Object Oriented Programming
Dr Andrew Rice

IACST and NST (CS)
Michaelmas 2018/19

With thanks to Dr Robert Harle who
designed this course and wrote the
material.

Annotedsas 4,3 ne, |
q\\‘ .

H’QDC ve_ é}"” e eblo

The OOP Course

» So far you have studied some procedural programming in Java
and functional programming in ML

= Here we take your procedural Java and build on it to get
object-oriented Java

= You have ticks in Java
» This course complements the practicals
» Some material appears only here
» Some material appears only in the practicals
» Some material appears in both: deliberately™!

/[G/C-S' fé/eq)(a(

o LA
. ’ P alcne_
7Q”O_Q1,,\S ‘ r\' ;0(Gb ‘LL\Q,

=D

* Some material may be repeated unintentionally. If so | will claim it was deliberate.

. Types, Objects and Classes
. Designing Classes
. Pointers, References and Memory
. Inheritance
. Polymorphism
. Lifecycle of an Object
. Error Handling
. Copying Objects
. Java Collections
10. Object Comparison
11. Design Patterns
12. Design Pattern (cont.)

© 0o N O~ WDNPE

Books and Resources |

= OOP Concepts

» ook for books for those learning to first program in an OOP
language (Java, C++, Python)

» Java: How to Program by Deitel & Deitel (also C++)
= Thinking in Java by Eckels

» Java in a Nutshell (O' Reilly) if you already know another OOP
language
» Java specification book: http://java.sun.com/docs/books/jls/

= | ots of good resources on the web 7@ %
= Design Patterns 0\74%’\
4

» Design Patterns by Gamma et al. e

= | ots of good resources on the web N [3/b :
C

Books and Resources Il

= Also check the course web page
» Updated notes (with annotations where possible)
» Code from the lectures
= Sample tripos questions

http://www.cl.cam.ac.uk/teaching/current/OOProg/

= And the Moodle site “Computer Science Paper 1 (1A)”
= Watch for course announcements

Ongo#!J-@) l> Rememiser P(‘ooeol,vr«) S‘AVA!

ZB Mna’-‘lr:j]?/d ﬁmoﬂm onra.r{oaotms

%» Knowo the d.ﬁ@rﬁnce, boeheon a class
= - obbe,c—(-
4“5 ICVDV’\') heo o o W\ﬂ"ﬂ/\d‘- an °b:)e4),"

N Undestod Hre Shobic Jeomcoocd
> Lecture 1: =

Types, Objects and Classes

Types of Languages

» Declarative - specify what to do, not how

to do It. I.e.

» E.g. HTML describes what should appear on a web page,
and not how it should be drawn to the screen

= E.g. SQL statements such as “select * from table” tell a
program to get information from a database, but not how to

do so

» |mperative — specify both what and how

= E.g. “triple x* might be a declarative instruction that you
want the variable x tripled in value. Imperatively we would
have “X=x*3" or “X=x+Xx+X"

Top 20 Languages 2016

Oct 2016 Oct 2015 Change Prog rming Language Ratings Change
1 1 18.799% -0.74%
2 2 o] 9.835% -6.35%
3 3 C++ 5.797% +0.05%
4 4 C# 4.367% -0.46%
5 5 Python 3.775% -0.74%
6 8 A JavaScript 2.751% +0.46%
7 6 v PHP 2.741% +0.18%
8 7 v Visual Basic .NET 2.660% +0.20%
9 9 Perl 2.495% +0.25%
10 14 A Objective-C 2.263% +0.84%
" 12 A Assembly language 2.232% +0.66%
12 15 S Swift 2.004% +0.73%
13 10 v Ruby 2.001% +0.18%
14 13 v Visual Basic 1.987% +0.47%
15 11 N Delphi/Object Pascal 1.875% +0.24%
16 65 A Go 1.809% +1.67%
17 32 A Groovy 1.769% +1.19%
18 20 S R 1.741% +0.75%
19 17 v MATLAB 1.619% +0.46%

20 18 v PL/SQL 1.531% +0.46%

Top 20 Languages 2016 (Cont)

Position Programming Language Ratings
21 SAS 1.443%
22 ABAP 1.257%
23 Scratch 1.132%
24 COBOL 1.127%
25 Dart 1.099%
26 D 1.047%
27 Lua 0.827%
28 Fortran 0.742%
29 Lisp 0.742%
30 Transact-SQL 0.721%
31 Ada 0.652%
32 F# 0.633%
33 Scala 0.611%
34 Haskell 0.522%
35 0.500%
36 Prolog 0.495%
37 LabVIEW 0.455%
38 Scheme 0.444%
39 Apex 0.349%

40 Q 0.303%

Top 20 Languages 2016 (Cont Cont)

41 Erlang 0.300%
42 Rust 0.296%
43 Bash 0.286%
44 RPG (0S/400) 0.273%
45 Ladder Logic 0.266%
46 VHDL 0.220%
47 Alice 0.205%
48 Awk 0.203%
49 CL (OS/400) 0.170%

50 Clojure 0.169%

Top 20 Languages 2016 (Cont Cont Cont)

The Next 50 Programming Languages

The following list of languages denotes #51 to #100. Since the differences are relatively small, the programming languages are only listed (in
alphabetical order).

« (Visual) FoxPro, 4th Dimension/4D, ABC, ActionScript, APL, AutoLISP, sic, BlitzMay, Bourne shell, C shell, CFML, cg, Common Lisp, Crystal, Eiffel,
Elixir, EIm, Forth, Hack, Icon, IDL, Inform, lo, J, Julia, Korn shell, Kotlin, Maple, ML, MQt4, MS-DOS batch, NATURAL, NXT-G, 0Caml, OpenCL, Oz,
Pascal, PL/I, PowerShell, REXX, S, Simulink, Smalltalk, SPARK, SPSS, Stang Stata, Tcl, VBScript, Verilog

ML as a Functional Language

* Functional languages are a subset of declarative
languages

= ML is a functional language

* [t may appear that you tell it how to do everything,
but you should think of it as providing an explicit
example of what should happen

* The compiler may optimise i.e. replace your
Implementation with something entirely different
but 100% equivalent.

75;/1 QOL O =4
l 1[0& n = Vl‘f)ﬁﬁéa#(m~1>'

)

Function Side Effects

* Functions in imperative languages can use or
alter larger system state — procedures

Maths: m(x,y) = xy

ML: fun m(x,y) = x*y;
Java: i At =x*y;
inty=7;
int m(int x) {
y=y+1;

return x*y;

void Procedures

= A void procedure returns nothing:

int count=0; V@/Q//S
| %3% 5
void addToCount() { =< ég
count=count+1;

CLN, R

Couvvl- 4= Cou/bl‘—i- + ~t c,oum/!‘

Control Flow: Looping

for(initialisation, termination, increment) ;7-7 S

for (int i=0; i<8; i++) ... /Q{‘-
int j=0; for(; j<8; j++) ... / 3}
% R
e

for(int k=7;k>=0; j--) ... o QI-,QQ%

while(boolean_expression)

int i=0; while (i<8) {i++; ...}

int j=7; while (j>=0) {j--; ...}

Control Flow: Looping Examples

int arr[] ={1,2,3,4,5};

for (int i=0; i<arr.length;i++) {
System.out.printin(arrli]);

}

int i=0;

while (i<arr.length) {
System.out.printin(arrli]);
i=i+1;

Control Flow: Branching |

» Branching statements interrupt the current control flow
= return
= Used to return from a function at any point

boolean linearSearch(int[] xs, int v) {
for (int 1=0;i<xs.length; 1i++) {
i1f (xs[i1i]==v) return true;
}

return false;

Control Flow: Branching |l

» Branching statements interrupt the current control flow
= break
= Used to jump out of a loop

boolean linearSearch(int[] xs, 1int v) {
boolean found=false;
for (int 1=0;i<xs.length; 1i++) {
if (xs[i]==Vv) {
found=true;
break; // stop looping
}
}

return found;

Control Flow: Branching Il

» Branching statements interrupt the current control flow
= continue
= Used to skip the current iteration in a loop

void printPositives (int[] xs) {

for (int 1=0;i<xs.length; 1i++) {
1f (xs[1]<0) continue;
System.out.println(xs([1]);

Immutable to Mutable Data

ML ML . [.
15 & lenanmea ol €xpre>Dlons
- val x=5; D oy # .
_>):/_a7l-x =5:int i;“/a Lo (MS"‘"X—— dﬂ) ’
>val it = false : bool \' ﬁ*//“l(Ercpce> NS
- val x=9;

>valx=9:int

Vd/ac-\

/ *’C.\1 %f&

\
int x=5; l’%
n S

Tt~ o
int x=9; =
TS)

Ckmcp : (‘(y(mcrhlfg
V.S p(i?ﬂnaf)

Types and Variables

‘XYv-lo Noves g - bove
Vae e S/ int x = 512; hirtted Lems @ A
= 2, .
, inty = 200; iference
int z = x+vy;

* The high-level language has a series of primitive (built-in)
types that we use to signify what’s in the memory
= The compiler then knows what to do with them
= E.g. An “int” is a primitive type in C, C++, Java and many
languages. It's usually a 32-bit signed integer
= A variable is a name used in code to refer to a specific
instance of a type '
= X,y,z are variables above n Dava ks 32-b+

= They are all of type int W S c++ H gt be

E.g. Primitive Types in Java

= “Primitive” types are the built in ones.

