classes' that are totally abstract can do
multiple inheritance – call these interfaces

<<interface>>

 Drivable

+ turn()

+ brake()

Car

<<interface>>

 Iden/Sable

+ getIden/Ser()

Bicycle

+ turn()

+ brake()

+ turn()

+ brake()

+ turn()

+ brake()

+ getIden/Ser()

interface Drivable {

 public void turn();

 public void brake();

}

interface Iden/Sable {

 public void getIden/Ser();

}

class Bicycle implements Drivable {

 public void turn() {...}

 public void brake() {… }

}

class Car implements Drivable, Iden/Sable {

 public void turn() {...}

 public void brake() {… }

 public void getIden/Ser() {...}

}

I ij0 so
a

erot ve

Lecture 6:

Lifecycle of an Object

Objectives:
	 	 All fields in an Interface are static
	 	 Know the procedure for object initialisation
	 	 Difference between destructors and finalisers
	 	 RAII and TWR
	 	 High level idea of how a garbage collector works

Creating Objects in Java

new MyObject()

Load

MyObject.class

Create

java.lang.Class

object

Allocate any

sta/c Selds

Run sta/c

ini/aliser blocks

Allocate memory

for object

Run non-sta/c

ini/aliser blocks

Run constructor

Yes

No Is MyObject already loaded

in memory?

Static initialization is done
in textual order rather than
in two steps as shown here

demo ObjectConstruction

demo InheritedConstruction

Initialisation Example

public class Blah {

 private int mX = 7;

 public sta/c int sX = 9;

 {

 mX=5;

 }

 sta/c {

 sX=3;

 }

 public Blah() {
 mX=1;

 sX=9;

 }

}

Blah b = new Blah();

Blah b2 = new Blah();

1. Blah loaded

2. sX created

3. sX set to 9

4. sX set to 3

5. Blah object allocated

6. mX set to 7

7. mX set to 5

8. Constructor runs (mX=1, sX=9)

9. b set to point to object

10. Blah object allocated

11. mX set to 7

12. mX set to 5

13. Constructor runs (mX=1, sX=9)

14. b2 set to point to object

Constructor Chaining

 When you construct an object of a type with parent
classes, we call the constructors of all of the parents
in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

Chaining without Default Constructors

 What if your classes have explicit constructors that take
arguments? You need to explicitly chain

 Use super in Java:

Person

Student

-mName : String

+Person(String name)

+Student()

public Person (String name) {

 mName=name;

}

public Student () {

 super(“Bob”);

}

demo NoDefaultConstructor

Deterministic Destruction

 Objects are created, used and (eventually) destroyed. Destruction is very language-
specific

 Deterministic destuction is what you would expect

 Objects are deleted at predictable times

 Perhaps manually deleted (C++):

 Or auto-deleted when out of scope (C++):

void UseRawPointer()

{

 MyClass *mc = new MyClass();

 // ...use mc...

 delete mc;

}

void UseSmartPointer()

{

 unique_ptr<MyClass> *mc = new MyClass();

 // ...use mc...

} // mc deleted here

MyClass mc;
--

In C++ this creates a new
MyClass on the stack using
the default constructor

Destructors

 Most OO languages have a notion of a destructor too

 Gets run when the object is destroyed

 Allows us to release any resources (open files, etc) or memory
that we might have created especially for the object

class FileReader {

 public:

 // Constructor

 FileReader() {

 f = fopen(“mySle”,”r”);

 }

 // Destructor

 ~FileReader() {

 fclose(f);

 }

 private :

 FILE *Sle;

}

int main(int argc, char ** argv) {

 // Construct a FileReader Object

 FileReader *f = new FileReader();

 // Use object here

 ...

 // Destruct the object

 delete f;

}

C++

RAII = Resource Acquisition Is Initialization

Non-Deterministic Destruction

 Deterministic destruction is easy to understand and seems simple
enough. But it turns out we humans are rubbish of keeping track of
what needs deleting when

 We either forget to delete (→ memory leak) or we delete multiple times
(→ crash)

 We can instead leave it to the system to figure out when to delete

 “Garbage Collection”

 The system someohow figures out when to delete and does it for
us

 In reality it needs to be cautious and sure it can delete. This leads
to us not being able to predict exactly when something will be
deleted!!

 This is the Java approach!!

demo Finalizer

What about Destructors?

 Conventional destructors don’t make
sense in non-deterministic systems

 When will they run?

 Will they run at all??

 Instead we have finalisers: same concept
but they only run when the system deletes
the object (which may be never!)

