
UNIVERSITY OF
CAMBRIDGE

Numerical Analysis

Dr Bogdan Roman∗

With contributions from:

Daniel Bates, Mario Cekic, Richie Yeung

Computer Laboratory, University of Cambridge

http://www.cl.cam.ac.uk/teaching/current/NumAnalys

(The online slide pack contains further additions/corrections)

v20190529.1

Numerical Analysis 1 Easter Term 2018/19

http://www.cl.cam.ac.uk/teaching/current/NumAnalys

UNIVERSITY OF
CAMBRIDGE

Course outline

The course will touch on:

Errors. Bloody errors ...

Numerical calculus. Calculus when we don’t know the function?

Iterative methods. Things that converge ... hopefully.

Linear systems. Getting machines to solve (large) systems of equations ...

Data analysis. Can we make sense of 17-dimensional data?

(FDTD. Ever wondered about those realistic physics in computer games?)

Number representation and floating point computation. Teach computers

to represent and deal with numbers ... and ourselves to deal with the

fallout.

Numerical Analysis 2 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Errors

Certain types of curry lead to

problems afterwards.

Numerical Analysis 3 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Errors

Error amplification when some programs run for a long time ...

Numerical Analysis 4 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Errors

Patriot missile interceptor fails to intercept (1991) due to error amplification.

Numerical Analysis 5 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Numerical calculus

https://www.youtube.com/watch?v=EJI6GVQKHm8

Numerical integration and more error accumulation ...

Numerical Analysis 6 Easter Term 2018/19

https://www.youtube.com/watch?v=EJI6GVQKHm8

UNIVERSITY OF
CAMBRIDGE

Linear systems

Numerical Analysis 7 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Linear systems

Numerical Analysis 8 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Linear systems

Numerical Analysis 9 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Linear systems

* That was in 2004. It was $367b in 2015 (Forbes).

Numerical Analysis 10 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Data analysis

From Explained Visually

In a nutshell: How can we make sense of multi-dimensional data?

Numerical Analysis 11 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Number representation and floating point computation

Charles Babbage’s machine used base

10. CompScis decided a little later

that base 2 is more funky.

Numerical Analysis 12 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Part 1

Intro to errors

Numerical Analysis 13 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Where do errors come from and why do we care?

Almost every computation we do will involve errors in some way:

• We may be working with imperfect input (e.g. noisy data)

• We may not be able to represent our values exactly

• Some of our algorithms knowingly produce the wrong answer so they can

run faster

This is important because these errors can interact in non-obvious ways. If we

are not careful, the errors can grow and leave us with nonsense ...

Numerical Analysis 14 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Absolute and relative errors

Intro to fundamental concepts. More on errors later in the course.

Let x be a real number. We will use x∗ to denote its approximation. We define

two ways of measuring error introduced by this approximation.

Absolute error: εx ≡ ∆x ≡ |x∗ − x|
When it is clear from the context we will use ε to denote the absolute error.

Relative error: ηx ≡ δx ≡ ∆x
|x| = |x∗−x|

|x|
When it is clear from the context we will use η to denote the relative error.

The relationships (WARNING: Severe abuse of notation!)

x∗ = x± εx and x∗ = x(1± ηx).

are also commonly used to mean that x∗ may take any value in the interval

[x− εx, x+ εx]. Note the abuse of the ”±” notation.

Numerical Analysis 15 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Accumulation - Addition/Subtraction

Let

x∗ = x± εx and y∗ = y ± εy.

Adding these two yields

x∗ + y∗ = (x± εx) + (y ± εy)

= x+ y ± εx ± εy
= x+ y ± (εx + εy).

εx+y = εx + εy.

Exercise: What about subtraction?

Numerical Analysis 16 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Accumulation - Addition/Subtraction

Beware: when addition or subtraction causes partial or total cancellation, the

relative error of the result can be much larger than that of the operands. We

call this loss of significance.