= They are building blocks for more complicated types that we will be
looking at soon.

= boolean —1 bit (true, false)

= char—16 bits wd@,,” :
= byte — 8 bits as a signed integer (-128 to 127) L e /)3
= short— 16 bits as a signed integer //7%
= int— 32 bits as a signed integer Ql—g‘,)
= |ong — 64 bits as a signed integer D
= float — 32 bits as a floating point number
= double — 64 bits as a floating point number 975/%7
/Jz(< © %g

%\\A
7 Sk

Overloading Functions

= Same function name
= Different arguments
» Possibly different return type

int myfun(int a, int b) {...}
float myfun(float a, float b) {...}
double myfun(double a, double b) {...}

* But not just a different return type

int myfun(int a, int b) {...}
float myfun(int a, int b) {...} X

Function Prototypes

= Functions are made up of a prototype and
a body

» Prototype specifies the function name,
arguments and possibly return type

* Body is the actual function code

fun myfun(a,b) = ...;

int myfun(int a, int b) {...}

Custom Types

datatype 'a seq = Nil
| Cons of 'a * (unit ->'a seq);

public class Vector3D {
float x;
floaty;
float z;

}

State and Behaviour

datatype 'a seq = Nil
| Cons of 'a * (unit ->'a seq);

fun hd (Cons(x,_)) = x;

State and Behaviour

datatype 'a seq = Nil
| Cons of 'a * (unit ->'a seq);

fun hd (Cons(x,_)) = x;

public class Vector3D {
float x;

float y; SVATE

float z;

void add(float vx, float vy, float vz) {
X=X+VX; (>aHayIov R.
y=ytvy,
Z=7+VZ;
}
}

Loose Terminology (again!)

State Behaviour
Fields Functions
Instance Variables Methods
Properties Procedures
Variables

Members

Classes, Instances and Objects

= Classes can be seen as templates for representing
various concepts

» We create instances of classes in a similar way.
e.g.

MyCoolClass m = new MyCoolClass();
MyCoolClass n = new MyCoolClass();

makes two instances of class MyCoolClass.
* An instance of a class is called an object

Defining a Class

I
A >
V) — / /v
public class Vector3D { —_
float x;
float y; Pre
float z; N
D
void add(float vx, float vy, float vz) { C 2.
X=X+VX;
y=y+vy; Ve
7=7+VZ;
}

}

Constructors

MyObject m = new MyObject();

= You will have noticed that the RHS looks rather like a function
call, and that's exactly what it is.

* [t's a method that gets called when the object is constructed,
and it goes by the name of a constructor (it's not rocket
science). It maps to the datatype constructors you saw in ML.

= \We use constructors to initialise the state of the class in a
convenient way

= A constructor has the same name as the class
= A constructor has no return type

Constructors with Arguments

public class Vector3D {
float x;
floaty;
float z;

tOOV\ Conn > (#4)5’ ho

Vector3D(float xi, float yi, float zi) {

X=Xi; . . '
y=yi d[(ﬁmvxbis/\o—*@ IerNe.sS “g
z=1i, Ngzd-ed

}

6,5_ l?l/\l‘S.DC: L }

/] ...
}

Vector3D v = new Vector3D(1.f,0.,2.f);

Overloaded Constructors

public class Vector3D {
float x;
floaty;
float z;

Vector3D(float xi, float yi, float zi) {
X=Xi;
y=Yi;
2=2i;

}

Vector3D() {
x=0.f;
y=0.f;
2=0.f;

}

/] ...
}

Vector3D v = new Vector3D(1.f,0.,2.f);
Vector3D v2 = new Vector3D();

Default Constructor

public class Vector3D { . . ‘
ﬂoatx; /7/7 Lso" dLO’VTL N rL)éllzz_,
floaty; o . }_{‘
float z; 1[1@(0(| f?l\'s Set-
)
J 74:@ J—%e &Qro Vabhne
~ Laat
Vector3D v = new Vector3D(); h‘f’e’ :

/JQ/QL do Bi)

= No constructor provided

= So blank one generated with
no arguments

Class-Level Data and Functionality |

= A static field is created only once in the program's execution,
despite being declared as part of a class

One of these created every
4— time anew Shopltem is
instantiated. Nothing keeps

T them all in sync.

public class Shopltem {
float mVATRate;
static float sVATRate;

Only one of these created ever. Every
Shopltem object references it.

Stabic = associated wihh hHe cloes

Class-Level Data and Functionality |l

0.2 S e A .
= Autorsynchronised
- across instances
» Space efficient
Shatie fiolds cce S04
C\) 1@((/o’lez-m‘l".s

)‘ nee— 6—)-@“ e ';7%€C\/\ Ol"/lgr\,;')\bc/ NS (/Oj—[‘l/\ e

1e Id 161'_6'0(
= Also static methods:

A

public class Whatever {
public static void main(String[] args) {

}
}

Why use Static Methods?

= Easier to debug (only depends on static state)
= Self documenting
= Groups related methods in a Class without requiring an object

= | The compiler can produce more efficient code since no specific
objectis involved — do ot coomry dend Hos i lhis ome

public class Math { public class Math {
public float sgrt(float x) {...} public static float sqrt(float x) {...}
public double sin(float x) {...} public static float sin(float x) {...}
public double cos(float x) {...} public static float cos(float x) {...}
} }
VS
Math mathobject = new Math(); Math.sqrt(9.0);

mathobject.sqrt(9.0);

@bsed-)v‘esr /> undle r~tand ‘e Shabic Ice_j,:)erd

. O\ vohet shodd Lo an o .8
N{]:Lio: 5_/—35\ Ohy dhes o3€ el wrih pradabkeriy ©

2. (ownese

(e Lhet Soes encopsAesn hnecn ?

) Wtk do hhe o(.ng&rl\ ccce> rvOo\(ﬂyJ_s
W@on 2,
Lecture 2:

Designing Classes

6> Uow +o nelke a1 timable ab'jaok
Grd Vo > i 0500(?.

%/—)@)9’"6(- e 4 SRNRALS

What Not to Do

Your ML has doubtless been one big file where
you threw together all the functions and value
declarations

Lots of C programs look like this :-(

We could emulate this in OOP by having one
class and throwing everything into it

We can do (much) better

ldentifying Classes

» \WWe want our class to be a grouping of
conceptually-related state and behaviour

= One popular way to group is using grammar
* Noun — Object
= \Verb — Method

“A simulation of the Earth's orbit around the
&n

A CV\/\ V&)Q(Oéf AN H/\oi— Asks ﬁ,{/\exﬁ"r@ﬂs

cnd Cheds Hie o= ore cocedt

UML: Representing a Class Graphically

MyFancyClass

/ - age :int -« State
““” means

private access SetAge(age: int) : void
h o :
/ Behaviour

“yn means [&U@D—l—iéﬂ
public access - _ P“,ME{—- . 5{—1-\}73

— 5olvv\1<';n | j\""l(":')

+ sk () vor A
+clhecle (GHNSLe ¢ fé}-r:hb\‘. Loolean

The has-a Association

College 1 0..* Student
Y =
= Arrow going left to righ “a College has Zerg or more
9 5 o
students Qlui= > [Quesie
= Arrow going right to left says udent has exacitl
College”

* What it means in real terms is that the College class will
contain a variable that somehow links to a set of Student
objects, and a Student will have a variable that references a
College object.

= Note that we are only linking classes: we don't start drawing
arrows to primitive types. Demo . V;'r)[— s o

Anatomy of an OOP Program (Java)

Class name

\

public class MyFancyClass {

public int someNumber;
public String someText;

Access modifier

Class state (properties that an

/ object has such as colour or size)

— Class behaviour (actions an

public void someMethod() { < ,
object can do)
}
— 'Magic' start point for
public static void main(String[] args) { the program (named
MyFancyClass ¢ = new main by convention)

e

Create a reference to a
MyFancyClass object and call
itc

yClass();

\ Create an object of type

MyFancyClass in memory

Anatomy of an OOP Program (C++)

Class name ///

* Access modifier 7&
class MyFancyClass {

4

Z i{,
Class state7(7 Z c
public: / ’%/%QKQ\ é
int someNumber; .

. . 5
public String someText;

Class behaviour 7{%
void someMethod() { MO()\‘L/O(O Aais /

}
'Magic' start point for
L the program

void main(int argc, char **argv) { Create an object of typ.e
MyFancyClass c; - MyFancyClass and call it cc

MyFancyClass *cp = new MyFancyClass()

_ . Create an object of type
} Create a pointer to a MyFancyClass object MyFancyClass and return a

and call it cp reference to it

OOP Concepts

= OOP provides the programmer with a
number of important concepts:

= Modularity
= Code Re-Use

= Encapsulation
= Inheritance — i lech~= &

= Polymorphism - & leck~e S

= | et's look at these more closely...

You've long been taught to break down complex
problems into more tractable sub-problems.

Each class represents a sub-unit of code that (if
written well) can be developed, tested and updated
independently from the rest of the code.