Java provides try-with-resources as an alternative to RAII

demo TryWithResources

Garbage Collection

 So how exactly does garbage collection work? How can a system
know that something can be deleted?

 The garbage collector is a separate process that is constantly
monitoring your program, looking for things to delete

 Running the garbage collector is obviously not free. If your
program creates a lot of short-term objects, you will soon notice
the collector running

 Can give noticeable pauses to your program!

 But minimises memory leaks (it does not prevent them...)

 There are various algorithms: we’ll look at two that can be found in
Java

 Reference counting

 Tracing

'Stop the world' - pause the operation of the
program

'incremental' - garbage collect in multiple
phases and let program run in the gaps

'concurrent' - no pause

demo Leak

Reference Counting

 Java’s original GC. It keeps track of how many references
point to a given object. If there are none, the programmer
can't access that object ever again so it can be deleted

Person object

#ref = 2

r2

r1

r1 = null;

r2 = null;

Person object

#ref = 0

r2

r1

Deletable

Reference Counting Gotcha

 Circular references are a pain

Person object

#ref = 2

r1 = null;

r2 = null;

r1

Person object

#ref = 2

Seld

Seld

r2

Person object

#ref = 1

Person object

#ref = 1

Seld

Seld

Objects

unreachable!!

Tracing

 Start with a list of all references you can get to

 Follow all refrences recursively, marking each object

 Delete all objects that were not marked

object

object

object

object

x

y

z

object

object

Unreachable

so deleted

Generational garbage collectors - split objects into
short lived and long lived. Collect the short lived ones
more frequently.

This is called 'Mark and Sweep'

Lecture 7:

Java Collections and Object Comparison

Objectives boxing and unboxing
Set list queue ad map
fail fast iterators
comparing and comparable

Java Class Library

 Java the platform contains around 4,000 classes/interfaces

 Data Structures

 Networking, Files

 Graphical User Interfaces

 Security and Encryption

 Image Processing

 Multimedia authoring/playback

 And more...

 All neatly(ish) arranged into packages (see API docs)

a lots
of
thisB

Either
ja

Digression int and Integer
auto boxing

Java's Collections Framework

<<interface>>

Collec/on

<<interface>>

Collec/on

<<interface>>

Collec/on

<<interface>>

Iterable

 Important chunk of the class library

 A collection is some sort of grouping of things

(objects)

 Usually when we have some grouping we want

to go through it (“iterate over it”)

 The Collections framework has two main

interfaces: Iterable and Collection. They define

a set of operations that all classes in the

Collections framework support

 add(Object o), clear(), isEmpty(), etc.

Sometimes the operation doesn't make sense - throw
UnsupportedOperationException

Sets

<<interface>> Set

 A collection of elements with no duplicates that
represents the mathematical notion of a set

 TreeSet: objects stored in order

 HashSet: objects in unpredictable order but fast
to operate on (see Algorithms course)

A
B

C

TreeSet<Integer> ts = new TreeSet<Integer>();

ts.add(15);

ts.add(12);

ts.contains(7); // false

ts.contains(12); // true

ts.Srst(); // 12 (sorted)

Iterable
4

Collected

LinkedHashsSet

49
Sortedset Hashset
t

Treeset

Lists

<<interface>> List

 An ordered collection of elements that may contain
duplicates

 LinkedLIst: linked list of elements

 ArrayList: array of elements (efficient access)

 Vector: Legacy, as ArrayList but threadsafe

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();

ll.add(1.0);

ll.add(0.5);

ll.add(3.7);

ll.add(0.5);

ll.get(1); // get element 2 (==3.7)

Queues

<<interface>> Queue

 An ordered collection of elements that may contain
duplicates and supports removal of elements from the head
of the queue

 offer() to add to the back and poll() to take from the front

 LinkedList: supports the necessary functionality

 PriorityQueue: adds a notion of priority to the queue so more
important stuff bubbles to the top

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();

ll.ocer(1.0);

ll.ocer(0.5);

ll.poll(); // 1.0

ll.poll(); // 0.5

Maps

<<interface>> Map

 Like dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and
(sometimes) null.

 TreeMap: keys kept in order

 HashMap: Keys not in order, efficient
(see Algorithms)

K1
A

B

B

K3 K2

TreeMap<String, Integer> tm = new TreeMap<String,Integer>();

tm.put(“A”,1);

tm.put(“B”,2);

tm.get(“A”); // returns 1

tm.get(“C”); // returns null

tm.contains(“G”); // false

Show summary table handout

Iteration

 for loop

 foreach loop (Java 5.0+)

LinkedList<Integer> list = new LinkedList<Integer>();

...

for (int i=0; i<list.size(); i++) {

 Integer next = list.get(i);

}

LinkedList list = new LinkedList();

...

for (Integer i : list) {

 ...