For example, consider we store values to 3 significant digits and we take the

innocent-looking x = 9.99, y = 9.98. 3 significant figures means x and y are

accurate to ±0.005 absolute error. x and y thus each have a relative error of

about 0.0005 (0.05%), i.e. very good.

However, x− y = 0.01, and has an absolute error of 0.01 (recall previous slide

on subtraction) hence a relative error of 100%! We have little idea what the

true value of x− y is at this point.

Numerical Analysis 17 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Accumulation - Addition/Subtraction

This gets even worse when the loss of significance happens in a fraction’s

denominator. Consider an extension of the previous example:

1

x− y
=

1

0.01± 0.01

This can be anywhere between 50 and infinity!

Unfortunately, lots of the problems we want to solve have this property. For

example, inverting a matrix:

a b

c d

−1

=
1

ad− bc

 d −b

−c a


There are many different combinations of values which can lead to a small

ad− bc.

Numerical Analysis 18 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Accumulation - Addition/Subtraction

The previous examples were extreme: all of the significance was lost in one

operation. This also made it relatively easy to spot the problem.

A far more insidious issue is gradual loss of significance. Consider this code:

double x_magic = 10.0/9.0; // x = 1.111111111 ...

double x = x_magic;

for (i=0; i<30; i++) {

printf("%e\n", x);

x = (x - 1.0) * 10.0;

}

Say initially x has 10 significant figures (sf) of accuracy. In every iteration in

that loop it still stores 10sf, but the accuracy of the stored value reduces by 1sf

per iteration.

It can be very hard to identify cases like this in the wild.

Numerical Analysis 19 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Accuracy vs Precision

Numerical Analysis 20 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Accumulation - Multiplication/Division

Let

x∗ = x(1± ηx) and y∗ = y(1± ηy).

What is the relative error of xy? To find ηxy we aim to obtain an equation of

the form x∗y∗ = xy(1± ηxy) and then identify terms.

x∗y∗ = x(1± ηx)× y(1± ηy)

= xy(1± ηx ± ηy ± ηxηy)

≈ xy(1± ηx ± ηy)

= xy(1± (ηx + ηy)).

ηxy ≈ ηx + ηy,

where we assumed ηx and ηy are small enough such that ηxηy is negligible.

Exercise: What about division?

Numerical Analysis 21 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Propagation

Previously we explored what happens with the error when we apply basic

arithmetic operations.

If we have a function relationship, i.e. we wish to evaluate f∗(x) as an

approximation for f(x) when x is approximated by x∗ then we use the first

derivative. The absolute error is:

∆f(x) ≈ |f ′(x∗)|∆x,

Notice anything interesting (or worrying)? Let’s look at an example.

Numerical Analysis 22 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Propagation

For example, let

f(x) = x2.

We then have:

∆f(x) ≈ |f ′(x∗)|∆x = |2x∗|∆x.

The error depends not only on the error at the input but also on the value of

the input! Higher values of x will amplify the absolute error.

Numerical Analysis 23 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Propagation Visually

x¤ ¢x¤

f 0(x¤)¢x¤

∆f(x) = max
x∗−∆x6t6x∗+∆x

|f(x)− f(t)| ≈ |f ′(x∗)|∆x

The smaller ∆x∗ the more accurate the approximation (recall how dx and dy

are defined?)

Numerical Analysis 24 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Bounds

The above smells of Taylor. We can get tighter error bounds by using the

Taylor theorem. Assuming the first n+ 1 derivatives of f are continuous and

bounded in the vicinity of x∗, then the error of truncating the infinite Taylor

series about x∗ to the first n terms is bounded by the Lagrange error bound:

∆f(x) = |f(x)− f∗(x)| ≤ M · |x− x
∗|n+1

(n+ 1)!
= M · ∆n+1

x

(n+ 1)!
,

where f∗(x) is our truncated Taylor series and M is an upper bound (ideally

the smallest upper bound) on the (n+ 1)th derivative of f on the interval we

wish the bound the error, i.e. M ≥ max
ζ∈(min(x∗,x),max(x∗,x))

|f (n+1)(ζ)|.