Indeed, two classes that achieve the same thing
(but perhaps do it in different ways) can be swapped
In the code

Properly developed classes can be used in other
programs without modification.

Encapsulation |

class Student {
int age;

5

void main() {
Student s = new Student();
s.age = 21;

Student s2 = new Student();
s2.age=-1;

Student s3 = new Student();
s3.age=10055;

Encapsulation |

class Student {
private int age;

boolean setAge(int a) {
if (a>=0 && a<130) {
age=a;
return true;

}

return false;

}

int getAge() {return age;}
}

void main() {
Student s = new Student();
s.setAge(21);

}

Encapsulation Il

class Location { class Location {

private float x;

private float y; private Vector2D v;

float getX() {return v.getX();}

float getX() {return x;}
float getY() {return v.getY();}

float getY() {return y;}

void setX(float nx) {v.setX(nx);}

void setX(float nx) {x=nx;}
void setY(float ny) {v.setY(ny);}

void setY(float ny) {y=ny;} \
}

Encopslatio, =) hidian inbeme) Shode.
Z,> bmd(v'mb et s Sita St

Access Modifiers

rivate X
P ,//C:;o/ y
STy,
package ICLTSRG X X
(Java) BN

protected @ X X

public X X X X

Immutability

= Everything in ML was immutable (ignoring the
reference stuff). Immutability has a number of
advantages:

= Easier to construct, test and use
= Can be used in concurrent contexts
= Allows lazy instantiation

= \We can use our access modifiers to create
immutable classes

Parameterised Classes

= ML's polymorphism allowed us to specify functions that could

be applied to multiple types
7&/\ 140{‘ :]6{6’!% 5 Hie
> fun self(x)=x; , o
valself=fn:'a->"a C’/‘[’B ‘)[:Afb(m/\ w Mo s
’I">6€_ o >

* |n Java, we can achieve something similar through Generics;
C++ through templates

» Classes are defined with placeholders (see later lectures)
= We fill them in when we create objects using them

LinkedList<Integer> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

Creating Parameterised Types

= These just require a placeholder type

e
lass Vector3D<T> { v I
class Vector
private T x; Se"'% . %7\"3
e
private T y; hsy
“ed, D
T getX() {return x;} 7L:>OQ S C“/leo(
T getY() {return y;} e(“ik,\(,e_
~
void setX(T nx) {x=nx;} é:)%# “en
void setY(T ny) {y=ny;} NS {""hg,\ 4
} @rf/qjq q”d / o
[“14 Y7

Q!Q\e/dﬂuke;-’ Whckt & a call sheclk gg Loy’
S <P
Lo s 1D nsed .
Afflerene Lok oo, poidas ot
A S e~k N 5}__3@
Lecture 3:
Pointers, References and Memory

Memory and Pointers

» |n reality the compiler stores a mapping from variable
name to a specific memory address, along with the type
so it knows how to interpret the memory (e.g. “x is an int
S0 it spans 4 bytes starting at memory address 43526”).

» Lower level languages often let us work with memory
addresses directly. Variables that store memory
addresses are called pointers or sometimes references

= Manipulating memory directly allows us to write fast,
efficient code, but also exposes us to bigger risks

= Get it wrong and the program 'crashes'.

<3®H‘d/\ s Haer \/lMO(o/v!\)

Pointers: Box and Arrow Model

= A pointer is just the memory address of the first memory slot
used by the variable

= The pointer type tells the compiler how many slots the whole
object uses

int x = 72; xptr ’ *
int *xptr1 = &x; -
int *xptr2 = xptr1;
P P xptr2 —J
WA

Example: Representing Strings |

A single character is fine, but a text string is of variable length — how
can we cope with that?

We simply store the start of the string in memory and require it to
finish with a special character (the NULL or terminating character,
aka '\0")

So now we need to be able to store memory addresses - use
pointers

7 8 9 10 11 12 13 14 15 16 17 18

11

} X .

7
:%?/

We think of there being an array of characters (single letters) in

memory, with the string pointer pointing to the first element of that

array

Example: Representing Strings |l

char letterArray[] = {"'h",'e",'l','','0",'\0'}; h e I |l | o | \O
char *stringPointer = &(letterArray[0]); i
printf(“%s\n”,stringPointer);
letterArray[3]="\0';
printf(“%s\n”,stringPointer);
S
R

References

= A reference Is an alias for another thing
(object/array/etc)

* When you use it, you are 'redirected'
somehow to the underlying thing

* Properties:
» Either assigned or unassigned
= [f assigned, it is valid
* You can easily check if assigned

Implementing References

= A sane reference implementation in an
Imperative language is going to use pointers

» S0 each reference is the same as a pointer
except that the compiler restricts operations

that would violate the properties of
references

» For this course, thinking of a reference as a
restricted pointer is fine

%
S

Distinguishing References and Pointers

Pointers References
M Ja -
Can be unassigned Yes Yes
(null)
Can be assigned to Yes Yes
established object
Can be assigned to an Yes No
arbitrary chunk of
memory
Can be tested for validity No Yes
== rnull
Can perform arithmetic Yes No

Languages and References

= Pointers are useful but dangerous
= C, C++: pointers and references

= Java: references only

= ML: references only

References in Java

= Declaring unassigned

SomecClass ref = null; // explicit
SomecClass ref2; //implicit

= Defining/assigning

// Assign
SomeClass ref = new ClassRef();

// Reassign to alias something else
ref = new ClassRef();

// Reference the same thing as another reference
SomeClass ref2 = ref;

byte[] arraydemol = new byte[6];
byte arraydemo2[] = new byte[6];

O0x1AC594

O0x1AC595

Ox1AC596

0x1AC597

Ox1AC598

0x1AC599

Ox1AC5A0

@
Ox1AC5A1 S

Ox1AC5A2

References Example (Java)

int[] refl = null;

P <null>

Keeping Track of Function Calls

* We need a way of keeping track of which
functions are currently running

public void a() {

/]...
}

public void b() {

a();
}

¢

The Call Stack

The Call Stack: Example

int twice(int d) return 2*d;
int triple(int d) return 3*d;
int a = 50;

int b = twice(a);

int ¢ = triple(a);

AUk, WN -

Nested Functions

int twice(int d) return 2*d;

int quadruple(int d) return twice(twice(d));
int a=50;

int b = quadruple(a);

ua b WN -

Recursive Functions

int pow (int x, inty) {
if (y==0) return 1;
int p = pow(x,y-1);
return x*p;

}
int s=pow(2,7);

NooubhwNRk

Tall-Recursive Functions |

int pow (int x, inty, intt) {
if (y==0) return t;
return pow(x,y-1, t*x);
}
ints =pow(2,7,1);

AUk, WN -

Tall-Recursive Functions Il

int pow (int x, inty, intt) { 3"‘\ C[crb mo«l col
if (y==0) return t; -LL\ &t
return pow(x,y-1, t*x); = OPL?M;.S%/\

}
ints =pow(2,7,1);

AUk, WN -

The Heap

int[] x = new int[3];
public void resize(int size) {

X=new int[size]; —>
for (int=0; i<3; i++)
}

resize(5); _}7
C

/

>y

S

Stack

Argument Passing

= Pass-by-value. Copy the objei%t Into a new value in
the stack

void test(int x) {...}
int y=3;
test(y);

= Pass-by-reference. Create a reference to the <
object and pass that. <
o H
oV, <
C‘\
o 0

void test(int &x) {...}
int y=3;
test(y);

Sa
B

Passing Procedure Arguments In Java

‘)’%6 VﬁLV\é_. {/lé_m vo S (A_(L

class Reference { /
public static void update(int i, int[] array) {
i++; \i .
array[0]++; e valie lhee v = (?74;(‘2/1 e
}

public static void main(String[] args) {
inttest_i=1;
int[] test_array = {1};
update(test_i, test_array); / 1= m-l\:;, /]
System.out.printin(test_i);
System.out.printin(test_array[0]);

| - ‘Pr\/ﬁ‘b 2

Passing Procedure Arguments In C++

> oy

void update(int i, int &iref){

}

i++;

iref++; \\QADD lyxb \/‘4~L\-Q

int main(int argc, char** argv) {

}

int a=1;

intbzl;/ szu—} o

update(
printf("%d %d\n",a,b); 'H/-\o I's

\.

= o 6(/10\,3@,()(

C e e/l[va(*e/m&

P-b- ¢ 7

public static void myfunction2(int x, int[] a) {
x=1;
X=x+1;
a = new int[]{1};

a[0]=a[0]+1; (/\)I’)QIL

) =
i
public static void main(String[] arguments) { 2 °
int num=1; ’
int numarray[] = {1};
myfunction2(num, numarray);
System.out.printin(num+" "+numarray[0]);
}
A. “1 1”
B. “1 2”
C. “2 1”
D- “2 2”

O\h 801[‘1!/\2)3 446,\40 g»(('@!Q("?/\C& alu'asnhs]]%L lechre
ONCSannent pesSsiay
Coa(e, 4\4 wlwf_]/-IMQF‘}'L:V'IC_Q_,
NACO-N~ od Dcleq 1 REEN
FQM; A Shadoay
Mebcl, and orerdidA

Lecture 4:
Inheritance

Inheritance |

class Student {
public int age;
public String name;
public int grade;

}

class Lecturer {
public int age;
public String name;
public int salary;

}

There is a lot of duplication here

Conceptually there is a hierarchy that we're
not really representing

Both Lecturers and Students are people
(no, really).