}

Iterators

 What if our loop changes the structure?

 Java introduced the Iterator class

 Safe to modify structure

for (int i=0; i<list.size(); i++) {

 If (i==3) list.remove(i);

}

Iterator<Integer> it = list.iterator();

while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}

while(it.hasNext()) {

 it.remove();

}

demo
failfast

behavior

Comparing Objects

 You often want to impose orderings on your data
collections

 For TreeSet and TreeMap this is automatic

 For other collections you may need to explicitly
sort

 For numeric types, no problem, but how do you
tell Java how to sort Person objects, or any
other custom class?

TreeMap<String, Person> tm = ...

LinkedList<Person> list = new LinkedList<Person>();

//...

Collec/ons.sort(list);

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive

 But what does (ref1==ref2) do??

 Test whether they point to the same object?

 Test whether the objects they point to have the same
state?

Reference Equality

 r1==r2, r1!=r2

 These test reference equality
 i.e. do the two references point ot the same chunk of

memory?

Person p1 = new Person(“Bob”);

Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references dicer)

True (references dicer)

True

Value Equality

 Use the equals() method in Object

 Default implementation just uses reference equality (==)
so we have to override the method

public EqualsTest {

 public int x = 8;

 @Override

 public boolean equals(Object o) {

 EqualsTest e = (EqualsTest)o;

 return (this.x==e.x);

 }

 public sta/c void main(String args[]) {

 EqualsTest t1 = new EqualsTest();

 EqualsTest t2 = new EqualsTest();

 System.out.println(t1==t2);

 System.out.println(t1.equals(t2));

 }

}

demo
what's

wrong
with

equal

Iearn the egrets
contract

Aside: Use The Override Annotation

 It's so easy to mistakenly write:

public EqualsTest {

 public int x = 8;

 public boolean equals(EqualsTest e) {

 return (this.x==e.x);

 }

 public sta/c void main(String args[]) {

 EqualsTest t1 = new EqualsTest();

 EqualsTest t2 = new EqualsTest();

 Object o1 = (Object) t1;

 Object o2 = (Object) t2;

 System.out.println(t1.equals(t2));

 System.out.println(o1.equals(o2));

 }

}

Aside: Use The Override Annotation II

 Annotation would have picked up the mistake:

public EqualsTest {

 public int x = 8;

 @Override

 public boolean equals(EqualsTest e) {

 return (this.x==e.x);

 }

 public sta/c void main(String args[]) {

 EqualsTest t1 = new EqualsTest();

 EqualsTest t2 = new EqualsTest();

 Object o1 = (Object) t1;

 Object o2 = (Object) t2;

 System.out.println(t1.equals(t2));

 System.out.println(o1.equals(o2));

 }

}

Java Quirk: hashCode()

 Object also gives classes hashCode()

 Code assumes that if equals(a,b) returns
true, then a.hashCode() is the same as
b.hashCode()

 So you should override hashCode() at the
same time as equals()

i
the hashCode contract

Comparable<T> Interface I

int compareTo(T obj);

 Part of the Collections Framework

 Doesn't just tell us true or false, but smaller, same, or
larger: useful for sorting.

 Returns an integer, r:
 r<0 This object is less than obj

 r==0 This object is equal to obj

 r>0 This object is greater than obj

remember this with
integers this obj

Comparable<T> Interface II

public class Point implements Comparable<Point> {

 private Snal int mX;

 private Snal int mY;

 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x

 public int compareTo(Point p) {

 if (mY>p.mY) return 1;

 else if (mY<p.mY) return -1;

 else {

 if (mX>p.mX) return 1;

 else if (mX<p.mX) return -1;

 else return 0.

 }

 }

}

// This will be sorted automa/cally by y, then x

Set<Point> list = new TreeSet<Point>();

implementing Comparable
defines a natural ordering
for your das
ideally this should be
consistent with equals
e X compareTo g 0

x equals g
must define a total order

demo

Comparator<T> Interface I

int compare(T obj1, T obj2)

 Also part of the Collections framework and allows us
to specify a specific ordering for a particular job

 E.g. a Person might have natural ordering that sorts
by surname. A Comparator could be written to sort
by age instead...