We shall derive the above important expression later in the course.

Exercise: Find the error bound for estimating e0.3 with a 3rd degree Taylor

polynomial for f(x) = ex about x∗ = 0.

Numerical Analysis 25 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Bounds in Practice

Importantly, we seldom know the exact error in a measurement or a program,

otherwise we could calculate the floating point answer and correct it get a

mathematically perfect answer.

Instead, we can analyse the problem and extract an error bound but, unlike the

previous example, sometimes it’s impossible to do so analytically.

Some problems are incredibly complex for which the only way to extract error

bound information is to resort to Monte Carlo techniques: try sufficiently

numerous input values (either randomly, or from those of interest) and

sufficiently numerous random perturbations for each, and extract the error

bounds as the maximum difference between output values at every try; as seen

before, these may depend on the input value, and you’d obtain an error

dependency profile.

Numerical Analysis 26 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Analysis

Forward error analysis examines how perturbations of the input propagate.

For example, in the case of the function f(x) = x2 the relative error

approximately doubles. The previous examples are examples of forward

error analysis.

Forward error analysis sometimes leads to pessimistic overestimates of the

error, especially when a sequence of calculations is considered and in each

calculation the error of the worst case is assumed (perfectly sensible!).

In practice, errors sometimes average out (i.e. an error in one calculation

gets reduced by a later error of opposite sign) but don’t just assume that.

It’s best to analyse and determine the error bounds of your problem in order

to determine if improvements are necessary. You might be lucky (not!).

Numerical Analysis 27 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Error Analysis

Backward error analysis examines the question “how much error in input

would be required to describe a given error in the output?” It assumes that

an approximate solution to a problem is good if it is the exact solution to a

nearby problem. For the previous example, the output can be written as

f∗(x) =
(
x2
)∗

= x2(1 + η)

where η denotes the relative error in the output. Assuming η is sufficiently

small, we have 1 + η > 0. Thus there exists η̃ < η such that

(1 + η̃)2 = 1 + η,

and

f∗(x) = x2(1 + η̃)2 = f(x(1 + η̃)),

i.e. if the backward error is small, we accept the solution, since it is the

correct solution to a nearby problem.

Numerical Analysis 28 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Revision: O-notation

There are multiple situations in this course where we are interested in bounding

a function f by a (hopefully simpler) function g. This makes it easier to

compare and classify behaviour.

• Execution time of algorithms, with f(x) = execution time for an input

of size x.

• Convergence towards a solution, with f(ε) = new error in terms of old

error.

We say that f(x) = O(g(x)) if there exists a real constant M > 0 and an x0

such that

|f(x)| ≤Mg(x) for all x ≥ x0.

Although g(x) can take various forms, in this course you’ll mostly meet simple

polynomial functions, e.g. x2, x3, etc.

Numerical Analysis 29 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Part 2

Numerical Differentiation

Numerical Analysis 30 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Introduction

Numerical differentiation is the procedure of (numerically) approximating the

value of a derivative of a given function at a given point using values of the

function (and possibly other knowledge about the function).

Computing a derivative is one of the most common tasks faced in numerical

computations. Some of them include:

• iterative methods (e.g. Newton-Raphson, introduced later in this course);

• solving differential equations;

• computational geometry;

• computer graphics, etc.

Numerical Analysis 31 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Taylor Series

Taylor is a great friend to have! Suppose f is infinitely differentiable in the

vicinity of a point x0 then its Taylor series/expansion about x0 is given by

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)2 + . . . (1)

=

∞∑
n=0

f (n)(a)

n!
(x− a)n (2)

We’re going to consider functions f whose Taylor series converges to f .