We can view each as a kind of
specialisation of a general person

* They have all the properties of a person

* But they also have some extra stuff
specific to them

0{e Mo : ex@reson e et

(I'should not have used public variables here, but | did it to keep things simple)

Inheritance Il

class Person { * We create a base class (Person)
pug:!c lsnt_age; and add a new notion: classes can
public String name; inherit properties from it

}
= Both state and functionality
class Student extends Person { oA ”L‘Q)f" [

public int grade; ///F We say:

.
.

QWB/O)/\N)]

} Con woe < " Person is the superclass of
G | —7 Lect d Student

class Lecturer extend Perscc:?\fch eclurer an uaen

}p”b"c'”tsa'ary' 4 Jeore._ = Lecturer and Student subclass
17 Db A Person

(?) .
&‘LVWL v T ove 5\7-65 Bo/\ Lot code o {'3@— vhurtence

/\?O')‘e/? ODevs 1> = r’?OM"/)Hﬁ{/%z ']‘Bf(- / Gnsase

((‘éw Fon b\l'ruakralb) "L'.)FC”Q)m'eOr‘)Vrls

Looret !

Representing Inheritance Graphically

Generalise

Person

name

Also known as an “is-a” relation

As in “Student is-a Person”

Student

asl|eldads

exam_score

salary

name and age

inherited if not
private

= Many languages support type casting
between numeric types

inti=7,

float f = (float) i; //f==7.0
double d =3.2;

inti2 = (int)d; //i2==3

= With inheritance it is reasonable to type
cast an object to any of the types above it
In the inheritance tree...

berson = Student is-a Person
» Hence we can use a Student object
A anywhere we want a Person object
= Can perform widening conversions
Student (up the tree)
Student s = new Student() public void print(Person p) {...}

Person p 5; Cent- Student s = new Student();

/ print(s);

“Casting” o
Implicit cast

Narrowing

= Narrowing conversions move down

Person .
the tree (more specific)
A = Need to take care...
Student
(Cdmndc—w[. d"'ﬂ
Cest C&\f:\a")

Student s = new Student();
Person p = (Person) s;
Student s = (Student) p; Students s2 = (Student) p;

ol /

FAILS. Not enough info OK because underlying object
In the real object to represent really is a Student
a Student

Person p = new Person();

Fields and Inheritance

class Person { ~_ Student inherits this as a public
public String mName; < variable and so can access it

protected int mAge;
private double mHeight; \
} Student inherits this as a

protected variable and so can
access it

class Student extends Person {

public void do_something() {
mName="Bob”;

v mAge=70; Student inherits this but as a
X mHeight=’1,7o- private variable and so cannot
} \ access it directly
a{%)ﬂ\l_

Fields and Inheritance: Shadowing

class A{ publicintx; }

class B extends A {
public int x;

}

class C extends B {
public int x;

public void action() {
// Ways to set the x in C
x=10;
this.x = 10;

// Ways to set the x in B
super.x = 10;
((B)this).x = 10;

// Ways to set the xin A
((A)this.x = 10;

(

é‘b\b\ Lo %(644{(‘{’/\% s
Lo oA Obj%

() ,
He ek D«‘P\){AJF

all clesses extend O@CAJ— /a\a; = O>
71[: N T Cls> A §§

r)M Se b closs A exteds OEO‘Q’,' é>

%w— o~ = nNeS A()'/

Methods and Inheritance: Overriding

= We might want to require that every Person can dance. But the way
a Lecturer dances is not likely to be the same as the way a Student
dances...

kl/!oQD 7Z*L)e_ A:%/‘QACC, NU‘C'J‘;) V> NUZPOJ\;'_')-,

class Person {

public void dance() { Person defines a

'default’ implementation

jiggle_a_bit(); - of dance()
}
}
class Student extends Person { _
public void dance() { Student overrides the
}
}

Lecturer just inherits the
class Lecturer extends Person { default implementation

} - and jiggles

Abstract Methods

= Sometimes we want to force a class to implement a method
but there isn't a convenient default behaviour

= An abstract method is used in a base class to do this
* |t has no implementation whatsoever

class abstract Person {
public abstract void dance();
}

class Student extends Person {
public void dance() {

body_pop();
}
}

class Lecturer extends Person {
public void dance() {
jiggle_a_bit();
}
}

Abstract Classes

Note that | had to declare the class abstract too. This is
because it has a method without an implementation so
we can't directly instantiate a Person.

_ class Person {
public abstract class Person { .
_ : public:
public abstract void dance(); virtual void dance()=0;
} Java }

C++

= All state and non-abstract methods are inherited as
normal by children of our abstract class

» [nterestingly, Java allows a class to be declared abstract
even if it contains no abstract methods!

Representing Abstract Classes

Person -

4) - \ Italics indicate the class
+ dance

or method is abstract

N\

Student Lecturer

+ dance() + dance()

OQ‘QQ,LL}&» o Zcag on I S 40”‘ Lot L.
T dL'ync.\m\'o adr Sheethe ,‘aa)yor‘a\num
5>fmblw> Bk crie Lom mabhde inbetbonce
q) Tve inbecfmces (,\—,We_ Alh=sithence)

Lecture 5:
Polymorphism and Multiple Inheritance

Polymorphic Methods

Student s = new Student(); = Assuming Person has a default
Person p = (Person)s; dance() method, what should
p.dance(); happen here??
C/e%',
A, S
=7 4 %°bl,)

= General problem: Wﬁé?] we refer to an object via a parent

type and both types implement a particular method: which
method should it run?

Polzbmorpnbm . VA& ,V\L) anol \/a.n}.bto cen hore. nre Qo one '}‘_fg

)./l?(‘ el (é*«f(‘wmo’q e) g

(\

Con bLe LH\Q'&'\/MV\H‘ o 7‘9{‘/‘5

5

Polymorphic Concepts |

= Static polymorphism
* Decide at compile-time

» Since we don't know what the true type of the
object will be, we just run the parent method

- bacd o~ hs
PG mangeieas,)

Student s = new Student(); = Compiler says “p is of type Person”
Person p = (Person)s; " So p.dance() should do the default
p.dance(); dance() action in Person

CAv o do N - Dawr c=rnno b

Polymorphic Concepts Il

= Dynamic polymorphism
= Run the method in the child

= Must be done at run-time since that's when we
know the child's type

» QT s et

Student s = new Student(); = Compiler looks in memory and finds

Person p = (Person)s; that the object is really a Student

p.dance(); = So p.dance() runs the dance() action
in Student

CA- Can Ao J—h:-_>/ o doee Tava

The Canonical Example |

= A drawing program that can draw circles,
squares, ovals and stars

» |t would presumably keep a list of all the
drawing objects

= Option1
Circle = Keep a list of Circle objects, a list of
- drawl Square objects,...
Square " lterate over each list drawing each
p— object in turn
= What has to change if we want to add
Oval a new shape?

+ draw()

Star O{QM
Q

+ draw()

The Canonical Example Il

Shape = Option 2
= Keep a single list of Shape references

» Figure out what each object really is,
A narrow the reference and then draw()

Circle

for every Shape s in myShapelist

if (s is really a Circle)
Circle c = (Circle)s;
c.draw();

else if (s is really a Square)
Square sq = (Square)s;
sq.draw();

else if...

+ draw()

Square

+ draw()

Oval

+ draw()

Star = What if we want to add a new shape?

+ draw()
A
S

O

The Canonical Example Il

Shape = Option 3 (Polymorphic)
-X_position: int = Keep a single list of Shape references

- y_position: int . .
= |et the compiler figure out what to do
with each Shape reference

+ draw()

N\

Circle .
+ draw() %
For every Shape s in myShapelList
Square s.draw();

+ draw()

- = What if we want to add a new shape?

+ draw()

(\
Jl’/\t’b s galleA OLI\Bna.\Mz\}_, Au‘oen—kxlq

Star

+ draw()

Implementations

= Java

= All methods are dynamic polymorphic.
= Python

» All methods are dynamic polymorphic.
= C++

* Only functions marked virtual are dynamic
polymorphic

= Polymorphism in OOP is an extremely important concept
that you need to make sure you understand...

Harder Problems

= Given a class Fish and a class DrawableEntity, how do we
make a BlobFish class that is a drawable fish?