Comparator<T> Interface II

public class Person implements Comparable<Person> {

 private String mSurname;

 private int mAge;

 public int compareTo(Person p) {

 return mSurname.compareTo(p.mSurname);

 }

}

public class AgeComparator implements Comparator<Person> {

 public int compare(Person p1, Person p2) {

 return (p1.mAge-p2.mAge);

 }

}

…

ArrayList<Person> plist = …;

…

Collec/ons.sort(plist); // sorts by surname

Collec/ons.sort(plist, new AgeComparator()); // sorts by age

delegateto the field's
compareto method

Operator Overloading

 Some languages have a neat feature that allows
you to overload the comparison operators. e.g. in
C++

class Person {

 public:

 Int mAge

 bool operator==(Person &p) {

 return (p.mAge==mAge);

 };

 }

Person a, b;

b == a; // Test value equality

people argue abort
Or
whether this is

goodbad

Lecture 8:

Error Handling Revisited

Objectives:
	 - finish last lecture: equals, comparing and comparable
	 - error handling approaches
	 - pros and cons of exceptions
	 - how to define your own exceptions

Return Codes

 The traditional imperative way to handle errors is to
return a value that indicates success/failure/error

 Problems:

 Could ignore the return value

 Have to keep checking what the return values are meant to
signify, etc.

 The actual result often can't be returned in the same way

public int divide(double a, double b) {

 if (b==0.0) return -1; // error

 double result = a/b;

 return 0; // success

}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Go - returns a pair res,err
Haskell - Maybe type

Deferred Error Handling

 A similar idea (with the same issues) is to set some state in
the system that needs to be checked for errors.

 C++ does this for streams:

ifstream Sle("test.txt");

if (Sle.good())

{

 cout << "An error occurred opening the Sle" << endl;

}

Exceptions

 An exception is an object that can be thrown or raised by a
method when an error occurs and caught or handled by the
calling code

 Example usage:

try {

 double z = divide(x,y);

}

catch(DivideByZeroExcep/on d) {

 // Handle error here

}

Flow Control During Exceptions

 When an exception is thrown, any code left to run in the try
block is skipped

double z=0.0;

boolean failed=false;

try {

 z = divide(5,0);

 z = 1.0;

}

catch(DivideByZeroExcep/on d) {

 failed=true;

}

z=3.0;

System.out.println(z+” “+failed);

Throwing Exceptions

 An exception is an object that has Exception as an
ancestor

 So you need to create it (with new) before throwing

double divide(double x, double y) throws DivideByZeroExcep/on {

 if (y==0.0) throw new DivideByZeroExcep/on();

 else return x/y;

}

Multiple Handlers

 A try block can result in a range of different exceptions. We
test them in sequence

try {

 FileReader fr = new FileReader(“someSle”);

 Int r = fr.read();

}

catch(FileNoteFound fnf) {

 // handle Sle not found with FileReader

}

catch(IOExcep/on d) {

 // handle read() failed

}

demo: catching
multiple
exceptions

finally

 With resources we often want to ensure
that they are closed whatever happens

try {

 fr,read();

 fr.close();

}

catch(IOExcep/on ioe) {

 // read() failed but we must s/ll close the FileReader

 fr.close();

}

finally II

 The finally block is added and will always
run (after any handler)

try {

 fr,read();

}

catch(IOExcep/on ioe) {

 // read() failed

}

Snally {

 fr.close();

}

Remember: try-with-resources

Creating Exceptions

 Just extend Exception (or RuntimeException if you need it to
be unchecked). Good form to add a detail message in the
constructor but not required.

 You can also add more data to the exception class to provide
more info on what happened (e.g. store the numerator and
denominator of a failed division)

public class DivideByZero extends Excep/on {}

public class Computa/onFailed extends Excep/on {

 public Computa/onFailed(String msg) {

 super(msg);

 }

}

If your exception arises
due to another
exception
then chain them - demo

Keyword: exception chaining

Exception Hierarchies

 You can use inheritance hierarchies

 And catch parent classes

public class MathExcep/on extends Excep/on {...}

public class InSniteResult extends MathExcep/on {…}

public class DivByZero extends MathExcep/on {…}

try {

 …

}

catch(InSniteResult ir) {

 // handle an inSnite result

}

catch(MathExcep/on me) {

 // handle any MathExcep/on or DivByZero

}

Checked vs Unchecked Exceptions

 Checked: must be handled or passed up.