Note for pedantics: Taylor series and Taylor theorem are not one and the same. The latter

gives an approximation of a k-times differentiable function and deals with the remainder.

(Note the pedantics #2: A convergent Taylor series of f does not necessarily converge to f !

Look up non-analytic functions.)

Numerical Analysis 32 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

The classic example: sinx about x0 = 0:

-6-6-6-6-6 -5-5-5-5-5 -4-4-4-4-4 -3-3-3-3-3 -2-2-2-2-2 -1-1-1-1-1 11111 22222 33333 44444 55555 66666

-1-1-1-1-1

11111

22222

00000

f1

sin(x)

f2

f3

f4

f5f6

The more terms we consider, the more accurate the approximation. More on

truncation errors soon.

Numerical Analysis 33 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

First derivative

In the first approximation, we neglect the terms starting from the second

derivative, i.e. we truncate the series at the first two terms:

f(x) ≈ f(x0) + f ′(x0)(x− x0),

yielding an approximation of the first derivative.

f ′(x0) ≈ f(x)− f(x0)

x− x0
.

Note: Obviously, don’t confuse the above with the definition of the derivative

at a point, despite its similar looks.

Next we’ll see alternative ways to obtain approximations for the first derivative.

Numerical Analysis 34 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Geometric Representation

Recall the geometric interpretation of the first derivative. Given a differentiable

function f , f ′(x0) is the slope of the tangent to the curve described by f at the

point x0.

A(x0; f(x0))

B(x; f(x))
lAB

For a x sufficiently close to x0 we can approximate that tangent with the line

going through corresponding points A and B, i.e.

f ′(x0) ≈ slope(lAB) =
yA − yB
xA − xB

=
f(x)− f(x0)

x− x0
.

Numerical Analysis 35 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

...

Or, simply, straight from the definition of the derivative,

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
,

then, if x is sufficiently close to x0, we have

f ′(x0) ≈ f(x)− f(x0)

x− x0
.

Note the notion of “sufficiently close” - what does it mean? Can we

quantify/have control over it?

Numerical Analysis 36 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

First Derivative

Let’s denote the difference between x and some point y in its vicinity with

h = y − x. Given a parameter h and a function f we can approximate its first

derivative using the following relation

D+
f ′(x) ≡ f(x+ h)− f(x)

h
.

We will call h the discretisation parameter. Clearly, D+
f ′(x) heavily depends on

the discretisation parameter h. Next we’ll see how to describe this dependency.

D+
f ′ is usually called the forward approximation.

Numerical Analysis 37 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Rounding versus Truncation Error

Two distinct types of error in calculations are:

Rounding error the error we get by using finite arithmetic for computation

(e.g. finite number of digits). More on this later on in the course.

Truncation error (a.k.a. discretisation error) the error we get by stopping an

infinite process after a finite point.

Truncation ErrorTermination

point

Note the general antagonism: the

finer the mathematical approxima-

tion the more operations needed,

and hence the worse the accu-

mulated error (potentially). Need

to compromise, or use/design very

clever algorithms (beyond this

course).

Numerical Analysis 38 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Truncation Error - Example

Given a discretisation parameter h, we want to compute how much error we

introduce by using the approximation D+
f ′ when computing a first derivative,

i.e. truncation error.

The truncation error can be derived from Taylor’s theorem:

f(x+ h) = f(x) + hf ′(x) + h2f ′′(x)/2! +O(h3)

f ′(x) = −f(x)/h+ f(x+ h)/h− hf ′′(x)/2−O(h2)

f ′(x) = D+
f ′(x)− hf ′′(x)/2−O(h2)

f ′(x)−D+
f ′(x) = −hf ′′(x)/2 +O(h2)

For a sufficiently small h, |O(h2)| is negligible comparing to | − hf ′′(x)/2|,
hence we can ignore it.