DrawableEntity

0..) o.. |
= R |
A DrawableEntity Lé BlobFish [ES] Fish

Fish

ﬁ X Conceptually wrong
<
BlobFish
- ::%"

X Dependency *'—L%‘ “\b
between two 14 > o
independent -

concepts

Multiple Inheritance

Fish

DrawableEntity

+ swim()

+draw()

JAY

JAY

BlobFish

+ swim()
+ draw()

= |f we multiple inherit, we capture
the concept we want

= BlobFish inherits from both and
Is-a Fish and is-a DrawableEntity

. C++:

class Fish {...}
class DrawableEntity {...}

cl lobFish : public Fish,
- ﬁﬁ? public DrawableEntity {...}

Multiple Inheritance Problems

, F————— = What happens here? Which of
Fish ¥ . i
the move() methods is inherited?
+ move() +move() = Have to add some grammar to
A A make it explicit
. C++:

BlobFish *bf = new BlobFish();
bf->Fish::move();
= Yuk.bf->DrawableEntity::move();

BlobFish This i e, hodosay o
Ltess A € Cless B oxclends A
2277 . T ¢
. b

Fixing with Abstraction

Fish DrawableEntity

+ move()

+move()

JAY

BlobFish

+ move()

= Actually, this problem
goes away if one or more
of the conflicting
methods Is abstract

Java's Take on it; Interfaces

» Classes can have at most one parent. Period.
» But special 'classes' that are totally abstract can do

multiple inheritance — call these interfaces

<<interface>> <<interface>>
Drivable Identifiable
+ turn() + getldentifier()
+ brake()

JANIZAN

N\

Bicycle Car
+turn() b

+ brake()
+ brake() + getldentifier()

Y,
interfg 2y 4’3
publicvoid-tu @Q “
public void brake(); K I
} 5% R
Yoo %

interface Identifiable {
public void getldentifier();

}
class Bicycle implements Drivable { \

public void turn() {...}
public void brake() {... }

}

class Car implements Drivable, Identifiable {
public void turn() {...}
public void brake() {... }
public void getldentifier() {...}

}

Objectives:
All fields in an Interface are static
Know the procedure for object initialisation
Difference between destructors and finalisers

RAII and TWR
High level idea of how a garbage collector works

Lecture 6:
Lifecycle of an Object

Creating Objects in Java

new MyObject()

Load
MyObiject.class

Is MyObject already loaded
in memory?

Create
java.lang.Class
object

Allocate memory
for object

Allocate any

static fields) .
demo ObjectConstruction

Run non-static

Y demo InheritedConstruction
initialiser blocks

Run static
initialiser blocks

Static initialization is done
in textual order rather than
in two steps as shown here

Run constructor

Initialisation Example

e elase Blah 1. Blah loaded
pl;)rillcafea?r?t r:X ={ 7; 2. sX created
public staticint sX=9; 3.sXsetto 9
4.sXsetto 3
{ mX=5; 5. Blah object allocated
} 6. mX setto 7
static { 7.mXsetto5
sX=3; 8. Constructor runs (mX=1, sX=9)
} 9. b set to point to object
pl::)lizcl?lah(){ 10. Blah object allocated
sX=9; 11. mX setto 7

}

} 12. mX setto 5

13. Constructor runs (mX=1, sX=9)

Blah b = new Blah(); 14. b2 set to point to object

Blah b2 = new Blah();

Constructor Chaining

= When you construct an object of a type with parent
classes, we call the constructors of all of the parents
In sequence

Student s = new Student();

Animal

N\

Person

JAY

Student 3. Call Student()

1. Call Animal()

2. Call Person()

Chaining without Default Constructors

= What if your classes have explicit constructors that take
arguments? You need to explicitly chain

= Use super in Java:

public Person (String name) {
Person
/ mName=name;
-mName : String

+Person(String name) }

A demo NoDefaultConstructor

Student
+Student() &

public Student () {
super(“Bob”);
}

Deterministic Destruction

Objects are created, used and (eventually) destroyed. Destruction is very language-
specific

Deterministic destuction is what you would expect
= Objects are deleted at predictable times
» Perhaps manually deleted (C++):

void UseRawPointer()

{
MyClass *mc = new MyClass();
// ...use mc...
delete mc; In C++ this creates a new
MyClass on the stack using
= Or auto-deleted When out of scope (C++): the default constructor
void UseSmartPointer()
{ MyClass mc;
unigue-ptr<MyClass>-*me=-new-MyClass();
// ...use mc...

} // mc deleted here

= Most OO languages have a notion of a destructor too
» Gets run when the object is destroyed

= Allows us to release any resources (open files, etc) or memory
that we might have created especially for the object

class FileReader { int main(int argc, char ** argv) {
public:
// Construct a FileReader Object
// Constructor FileReader *f = new FileReader();
FileReader() {
f = fopen(“myfile”,”r"); // Use object here
C++ }
// Destructor // Destruct the object
~FileReader() { delete f;
fclose(f);
! }
private : RAII = Resource Acquisition Is Initialization
FILE *file;

}

Non-Deterministic Destruction

= Deterministic destruction is easy to understand and seems simple
enough. But it turns out we humans are rubbish of keeping track of
what needs deleting when

» We either forget to delete (-~ memory leak) or we delete multiple times
(- crash)

= We can instead leave it to the system to figure out when to delete
= “Garbage Collection”

» The system someohow figures out when to delete and does it for
us

» |n reality it needs to be cautious and sure it can delete. This leads
to us not being able to predict exactly when something will be
deleted!!

= This is the Java approach!!

demo Finalizer

= Conventional destructors don’'t make
sense in non-deterministic systems

= When will they run?
= Will they run at all??

* |nstead we have finalisers: same concept
but they only run when the system deletes
the object (which may be never!)

Java provides try-with-resources as an alternative to RAII

demo TryWithResources

Garbage Collection

» So how exactly does garbage collection work? How can a system
know that something can be deleted?

» The garbage collector is a separate process that is constantly
monitoring your program, looking for things to delete

» Running the garbage collector is obviously not free. If your
program creates a lot of short-term objects, you will soon notice
the collector running

= Can give noticeable pauses to your program!
= But minimises memory leaks (it does not prevent them...)

» There are various algorithms: we’ll look at two that can be found in
Java

. Refe rence cou ntl ng 'Stop the world' - pause the operation of the
. program
= Tracing

'incremental’ - garbage collect in multiple
phases and let program run in the gaps

'concurrent' - no pause

Reference Counting

= Java’s original GC. It keeps track of how many references
point to a given object. If there are none, the programmer
can't access that object ever again so it can be deleted

Person object
Href =

2

A

K

ri

r2

—)

rl = null;
r2 = null;

Person object
#ref=0

ri

r2

Deletable

Reference Counting Gotcha

= Circular references are a pain

Person object
Href =2

field T

N

rl

r2

v

Person object
Href=2

field [

—)

rl = null;
r2 = null;

Person object
Href=1

field T

Objects
unreachable!!

field [

Person object
Href=1

Start with a list of all references you can get to
Follow all refrences recursively, marking each object
Delete all objects that were not marked Thisis called 'Mark and Sweep'

7| object object
o |
y —\ L 2| object
z

¢'¢‘ Te.
X4 ‘\
’ . L}
. K object ,
>l object ' 7 \
I 1
! 1
1 1
Generational garbage collectors - split objects into “ J,]
short lived and long lived. Collect the short lived ones ‘ C ,'
more frequently. ‘\‘ object e
’
Unreachable “~(_ _.e’

so deleted

C]Q“)z_&{ﬁ/e); Jocxine, a0 W\boX'Wg
=t L. Grene ok Mg
1&;{ 7[-;\;1—- | fermtors
Lovnpeing and cory cemble

Lecture 7:
Java Collections and Object Comparison

Java Class Library

= Java the platform contains around 4,000 classes/interfaces
= Data Ictures

Files é’&
» Graphical User Interfaces I 7 ,Q)
= Security and Encryption % 1
* |mage Processing RN
» Multimedia authoring/playback N
= And more...

= All neatly(ish) arranged into packages (see API docs)

D/‘@(@D:_'on CoAh anad (D\J-'esu——
GV\‘F‘D&DY)Bj

<<interface>>
Iterable

N

<<interface>>
Collection

Important chunk of the class library
A collection is some sort of grouping of things
(objects)

Usually when we have some grouping we want
to go through it (“iterate over it”)

The Collections framework has two main
interfaces: lterable and Collection. They define
a set of operations that all classes in the
Collections framework support

add(Object 0), clear(), isEmpty(), etc.

Sometimes the operation doesn't make sense - throw
UnsupportedOperationException

<<interface>> Set

a--~
--~‘_§¢

= A collection of elements with no duplicates that
represents the mathematical notion of a set . nﬂ
» TreeSet: objects stored in order

= HashSet: objects in unpredictable order but fast
to operate on (see Algorithms course)

h—z.rabbz," e

Ool(&u'—bé-\

H

Seé q4— L('nlnzdl»}asLSoL

P

TreeSet<Integer> ts = new TreeSet<Integer>(); Sorkzds.t H dSel

ts.add(15); %
ts.add(12); I
ts.contains(7); // false ree Sef

ts.contains(12); // true
ts.first(); // 12 (sorted)

Lists
<<interface>> List E_» A
» An ordered collection of elements that may contain
duplicates
» LinkedLlst: linked list of elements B
= ArrayList: array of elements (efficient access)
= Vector: Legacy, as ArrayList but threadsafe

LinkedList<Double> Il = new LinkedList<Double>();
Il.add(1.0);

ll.add(0.5);

Il.add(3.7);

ll.add(0.5);

ll.get(1); // get element 2 (==3.7)

Queues

<<interface>> Queue

= An ordered collection of elements that may contain
duplicates and supports removal of elements from the head
of the queue

» offer() to add to the back and poll() to take from the front
» LinkedList: supports the necessary functionality

» PriorityQueue: adds a notion of priority to the queue so more
important stuff bubbles to the top

LinkedList<Double> Il = new LinkedList<Double>();
Il.offer(1.0);
ll.offer(0.5);

Il.poll(); // 1.0
ll.poll(); // 0.5

<<interface>> Map SRl P

= Like dictionaries in ML i’ ‘.___
= Maps key objects to value objects LA M K

= Keys must be unique :' n .