 Used for recoverable errors

 Java requires you to declare checked exceptions that your
method throws

 Java requires you to catch the exception when you call the
function

 Unchecked: not expected to be handled. Used for
programming errors

 Extends RuntimeException

 Good example is NullPointerException

double somefunc() throws SomeExcep/on {}

discuss Throwable and
Error

Evil I: Exceptions for Flow Control

 At some level, throwing an exception is like a GOTO

 Tempting to exploit this

 This is not good. Exceptions are for exceptional circumstances
only

 Harder to read

 May prevent optimisations

try {

 for (int i=0; ; i++) {

 System.out.println(myarray[i]);

 }

}

catch (ArrayOutOfBoundsExcep/on ae) {

 // This is expected

}

Evil II: Blank Handlers

 Checked exceptions must be handled

 Constantly having to use try...catch blocks to do this can be
annoying and the temptation is to just gaffer-tape it for now

 ...but we never remember to fix it and we could easily be missing
serious errors that manifest as bugs later on that are extremely
hard to track down

try {

 FileReader fr = new FileReader(Slename);

}

catch (FileNotFound fnf) {

}

Always write something
If it can't happen throw a
RuntimeException
If its ignored explain why

Evil III: Circumventing Exception Handling

 Just don't.

try{

 // whatever

}

catch(Excep/on e) {}

Advantages of Exceptions

 Advantages:

 Class name can be descriptive (no need to look up error
codes)

 Doesn't interrupt the natural flow of the code by requiring
constant tests

 The exception object itself can contain state that gives lots of
detail on the error that caused the exception

 Can't be ignored, only handled

Disadvantages:
	 Surprising control flow - an exception could be thrown anywhere
	 Lends itself to single threads of execution
	 Unrolls control flow, doesn't unroll state changes

Assertions

 Assertions are a form of error checking designed for debugging
(only)

 They are a simple statement that evaluates a boolean: if it's true
nothing happens, if it's false, the program ends.

 In Java:

assert (x>0);

// or

assert (a==0) : “Some error message here”;

SKIPPED

Assertions are NOT for Production Code!

 Assertions are there to help you check the logic of your code is
correct i.e. when you're trying to get an algorithm working

 They should be switched OFF for code that gets released
(“production code”)

 In Java, the JVM takes a parameter that enables (-ea) or disables
(-da) assertions. The default is for them to be disabled.

> java -ea SomeClass

> java -da SomeClass

SKIPPED

As Oracle Puts It

“Asser/ons are meant to require that the program be

consistent with itself, not that the user be consistent

with the program”

SKIPPED

Great for Postconditions

 Postconditions are things that must be true at the end of an
algorithm/function if it is functioning correctly

 E.g.

public Doat sqrt(Doat x) {

 Doat result = ….

 // blah

 assert(result>=0.f);

}

SKIPPED

Sometimes for Preconditions

 Preconditions are things that are assumed true at the start of an
algorithm/function

 E.g.

 BUT you shouldn't use assertions to check for public
preconditions

 (you should use exceptions for this)

private void method(SomeObject so) {

 assert (so!=null);

 //...

}

public Doat method(Doat x) {

 assert (x>=0);

 //...

}

SKIPPED

Sqrt Example

public Doat method(Doat x) throws InvalidInputExcep/on {

 .// Input sani/sa/on (precondi/on)

 if (x<0.f) throw new InvalidInputExcep/on();

 Doat result=0.f;

 // compute sqrt and store in result

 // Postcondi/on

 assert (result>=0);

 return result;

}

SKIPPED

Assertions can be Slow if you Like

 Here, isSorted() is presumably quite costly (at least O(n)).

 That's OK for debugging (it's checking the sort algorithm is
working, so you can accept the slowdown)

 And will be turned off for production so that's OK

 (but your assertion shouldn't have side effects)

public int[] sort(int[] arr) {

 int[] result = ...

 // blah

 assert(isSorted(result));

}

SKIPPED

NOT for Checking your Compiler/Computer

 If this isn't working, there is something much bigger wrong with
your system!

 It's pointless putting in things like this

public void method() {

 int a=10;

 assert (a==10);

 //...

}

SKIPPED

For the Last Word on Assertions...

h�p://www.oracle.com/technetwork/ar/cles/javase/javapch06.pdf

SKIPPED

Lecture 9:

Copying Objects

shallow vs deep cop
covariance d contravariance

copy constructors

Objectives:
	 - pros and cons of Exception handling

principle of substitutability

Erratum: In lecture 4 I told you that Java has a nominative
type system. It does. But I spelt nominative incorrectly!

Cloning I

 Sometimes we really do want to copy an object

 Java calls this cloning

 We need special support for it

Person object

(name = “Bob”)

r

Person object

(name = “Bob”)

r

Person object

(name = “Bob”)

r_copy

Cloning II

 Every class in Java ultimately inherits from the Object
class

 This class contains a clone() method so we just call
this to clone an object, right?