Numerical Analysis 39 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

The term

−hf ′′(x)/2

is linear in h – halving h will halve the truncation error (approximately, since we

ignored the Taylor remainder).

This, on its own, may not be a very useful indicator, but it is very useful when

comparing two methods.

Numerical Analysis 40 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Another Example

Here’s an alternative form of numerical differentiation:

D0
f ′ ≡

f(x+ h)− f(x− h)

2h
.

This form is usually called the central or symmetric approximation. There is

also a D−f ′(x) ≡ (f(x)− f(x− h))/h called the backward approximation.

How can we compare D+
f ′ to D0

f ′?

Numerical Analysis 41 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Another Example (cont’d)

Taylor to the rescue:

f(x+ h) = f(x) + hf ′(x) + h2

2 f
′′(x) + h3

3! f
′′′(x) +O(h4)

f(x− h) = f(x)− hf ′(x) + h2

2 f
′′(x)− h3

3! f
′′′(x) +O(h4)

Subtracting gives

f(x+ h)− f(x− h) = 2hf ′(x) + 2h3f ′′′(x) +O(h4).

Now, the truncation error is

f(x+ h)− f(x− h)

2h
− f ′(x) =

h2f ′′′(x)

3!
+O(h3).

Numerical Analysis 42 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Another Example (cont’d)

So, the truncation of error of D0
f ′ is approximately

h2f ′′′(x)/3!,

which is quadratic in h – halving h gives a 1/4x truncation error

(approximately, since we again ignored the Taylor remainder).

Hence, D0
f ′ is a much better approximation than D+

f ′ in terms of truncation

error.

Numerical Analysis 43 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

D+
f ′ vs. D0

f ′

These examples for approximating the first derivative illustrate an important

concept regarding approximations in general.

Formula
f(x+ h)− f(x)

h

f(x+ h)− f(x− h)

2h

Error
hf ′′(x)

2
+O(h2)

h2f ′′′(x)

3!
+O(h3)

Order First Second

Often there are multiple algorithms which converge to the same theoretical

limit (such as the two differentiation examples above), but which have different

rates of approaching that limit.

(They may also have different rounding error accumulation but we’re ignoring

that for now.)

Numerical Analysis 44 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Order of Approximation

An approximation method with parameter h→ 0 has order n if the truncation

error in the approximation is proportional to O(hn). This is sometimes called

an nth order method.

For example, D+
f ′ is a first-order method of approximating derivatives of

well-behaved functions and D0
f ′ is a second-order method.

Much effort during past decades was invested in devising higher-order methods

so that larger h can be used without incurring excessive truncation error. This

can also reduce the impact of rounding errors, since we can stop earlier before

rounding errors become important (relatively speaking, as quantities decrease).

NOTE: “Order of approximation” is not the same as “order of convergence”

(which we’ll see later on in the course). The former quantifies the

approximation error. The latter quantifies convergence speed.

Numerical Analysis 45 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Part 3

Numerical Integration

Numerical Analysis 46 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Numerical integration

We have already seen how we might approximate a function’s derivative. Now

let’s look at approximating its integral between two limits.

We might need to do this because:

• We only know the value of f(x) at a subset of points.

• It is difficult or impossible to compute the antiderivative (primitive)

function analytically.

• We have a function for the integral, but it is expensive to compute (e.g. an

infinite series), so it is cheaper to compute an approximation.

Methods for numerical integration are often called quadrature techniques

(historical, from computing areas in geometry by “squaring things”).