= Values can be duplicated and el ‘:
(sometimes) null. \\ o

= TreeMap: keys kept in order TN ’

» HashMap: Keys not in order, efficient

(see Algorithms)

TreeMap<String, Integer>tm = new TreeMap<String,Integer>();
tm.put(“A”,1);

tm.put(“B”,2); Show summary table handout
tm.get(“A”); //returns 1

tm.get(“C”); // returns null

tm.contains(“G”); // false

= for loop

LinkedList<Integer> list = new LinkedList<Integer>();
for (int i=0; i<list.size(); i++) {

Integer next = list.get(i);

}

= foreach loop (Java 5.0+)

LinkedList list = new LinkedList();
for (Integeri : list) {

}

lterators

= What if our loop changes the structure?

for (int i=0; i<list.size(); i++) {
If (i==3) list.remove(i);

}

= Java introduced the Iterator class ey,

4

(a8
lterator<Integer> it = list.iterator(); % ;
Vh‘*

O

while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}

» Safe to modify structure

while(it.hasNext()) {
it.remove();

}

You often want to impose orderings on your data
collections

For TreeSet and TreeMap this is automatic

TreeMap<String, Person>tm = ...

For other collections you may need to explicitly
sort

LinkedList<Person> list = new LinkedList<Person>();

//...

Collections.sort(list);

For numeric types, no problem, but how do you
tell Java how to sort Person objects, or any
other custom class?

Comparing Primitives

> Greater Than

>= (reater than or equal to
== Equalto

1= Not equal to

< Less than

<= Less than or equal to

» Clearly compare the value of a primitive
» But what does (ref1==ref2) do??
= Test whether they point to the same object?

» Test whether the objects they point to have the same
state?

Reference Equality

" r1==r2, r1!=r2

* These test reference equality

» j.e. do the two references point ot the same chunk of
memory?

Person pl = new Person(“Bob”);
Person p2 = new Person(“Bob”);

False (references differ)

(pl==p2); a—

(pl !=p2); - True (references differ)

(p1==p1); <\

True

Value Equality

» Use the equals() method in Object

= Default implementation just uses reference equality (==)
so we have to override the method

public EqualsTest {
publicint x = §;

T,
@Override -
public boolean equals(Object o) { (’\HL, Lil"”%
EqualsTest e = (EqualsTest)o; %/ %
return (this.x==e.x); -
}

public static void main(String args[]) { }Q&rvx l_%(' \
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest(); Lot
System.out.printIn(t1==t2);
System.out.printIn(t1l.equals(t2));
}
}

Aside: Use The Override Annotation

* |t's so easy to mistakenly write:

public EqualsTest {
publicint x = §;

public boolean equals(EqualsTest e) {
return (this.x==e.x);

}

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest();
Object 01 = (Object) t1;
Object 02 = (Object) t2;
System.out.printin(tl.equals(t2));
System.out.printin(ol.equals(02));

Aside: Use The Override Annotation Il

= Annotation would have picked up the mistake:

public EqualsTest {
publicint x = §;

@Override
public boolean equals(EqualsTest e) {
return (this.x==e.x);

}

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest();
Object 01 = (Object) t1;
Object 02 = (Object) t2;
System.out.printin(tl.equals(t2));
System.out.printin(ol.equals(02));

» Object also gives classes hashCode()

» Code assumes that if equals(a,b) returns
true, then a.hashCode() is the same as

b.hashCode()
» So you should override hashCode() at the
same time as equals() ‘ "\
7LL€— 1/'0\4500(4,) Condract-

Comparable<T> Interface |

int compareTo(T obj);

= Part of the Collections Framework

= Doesn't just tell us true or false, but smaller, same, or
larger: useful for sorting.

= Returns an integer, r:
= r<0 This object is less than obj
= r==0 This object is equal to obj
= >0 This object is greater than obj

Cermember -:ut:a s,
I;T\Zszrf "H/\'-.b - o):\)

Comparable<T> Interface |l

public class Point implements Comparable<Point> {
private final int mX;
private final int mY; /r\/.\e]e_m‘l‘l;\.s COM@.-—-.L.L:\
public Point (int, int y) { mX=x; mY=y; }
d(q[l(;zb a Nadace! or'a’m"'ts

// sort by y, then x Qr
public int compareTo(Point p) { Ml Aso>
if (mY>p.mY) return 1; .
else if (mY<p.mY) return -1; la(e:_lb Hues slodd Le
else { Consimbet. ot Saols
if (mX>p.mX) return 1; » =/ N== o
else if (mX<p.mX) return -1; © X oo ()T
else return O. =
} u < > o=, 67/\3/_5 K/‘)B
} N\V‘>L pé/‘ﬁe, = ferl oder
}
// This will be sorted automatically by y, then x U(QMO

Set<Point> list = new TreeSet<Point>();

Comparator<T> Interface |

int compare(T obj1, T obj2)

= Also part of the Collections framework and allows us
to specify a specific ordering for a particular job

= E.g. a Person might have natural ordering that sorts

by surname. A Comparator could be written to sort
by age instead...

Comparator<T> Interface Il

public class Person implements Comparable<Person> {
private String mSurname; ,
private int mAge; a\[e/(e_c);.’pe_ Yo He Qé«[c{f
public int compareTo(Person p)L{/ Mcr@% rmelivod
return mSurname.compareTo(p.mSurname);
}
}

public class AgeComparator implements Comparator<Person> {
public int compare(Person p1, Person p2) {
return (p1l.mAge-p2.mAge);
}
}

ArrayList<Person> plist = ...;

Collections.sort(plist); // sorts by surname
Collections.sort(plist, new AgeComparator()); // sorts by age

Operator Overloading

= Some languages have a neat feature that allows
you to overload the comparison operators. e.g. in

C++
Terle
class Person { é""‘% B
public: T by ~ S
Int mAge

bool operator==(Person &p) {
return (p.mAge==mAge);
%
}

Person a, b;
b ==a; // Testvalue equality

Objectives:
- finish last lecture: equals, comparing and comparable
- error handling approaches
- pros and cons of exceptions
- how to define your own exceptions

Lecture 8:
Error Handling Revisited

Return Codes

= The traditional imperative way to handle errors is to
return a value that indicates success/failure/error

public int divide(double a, double b) {
if (b==0.0) return -1; // error
double result = a/b;

return 0; // success Go - returns a pair res,err

) Haskell - Maybe type

= Problemst!' (divide(xy)<0) System.out.printin(*Failure!!");

= Could ignore the return value

» Have to keep checking what the return values are meant to
signify, etc.

» The actual result often can't be returned in the same way

Deferred Error Handling

= A similar idea (with the same issues) is to set some state in
the system that needs to be checked for errors.

= C++ does this for streams:

ifstream file("test.txt");
if (file.good())
{

cout << "An error occurred opening the file" << end|;

}

= An exception is an object that can be thrown or raised by a

method when an error occurs and caught or handled by the
calling code

= Example usage:

try {
double z = divide(x,y);

}
catch(DivideByZeroException d) {
// Handle error here

}

Flow Control During Exceptions

= When an exception is thrown, any code left to run in the try
block is skipped

double z=0.0;

boolean failed=false;

try {
z = divide(5,0);
z=1.0;

}

catch(DivideByZeroException d) {
failed=true;

}

z=3.0;

System.out.printin(z+” “+failed);

Throwing Exceptions

= An exception is an object that has Exception as an
ancestor

*= SO0 you need to create it (with new) before throwing

double divide(double x, double y) throws DivideByZeroException {
if (y==0.0) throw new DivideByZeroException();
else return x/y;

}

Multiple Handlers

= A try block can result in a range of different exceptions. We
test them in sequence

try {
FileReader fr = new FileReader(“somefile”);

Int r = fr.read();

} demo: catching
catch(FileNoteFound fnf) { multiple

// handle file not found with FileReader exceptions
}

catch(lIOException d) {
// handle read() failed

}

finally

= With resources we often want to ensure
that they are closed whatever happens

try {
fr,read();

fr.close();

}

catch(lIOException ioe) {
// read() failed but we must still close the FileReader
fr.close();

}

finally 1l

* The finally block is added and will always
run (after any handler)

try {
fr,read();

}
catch(lIOException ioe) {

// read() failed

}
finally {

fr.close();

}

Remember: try-with-resources

Creating Exceptions

= Just extend Exception (or RuntimeException if you need it to
be unchecked). Good form to add a detail message in the
constructor but not required.

public class DivideByZero extends Exception {}

public class ComputationFailed extends Exception {
public ComputationFailed(String msg) {

super(msg); If your exception arises

} due to another
} exception
then chain them - demo

» You can also add more data to the exception class to provide

more info on what happened (e.g. store the numerator and
denominator of a failed division)