 This can go horribly wrong if our object contains
reference types (objects, arrays, etc)

Shallow and Deep Copies

public class MyClass {

 private MyOtherClass moc;

}

MyClass object
Shallo

w

MyOtherClass

object
MyClass object

MyOtherClass

object

MyClass object

MyOtherClass

object

MyClass objectMyClass object

MyOtherClass

object

Deep

Java Cloning

 So do you want shallow or deep?

 The default implementation of clone() performs a shallow copy

 But Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure that we'd
thought about whether this was appropriate

 Java has a Cloneable interface

 If you call clone on anything that doesn't extend this interface, it
fails

This is called a marker interface

Clone Example I

 public class Velocity {

 public Doat vx;

 public Doat vy;

 public Velocity(Doat x, Doat y) {

 vx=x;

 vy=y;

 }

 };

 public class Vehicle {

 private int age;

 private Velocity vel;

 public Vehicle(int a, Doat vx, Doat vy) {

 age=a;

 vel = new Velocity(vx,vy);

 }

 };

Clone Example II

 public class Vehicle implements Cloneable {

 private int age;

 private Velocity vel;

 public Vehicle(int a, Doat vx, Doat vy) {

 age=a;

 vel = new Velocity(vx,vy);

 }

 public Object clone() {

 return super.clone();

 }

 };

when
you

overridemethod
you 9

can
weaken

the
access

modifier
clone is protectedoverride in object this opens up
access to the method

I would return Vehicle here

demo covariance and
Contavarian Ee

demo: WeakeningAccess

This is the principle of substitutability

Clone Example III

 public class Velocity implement Cloneable {

 public Object clone() {

 return super.clone();

 }

 };

 public class Vehicle implements Cloneable {

 private int age;

 private Velocity v;

 public Student(int a, Doat vx, Doat vy) {

 age=a;

 vel = new Velocity(vx,vy);

 }

 public Object clone() {

 Vehicle cloned = (Vehicle) super.clone();

 cloned.vel = (Velocity)vel.clone();

 return cloned;

 }

 };

EEE
e Velocity super clonel

deep
closet

hmmmm

Cloning Arrays

 Arrays have build in cloning but the
contents are only cloned shallowly

int intarray[] = new int[100];

Vector3D vecarray = new Vector3D[10];

...

int intarray2[] = intarray.clone();

Vector3D vecarray2 = vecarray.clone();

Vecarray I

E y

rearm

I

Covariant Return Types

 The need to cast the clone return is annoying

 Recent versions of Java allow you to override a method
in a subclass and change its return type to a subclass of
the original's class

public Object clone() {

 Vehicle cloned = (Vehicle) super.clone();

 cloned.vel = (Velocity)vel.clone();

 return cloned;

 }

class A {}

class B extends A {}

class C {

 A mymethod() {}

}

class D extends C {

 B mymethod() {}

}

Marker Interfaces

 If you look at what's in the Cloneable interface, you'll find it's empty!!
 What's going on?

 Well, the clone() method is already inherited from Object so it
doesn't need to specify it

 This is an example of a Marker Interface

 A marker interface is an empty interface that is used to label
classes

 This approach is found occasionally in the Java libraries

Copy Constructors I

 Another way to create copies of objects is to define a
copy constructor that takes in an object of the same type
and manually copies the data

 public class Vehicle {

 private int age;

 private Velocity vel;

 public Vehicle(int a, Doat vx, Doat vy) {

 age=a;

 vel = new Velocity(vx,vy);

 }

 public Vehicle(Vehicle v) {

age=v.age;

vel = v.vel.clone();

 }

}

Copy Constructors II

 Now we can create copies by:

 This is quite a neat approach, but has some drawbacks
which are explored on the Examples Sheet

Vehicle v = new Vehicle(5, 0.f, 5.f);

Vehicle vcopy = new Vehicle(v);

Lecture 10:

Language Evolution

Objectives:
	 Why generics are not covariant
	 Inner classes, anonymous inner classes, lambdas
	 Functional interfaces
	 Method references
	 Streams

Evolve or Die

 Modern languages start out as a programmer “scratching an
itch”: they create something that is particularly suitable for
some niche

 If the language is to 'make it' then it has to evolve to
incorporate both new paradigms and also the old paradigms
that were originally rejected but turn out to have value after
all

 The challenge is backwards compatability: you don't want to
break old code or require programmers to relearn your
language (they'll probably just jump ship!)

 Let's look at some examples for Java...