Numerical Analysis 47 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Riemann integral

The first rigorous definition of an integral between two limits was the Riemann

integral. ∫ b

a
f(x)dx

The interval [a, b] is split into sub-intervals. The area within each sub-interval is

computed by assuming the function to be constant on the sub-interval. By

adding together all of these small areas, we get a Riemann sum.

a = x0 < x1 < ... < xn = b

ti ∈ [xi, xi+1] for i ∈ [0, n− 1]∫ b

a
f(x)dx ≈

n−1∑
i=0

f(ti)(xi+1 − xi)

Numerical Analysis 48 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Riemann integral

From Wikipedia

https://en.wikipedia.org/wiki/Riemann_sum

Numerical Analysis 49 Easter Term 2018/19

https://en.wikipedia.org/wiki/Riemann_sum

UNIVERSITY OF
CAMBRIDGE

Riemann integral

As the size of each sub-interval approaches zero, the Riemann sum approaches

the Riemann integral. A possible general definition is:∫ b

a
f(x)dx = lim

n→∞

n∑
i=0

f(xi)
b− a
n

,

where xi = a+ (b− a)i/n. This uses equally sized sub-intervals.

Obviously, as the size of each sub-interval approaches zero, the number of

sub-intervals tends to ∞, so this is not suitable for numerical computations.

Numerically, we try to approximate it by stopping at a finite interval size.

Note that there is no requirement for the sub-intervals to be sized equally, or for

the representative points to be in particular locations within their sub-intervals

(start, midpoint, end, etc.). In the limit, all of these factors become negligible.

Numerical Analysis 50 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Commonly-used quadrature techniques

Generally we fit some spline to the data and find the area under the spline.

Mid-point rule - horizontal line passing through the midpoint of each pair of

coordinates to make rectangular strips. There are also the Left-point rule and

Right-point rule (pictured). These are the middle, left and right Riemann sums.

Trapezium rule - secant through each pair of adjacent values.

Simpson’s rule - parabola segment through each three consecutive values.

Numerical Analysis 51 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Commonly-used quadrature techniques

If we split the interval [a, b] into n equal subintervals of length h =
b− a
n

, then

we have n+ 1 equally spaced coordinates xi = a+ ih, where i = 0, 1, . . . , n.

• The mid-point rule treats f(x) as piecewise constant (0th order

polynomial). ∫ b

a
f(x)dx = h

n−1∑
i=0

f

(
xi + xi+1

2

)
.

• The trapezium rule treats f(x) as piecewise linear (1st order polynomial).∫ b

a
f(x)dx = h

n−1∑
i=0

f(xi+1) + f(xi)

2
.

Numerical Analysis 52 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

• Simpson’s rule treats f(x) as piecewise quadratic (2nd order polynomial).∫ b

a
f(x) dx

Simpson
≈ h

3

(
f(x0) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(xn)

)
,

where n here must be even. Rounding error is a random walk proportional

to
√
n. Truncation error depends on f(x): it is zero for quadratics and

several classes of higher-order polynomial.

Simpson’s rule is a fourth-order method, so we might expect best results

with h ≈ (b− a) 5
√
ε0. Here ε0 is the machine epsilon, discussed later on in

the course.

Numerical Analysis 53 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Warning: Note: Don’t be tempted to assume that these are similar to

truncating more terms in a Taylor series, i.e. that higher order polynomial

interpolation necessarily gives a better approximation of the integral! Those can

oscillate. See Runge’s phenomenon,

https://en.wikipedia.org/wiki/Runge%27s_phenomenon.

Numerical Analysis 54 Easter Term 2018/19

https://en.wikipedia.org/wiki/Runge%27s_phenomenon

UNIVERSITY OF
CAMBRIDGE

Monte Carlo integration

Monte Carlo methods are algorithms that use random sampling to produce

a result. We can use this for integration, by randomly sampling a known

domain D, rejecting samples that do not satisfy a set of analytic conditions

corresponding to the area we want to integrate.

Example: Estimate the area of a circle with

centre and radius (x0, y0) and R.

1. Create a domain D (the bounding box)

whose area is easy to compute.

2. Randomly sample (xi, yi) ∈ D, recording

whether (xi, yi) satisfies (xi−x0)2 + (yi−
y0)2 ≤ R2.