Keyword: exception chaining

Exception Hierarchies

= You can use inheritance hierarchies

public class MathException extends Exception {...}
public class InfiniteResult extends MathException {...}

blic class DivB Ze o extends MathException
n AI‘PC’J catc pare {C asses P]

try {

}
catch(InfiniteResult ir) {

// handle an infinite result

}
catch(MathException me) {

// handle any MathException or DivByZero
}

Checked vs Unchecked Exceptions

= Checked: must be handled or passed up.
= Used for recoverable errors

= Java requires you to declare checked exceptions that your
method throws

= Java requires you to catch the exception when you call the
function

double somefunc() throws SomeException {}

» Unchecked: not expected to be handled. Used for
programming errors

» Extends RuntimeException
= Good example is NullPointerException

discuss Throwable and
Error

Evil I: Exceptions for Flow Control

= At some level, throwing an exception is like a GOTO
= Tempting to exploit this
try {
for (int i=0; ; i++) {
System.out.printin(myarrayli]);

}

}
catch (ArrayOutOfBoundsException ae) {

// This is expected

= This is not good. Exceptions are for exceptional circumstances
only

» Harder to read
= May prevent optimisations

Evil II; Blank Handlers

» Checked exceptions must be handled

= Constantly having to use try...catch blocks to do this can be
annoying and the temptation is to just gaffer-tape it for now

try {
FileReader fr = new FileReader(filename);

}

catch (FileNotFound fnf) { Always write something

} If it can't happen throw a
RuntimeException
If its ignored explain why

= ...but we never remember to fix it and we could easily be missing

serious errors that manifest as bugs later on that are extremely
hard to track down

Evil lll: Circumventing Exception Handling

try{
// whatever

}
catch(Exception e) {}

= Just don't.

Advantages of Exceptions

= Advantages:

» Class name can be descriptive (no need to look up error
codes)

= Doesn't interrupt the natural flow of the code by requiring
constant tests

» The exception object itself can contain state that gives lots of
detalil on the error that caused the exception

= Can't be ignored, only handled

Disadvantages:
Surprising control flow - an exception could be thrown anywhere
Lends itself to single threads of execution
Unrolls control flow, doesn't unroll state changes

Assertions

= Assertions are a form of error checking designed for debugging
(only)

= They are a simple statement that evaluates a boolean: if it's true
nothing happens, if it's false, the program ends.

= |n Java:

assert (x>0);

// or

assert (a==0) : “Some error message here”;

Assertions are NOT for Production Code!

= Assertions are there to help you check the logic of your code is
correct i.e. when you're trying to get an algorithm working

» They should be switched OFF for code that gets released
(“production code”)

* |n Java, the JVM takes a parameter that enables (-ea) or disables
(-da) assertions. The default is for them to be disabled.

> java -ea SomeClass

> java -da SomeClass

As Oracle Puts It

“Assertions are meant to require that the program be
consistent with itself, not that the user be consistent
with the program”

Great for Postconditions

= Postconditions are things that must be true at the end of an
algorithm/function if it is functioning correctly

= E.Q.

public float sqrt(float x) {
float result =
// blah
assert(result>=0.f);

}

Sometimes for Preconditions

= Preconditions are things that are assumed true at the start of an
algorithm/function

= E.Q.

private void method(SomeObiject so) {
assert (so!=null);
//...
}
= BUT you shouldn't use assertions to check for public

preconditions

public float method(float x) {
assert (x>=0);

/]...
= (you should use exceptions for this)

Sqgrt Example

public float method(float x) throws InvalidinputException {
.// Input sanitisation (precondition)
if (x<0.f) throw new InvalidinputException();

float result=0.f;
// compute sqgrt and store in result

// Postcondition
assert (result>=0);

return result;

Assertions can be Slow If you Like

public int[] sort(int[] arr) {
int[] result = ...

// blah
assert(isSorted(result));

}

= Here, isSorted() is presumably quite costly (at least O(n)).

» That's OK for debugging (it's checking the sort algorithm is
working, so you can accept the slowdown)

= And will be turned off for production so that's OK

= (but your assertion shouldn't have side effects)

NOT for Checking your Compiler/Computer

SKIPPED

public void method() {
int a=10;
assert (a==10);
//...

}

= |f this isn't working, there is something much bigger wrong with
your system!

* |t's pointless putting in things like this

For the Last Word on Assertions...

SKIPPED

http://www.oracle.com/technetwork/articles/javase/javapch06.pdf

Objectives:
- pros and cons of Exception handling

—shallov vs de<p oL

— lOveanée o cohrwiceionce.
principle of substitutability

= Lo conSrwctors
Lecture 9:
Copying Objects

Erratum: In lecture 4 I told you that Java has a nominative
type system. It does. But I spelt nominative incorrectly!

Cloning |

= Sometimes we really do want to copy an object

Person object Person object Person object
(name = “Bob”) l (name = “Bob”) (name = “Bob”)
/‘\ /‘\ |

r r r_copy

= Java calls this cloning
= We need special support for it

Cloning |

= Every class in Java ultimately inherits from the Object
class

» This class contains a clone() method so we just call
this to clone an object, right?

= This can go horribly wrong if our object contains
reference types (objects, arrays, etc)

Shallow and Deep Copies

public class MyClass {
private MyOtherClass moc;

}

MyClass object

MyClass object

Y

MyOtherClass
object

MyClass object

\ MyOtherClass /

object
MyClass object MyClass object
MyOtherClass MyOtherClass
object object

Java Cloning

» So do you want shallow or deep?
» The default implementation of clone() performs a shallow copy

» But Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure that we'd
thought about whether this was appropriate

= Java has a Cloneable interface

» |f you call clone on anything that doesn't extend this interface, it
fails

This 1s called a marker interface

Clone Example |

public class Velocity {
public float vx;
public float vy;
public Velocity(float x, float y) {
VX=X;
VY=Y,
}
2

public class Vehicle {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);
}
2

Clone Example Il

demo: WeakeningAccess

public class Vehicle implements Cloneable { Ld"eﬂ

private int age; %&"

: . Yot
private Velocity vel; ée,\ - A
public Vehicle(int a, float vx, float vy) { L< <c ”

age=a; K < s,

vel = new Velocity(vx,vy); }ﬂa{\

} _ C/on@ 1o 'FDW&X

O o . . s A
publi€ Objectlone() { o Obf"’*‘ — Hh gmnS e
return Super.clone(); GCce>> 4o e pekod

}
|5

This is the principle of substitutability
) (/oo\ﬁu (‘Q)E»('q \/é(/ko(-z_ M

O(ét/lﬂo &O\/éf\w: e G/\o)
Conbzrerian €,

Clone Example Il

public class Velocity implement Cloneable {
%:),,c-,.)._3
public Gkject clone() {
return sipersienet); (\/e)oc.'f‘jv Swper. cdan c_/)/-
}
2

public class Vehicle implements Cloneable { /
private int age; %Q
private Velocity v; i </ \
public Student(int a, float vx, float vy) { Q"i
age=a;
vel = new Velocity(vx,vy);

}

public Object clone() {
Vehicle cloned = (Vehicle) super.clone();
cloned.vel = NelociE&qvel.clone();
return cloned;
}
2

Cloning Arrays

= Arrays have build in cloning but the
contents are only cloned shallowly

int intarray[] = new int[100];
Vector3D vecarray = new Vector3D[10];

int intarray2[] = intarray.clone();
Vector3D vecarray2 = vecarray.clone();

veereoy =[])

Covariant Return Types

» The need to cast the clone return is annoying

public Object clone() {
Vehicle cloned = (Vehicle) super.clone();
cloned.vel = (Velocity)vel.clone();
return cloned;

}

= Recent versions of Java allow you to override a method
In a subclass and change its return type to a subclass of
the original's class

class C{
class A {} A mymethod() {}

}
class B extends A {}

class D extends C{
B mymethod() {}

X

Marker Interfaces

If you look at what's in the Cloneable interface, you'll find it's empty!!
What's going on?
Well, the clone() method is already inherited from Object so it
doesn't need to specify it
This is an example of a Marker Interface

= A marker interface is an empty interface that is used to label

classes
= This approach is found occasionally in the Java libraries

Copy Constructors |

» Another way to create copies of objects is to define a
copy constructor that takes in an object of the same type
and manually copies the data

public class Vehicle {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);
}
public Vehicle(Vehicle v) {
age=v.age;
vel = v.vel.clone();

Copy Constructors |l

= Now we can create copies by:

Vehicle v = new Vehicle(5, 0.f, 5.f);

Vehicle vcopy = new Vehicle(v);

= This Is quite a neat approach, but has some drawbacks
which are explored on the Examples Sheet

Objectives:
Why generics are not covariant
Inner classes, anonymous inner classes, lambdas
Functional interfaces
Method references
Streams

Lecture 10:
Language Evolution

Evolve or Die

= Modern languages start out as a programmer “scratching an
itch”: they create something that is particularly suitable for
some niche

» |f the language is to 'make it' then it has to evolve to
incorporate both new paradigms and also the old paradigms
that were originally rejected but turn out to have value after
all

= The challenge is backwards compatability: you don't want to
break old code or require programmers to relearn your
language (they'll probably just jump ship!)

» |et's look at some examples for Java...