Vector

 The original Java included the Vector class,
which was an expandable array

 They chose to make it synchronised, which just
means it is safe to use with multi-threaded
programs

 When they introduced Collections, they decided
everything should not be synchronised

 Created ArrayList, which is just an
unsynchronised (=better performing) Vector

 Had to retain Vector for backwards compatibility!

Vector v = new Vector()
v.add(x);

The Origins of Generics

 The original Collections framework
just dealt with collections of Objects

 Everything in Java “is-a” Object
so that way our collections
framework will apply to any class

 But this leads to:

 Constant casting of the result
(ugly)

 The need to know what the
return type is

 Accidental mixing of types in
the collection

// Make a TreeSet object

TreeSet ts = new TreeSet();

// Add integers to it

ts.add(new Integer(3));

// Loop through

iterator it = ts.iterator();

while(it.hasNext()) {

 Object o = it.next();

 Integer i = (Integer)o;

}

The Origins of Generics II

// Make a TreeSet object

TreeSet ts = new TreeSet();

// Add integers to it

ts.add(new Integer(3));

ts.add(new Person(“Bob”));

// Loop through

iterator it = ts.iterator();

while(it.hasNext()) {

 Object o = it.next();

 Integer i = (Integer)o;

}

Going to fail for the

second element!

(But it will compile: the

error will be at run/me)

The Generics Solution

 Java implements type erasure

 Compiler checks through your code to make sure you only
used a single type with a given Generics object

 Then it deletes all knowledge of the parameter, converting
it to the old code invisibly

LinkedList<Integer> ll =

 new LinkedList<Integer>();

…

for (Integer i : ll) {

 do_sthing(i);

}

LinkedList ll =

 new LinkedList();

…

for (Object i : ll) {

 do_sthing((Integer)i);

}

Generics has other clever stuff where you can include constraints on
your generic type and also write ?'s in some places - not covered in this
course

The C++ Templates Solution

 Compiler first generates the class definitions from the
template

class MyClass<T> {

 T membervar;

};

class MyClass_Doat {

 Doat membervar;

};

class MyClass_int {

 int membervar;

};

class MyClass_double {

 double membervar;

};

...

class MyClass_Doat {

 Doat membervar;

};

Generics and SubTyping

// Object cas/ng

Person p = new Person();

Animal o = (Animal) p;

// List cas/ng

List<Person> plist = new LinkedList<Person>();

List<Animal> alist = (List<Animal>)plist;

<<interface>>

Collec/on
Person

<<interface>>

Collec/on

So a list of Persons is a list of Animals, yes?

Animal

class List<Person>
	 extends List<Animal>{
	 Person get() { ... }
	 void put(Person p) { ... }
}
class List<Slug>
	 extends List<Animal> {
	 Slug get() { ... }
	 void put(Slug s) { ... }
}

class List<Animal> {
	 Animal get() { ... }
	 void put(Animal a) {...}
}

List<Animal> l =
	 new List<Person>();
Animal a = l.get(); // OK
l.put(new Slug()); // NOT OK

Adding Functional Elements...

 Java is undeniably imperative, but there is
something seductive about some of the
highly succinct and efficient syntax

 Enter Java 8...

result=map (fn x => (x+1)*(x+1)) numlist;

int[] result = new int[numlist.length];

for (int i=0; i<numlist.length; i++) {

 result[i] = (numlist[i]+1)*(numlist[i]+1)

}

	 	 	 	 	 Inner classes
	 	 	 	 	 Demo

Gui
GuiWithOuterClass
GuiWithInnerClass
GuiWithAnonymousInnerClass
GuiWithLambda

Lambda Functions

 Supports anonymous functions

()->System.out.println("It's nearly over...");

s->s+”hello”;

s->{s=s+”hi”;

 System.out.println(s);}

(x,y)->x+y;

t

i

interface Executor {
	 int doSomethingGood(String a, 	 	
	 	 	 	 	 	 	 int b);
}

void run(Executor e) {
	 e.doSomethingGood();
}

run((p1,p2) -> p1 + " " + p2);

this is a functional interface

expression lambda

statement lambda

Functions as Values

// No arguments

Runnable r = ()->System.out.println("It's nearly over...");

r.run();

// No arguments, non-void return

Callable<Double> pi = ()->3.141;

pi.call();

// One argument, non-void return

Func/on<String,Integer> f = s->s.length();

f.apply(“Seriously, you can go soon”)

instances of functional interfaces

Method References

System.out::println

Person::doSomething

Person::new

 Can use established functions too

New forEach for Lists

List<String> list = new LinkedList<>();

list.add("Just a");

list.add("few more slides");

list.forEach(System.out::println);

list.forEach(s->System.out::println(s));

list.forEach(s->{s=s.toupperCase();

 System.out::println(s);};

Sorting

List<String> list = new LinkedList<>();

….