The original Java included the Vector class,
which was an expandable array

Vector v = new Vector()
v.add(x);

They chose to make it synchronised, which just
means it is safe to use with multi-threaded
programs

When they introduced Collections, they decided
everything should not be synchronised

Created ArrayList, which is just an
unsynchronised (=better performing) Vector

Had to retain Vector for backwards compatibility!

The Origins of Generics

// Make a TreeSet object = The original Collections framework
TreeSet ts = new TreeSet(); just dealt with collections of Objects
// Add integers to it = Everything in Java “is-a” Object

so that way our collections
framework will apply to any class

// Loop through = But this leads to:

iterator it = ts.iterator(); . :
while(it.hasNext()) { Constant casting of the result

ts.add(new Integer(3));

Object o = it.next(); (ugly)
Integer i = (Integer)o; » The need to know what the
} return type is

= Accidental mixing of types in
the collection

The Origins of Generics |l

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) { Going to fail for the

)) second element!
Object o = it.next(); (But it will compile: the

Integer i = (Integer)o; error will be at runtime)

The Generics Solution

= Java implements type erasure

= Compiler checks through your code to make sure you only
used a single type with a given Generics object

= Then it deletes all knowledge of the parameter, converting
it to the old code invisibly

LinkedList<Integer> Il = LinkedList Il =
new LinkedList<Integer>(); new LinkedList();

for (Integeri:) { l for (Objecti:) {
do_sthing(i); do_sthing((Integer)i);

} }

Generics has other clever stuff where you can include constraints on
your generic type and also write ?'s in some places - not covered in this
course

The C++ Templates Solution

= Compiler first generates the class definitions from the
template

class MyClass_float {
float membervar;

|5

class MyClass<T> { .
) class MyClass_int {
T membervar; _
) int membervar;
' b
class MyClass_double {

double membervar;

|5

Generics and SubTyping

Animal // Object casting
Person p = new Person();
Animal o = (Animal) p;
4 // List casting
Person List<Person> plist = new LinkedList<Person>();

List<Animal> alist = (List<Animal>)plist;

So a list of Persons is a list of Animals, yes?

class List<Animal> { class List<Person>
Animal get() { ... } extends List<Animal>{
void put(Animal a) {...} Person get() { ... }

} void put(Person p) { ... }

)
List<Animal>1= class List<Slug>
new List<Person>(); extends List<Animal> {

Animal a =1.get(); // OK Slug get() { ... }
L.put(new Slug()); //NOT OK void put(Slug s) { ... }

Adding Functional Elements...

= Java is undeniably imperative, but there is
something seductive about some of the
highly succinct and efficient syntax

result=map (fn x => (x+1)*(x+1)) numlist;

int[] result = new int[numlist.length];

for (int i=0; i<numlist.length; i++) { Inner classes

result[i] = (numlist[i]+1)* (numlist[i]+1) Demo
}
Gui
= Enter Java 8... GuiWithOuterClass
GuiWithInnerClass

GuiWithAnonymousInnerClass

GuiWithLambda

Lambda Functions

= Supports anonymous functions

this is a functional interface

()->System.out.printin("It's nearly over..."); \/

—
expression lambda

N)) interface Executor {

s->s+"hello”; int doSomethingGood(String a,
int b);
s->{s=s+"hi”; }
m.out.printin(s);
SySte/Q OUEp S void run(Executor e) {
e.doSomethingGood();

(X,y)->x+y, \

statement lambda run((pl,p2)->pl +" " + p2);

Functions as Values

// No arguments
Runnable r = ()->System.out.printIn("It's nearly over...");
r.run();

// No arguments, non-void return
Callable<Double> pi = ()->3.141;

pi.call();

// One argument, non-void return
Function<String,Integer> f = s->s.length();
f.apply(“Seriously, you can go soon”)

Method References

= Can use established functions too

System.out::printin
Person::doSomething

Person::new

New forEach for Lists

List<String> list = new LinkedList<>();
list.add("Just a");
list.add("few more slides");

list.forEach(System.out::printin);
list.forEach(s->System.out::printin(s));

list.forEach(s->{s=s.toupperCase();
System.out::printin(s);};

* Who needs Comparators?

List<String> list = new LinkedList<>();

Collections.sort(list, (s1, s2) -> sl.length() - s2.length());

= Collections can be made into streams
(sequences)

* These can be filtered or mapped!

demo:
Streams

List<Integer> list = ...
list.stream().map(x->x+10).collect(Collectors.toList());

list.stream().filter(x->x>5).collect(Collectors.toList());
) I —_

create element-wise aggregation
stream operations

Objectives:
- understand simple usage of Streams
- what is a design pattern
- open-closed principle
- some example design patterns

Lecture 11/12:
Design Patterns

Design Patterns

= A Design Pattern is a general reusable solution to a
commonly occurring problem in software design

» Coined by Erich Gamma in his 1991 Ph.D. thesis

= Originally 23 patterns, now many more. Useful to look at
because they illustrate some of the power of OOP (and
also some of the pitfalls)

= We will only consider a subset

Classes should be open for extension
but closed for modification

* i.e. we would like to be able to modify the
behaviour without touching its source code

» This rule-of-thumb leads to more reliable
large software and will help us to evaluate
the various design patterns

Decorator

Abstract problem: How can we add state
or methods at runtime?

Example problem: How can we efficiently
support gift-wrapped books in an online
bookstore?

demo: Readers

Decorator in General

Reader = The decorator pat_tern _adds
Componen€ state and/or functionality to
an object dynamically
+operat?ion()
ConcreteComponent Decorator [, btents BufferedReader
+operation() +operation(Q-{---1- _ [ﬁ
FileReader contents.operation();
StateDecorator FunctionDecorator
#extraState +operation ()0 --------
toperation() extraBehaviour();

+extraBehaviour () super.operation() ;B‘

Abstract problem: How can we ensure
only one instance of an object is created
by developers using our code?

Example problem: You have a class that
encapsulates accessing a database over a
network. When instantiated, the object will
create a connection and send the query.
Unfortunately you are only allowed one
connection at a time.

demo: SingletonConnection

Singleton in General

» The singleton pattern ensures
a class has only one instance
and provides global access to
it

Singleton

-instance: static

+getInstance(): static
#Singleton()

cemmannk0

if (instance==null) instance=new Singleton();
return instance;

Abstract problem: How can we let an
object alter its behaviour when its internal
state changes?

Example problem: Representing

academics as they progress through the
rank

demo: FanSpeed

State in General

Context.’>

» The state pattern allows an
object to cleanly alter its
behaviour when internal
state changes

| State

Statel

State2

Strategy

Abstract problem: How can we select an
algorithm implementation at runtime??

Example problem: We have many possible
change-making implementations. How do
we cleanly change between them?

demo:
ComparatorStrategy

Strategy in General

= The strategy pattern allows us to cleanly interchange
between algorithm implementations

Strategy

Context >

+algorithm()

A

ConcreteStrategyA ConcreteStrategyB

+algorithm() +algorithm()

Abstract problem: How can we treat a
group of objects as a single object?

Example problem: Representing a DVD
box-set as well as the individual films
without duplicating info and with a 10%

discount

demo: DVDs

Composite in General

» The composite pattern lets
us treat objects and groups
of objects uniformly

Component

+operation()

Leaf Composite

+operation() #children
+operation (9

]
for (Component ¢ : children)
c.operation();

Observer

Abstract problem: When an object
changes state, how can any interested
parties know?

Example problem: How can we write
phone apps that react to accelerator
events?

demo: ActionListener from
last lecture

Observer in General

» The observer pattern allows an object to have multiple
dependents and propagates updates to the dependents

automatically.

Subject #

#state "> JObserver
#observers

+attach(0bserver)a z:zglict
+detach(Observer) |*.]
+getState() K +update (9
+notify() , ‘s, E

“ '

state=subject.getState();

-
-
‘

observers.add(observer)
observers)

ECEE R EES

for (Observef o :
o.update();

Interpreter to Virtual Machine

= Java was born in an era of internet connectivity. SUN wanted
to distribute programs to internet machines

= But many architectures were attached to the internet — how
do you write one program for them all?

= And how do you keep the size of the program small (for
quick download)?

= Could use an interpreter (-~ Javascript). But:
= High level languages not very space-efficient

= The source code would implicitly be there for anyone to
see, which hinders commercial viability.

= Went for a clever hybrid interpreter/compiler

Java Bytecode |

= SUN envisaged a hypothetical Java Virtual Machine (JVM).
Java is compiled into machine code (called bytecode) for that
(imaginary) machine. The bytecode is then distributed.

= To use the bytecode, the user must have a JVM that has been
specially compiled for their architecture.

» The JVM takes in bytecode and spits out the correct machine
code for the local computer. i.e. is a bytecode interpreter

Java Bytecode ||

Developer

Source Code —93pp Java Compiler — Bytecode

Distribute
JVM for JVM for JVM for
x86/Linux x86/win ARM
Machine Machine Machine
code code code
Unix User Win User Android User

Java Bytecode llI

+ Bytecode is compiled so not easy to reverse engineer

+ The JVM ships with tons of libraries which makes the
bytecode you distribute small

+ The toughest part of the compile (from human-
readable to computer readable) is done by the compiler,
leaving the computer-readable bytecode to be translated
by the JVM (- easier job - faster job)

- Still a performance hit compared to fully compiled
(“native”) code