Collec/ons.sort(list, (s1, s2) -> s1.length() - s2.length());

 Who needs Comparators?

Streams

 Collections can be made into streams
(sequences)

 These can be filtered or mapped!

List<Integer> list = ...

list.stream().map(x->x+10).collect(Collectors.toList());

list.stream().Slter(x->x>5).collect(Collectors.toList());

create
stream

element-wise
operations

aggregation

demo:
streams

Lecture 11/12:

Design Patterns

 Objectives:

	 - understand simple usage of Streams
	 - what is a design pattern
	 - open-closed principle
	 - some example design patterns

Design Patterns

 A Design Pattern is a general reusable solution to a
commonly occurring problem in software design

 Coined by Erich Gamma in his 1991 Ph.D. thesis

 Originally 23 patterns, now many more. Useful to look at
because they illustrate some of the power of OOP (and
also some of the pitfalls)

 We will only consider a subset

The Open-Closed Principle

Classes should be open for extension
but closed for modification

 i.e. we would like to be able to modify the
behaviour without touching its source code

 This rule-of-thumb leads to more reliable
large software and will help us to evaluate
the various design patterns

Decorator

Abstract problem: How can we add state
or methods at runtime?

Example problem: How can we efficiently
support gift-wrapped books in an online
bookstore?

demo: Readers

Decorator in General

 The decorator pattern adds
state and/or functionality to
an object dynamically

Reader

FileReader

BufferedReader

Singleton

Abstract problem: How can we ensure
only one instance of an object is created
by developers using our code?

Example problem: You have a class that
encapsulates accessing a database over a
network. When instantiated, the object will
create a connection and send the query.
Unfortunately you are only allowed one
connection at a time. demo: SingletonConnection

Singleton in General

 The singleton pattern ensures
a class has only one instance
and provides global access to
it

State

Abstract problem: How can we let an
object alter its behaviour when its internal
state changes?

Example problem: Representing
academics as they progress through the
rank

demo: FanSpeed

State in General

 The state pattern allows an
object to cleanly alter its
behaviour when internal
state changes

Strategy

Abstract problem: How can we select an
algorithm implementation at runtime?

Example problem: We have many possible
change-making implementations. How do
we cleanly change between them?

demo:
ComparatorStrategy

Strategy in General

 The strategy pattern allows us to cleanly interchange
between algorithm implementations

Composite

Abstract problem: How can we treat a
group of objects as a single object?

Example problem: Representing a DVD
box-set as well as the individual films
without duplicating info and with a 10%
discount

demo: DVDs

Composite in General

 The composite pattern lets
us treat objects and groups
of objects uniformly

Observer

Abstract problem: When an object
changes state, how can any interested
parties know?

Example problem: How can we write
phone apps that react to accelerator
events?

demo: ActionListener from
last lecture

Observer in General

 The observer pattern allows an object to have multiple
dependents and propagates updates to the dependents
automatically.

Interpreter to Virtual Machine

 Java was born in an era of internet connectivity. SUN wanted
to distribute programs to internet machines

 But many architectures were attached to the internet – how
do you write one program for them all?

 And how do you keep the size of the program small (for
quick download)?

 Could use an interpreter (→ Javascript). But:

 High level languages not very space-efficient

 The source code would implicitly be there for anyone to
see, which hinders commercial viability.

 Went for a clever hybrid interpreter/compiler

Java Bytecode I

 SUN envisaged a hypothetical Java Virtual Machine (JVM).
Java is compiled into machine code (called bytecode) for that
(imaginary) machine. The bytecode is then distributed.

 To use the bytecode, the user must have a JVM that has been
specially compiled for their architecture.

 The JVM takes in bytecode and spits out the correct machine
code for the local computer. i.e. is a bytecode interpreter

Java Bytecode II

Source Code Java Compiler Bytecode

Developer

Distribute

Unix User

JVM for

x86/Linux

Machine

code

Win User

JVM for

x86/win

Machine

code

Android User

JVM for

ARM

Machine

code ...

Java Bytecode III

+ Bytecode is compiled so not easy to reverse engineer

+ The JVM ships with tons of libraries which makes the
bytecode you distribute small

+ The toughest part of the compile (from human-
readable to computer readable) is done by the compiler,
leaving the computer-readable bytecode to be translated
by the JVM (→ easier job → faster job)

- Still a performance hit compared to fully compiled
(“native”) code