3. AreaC = AreaD ×
num pointsC
num pointsD

1

0.5

0

-0.5

-1
-1 -0.5 0 0.5 1

This method is particularly useful for high-dimensional integrals.

Numerical Analysis 55 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Part 4

Iterative Methods

Numerical Analysis 56 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Introduction to iterative methods

Why iterate?

We often do not have the means to directly compute the solution to a problem,

so it may be easier to start with a guess and iteratively refine it. For example:

• When direct methods are too expensive.

(e.g. Testing every possibility in a large search space to find the best)

• When we don’t know how to solve the problem analytically.

(e.g. Finding roots of high-degree polynomials)

• When we don’t know how to formulate the problem mathematically.

(e.g. Finding cats in images)

Numerical Analysis 57 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Introduction to iterative methods

All iterative methods need two main components:

Iterative step

A way of deriving a new guess from the previous one(s)

Termination criteria

A way of deciding when to stop iterating

Numerical Analysis 58 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Introduction to iterative methods

There are a few obvious choices for termination criteria. They can be combined

to suit the application.

• Absolute error drops below some threshold

• Relative error drops below some threshold

• Some “measure” between successive iterations is below a threshold

• Iteration count exceeds some threshold

• Computation time exceeds some threshold

(This is not an exhaustive list.)

Numerical Analysis 59 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Introduction to iterative methods

How do we measure error when we don’t know the goal?

There are a couple of options:

• Substitute our guess back into the equation.

e.g. If the unknown root of f is r, instead of measuring the error between

our guess x and r, we can measure the error between f(x) and f(r) = 0.

• Test the latest estimate xn, measuring the error between it and the

previous guess xn−1.

This is not 100% reliable because there are some methods which can settle

on the same value for multiple iterations before continuing to converge, but

it is commonly used.

Numerical Analysis 60 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Introduction to iterative methods

Despite being useful in a wide range of situations, there are some drawbacks to

iterative methods:

• There are many situations where convergence is slow, and these situations

can be difficult to predict or avoid.

• We are not guaranteed to converge to the solution we wanted. In some

cases we are not guaranteed to converge at all!

• Errors can accumulate – particularly when we are not able to represent our

numbers exactly.

Caution is required.

Numerical Analysis 61 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Order of convergence

For methods that aim to converge to a solution it is useful to quantify how

quickly they do so. In other words, we’d like to express the error of one

iteration in terms of the error of the previous iteration:

εn = f(εn−1)

where εn = |r−xn| is the error between the nth estimate xn and the solution r.

kth order convergence means that εn = Mεkn−1 when n→∞ for some finite

constant M > 0. Alternatively, we can write lim
n→∞

εn
εkn−1

= M .

Often it is convenient to investigate if εn = Mεkn−1 +O(εk+1
n−1), which is a

sufficient condition for kth order convergence, and write εn = O(εkn−1).

We write simply εn ≈Mεkn−1 to mean kth order convergence.

Numerical Analysis 62 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Order of convergence

• First-order (linear) convergence: εn ≈Mεn−1 or sufficiently

εn = Mεn−1 +O(ε2n−1)

(linear dependency between errors of successive iterations; slow in practice)

• Second-order (quadratic) convergence: εn ≈Mε2n−1 or sufficiently

εn = Mε2n−1 +O(ε3n−1)

(quadratic dependency between errors of successive iterations)

i.e. The number of final significant digits approximately doubles with every

iteration (much faster than first-order convergence).

• Superlinear convergence: εn ≈Mεkn−1 where 1 < k < 2 (not as fast as

quadratic, but acceptable in practice)

• etc.

We shall look at some examples in the next few slides.

Numerical Analysis 63 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Root finding

Commonly we want to find x such that f(x) = 0, i.e. a root of f . This is an

enormously important problem. Many real-world problems are intrinsic root

finding problems (including many minimisation problems, curve intersection

etc.).

We’ll cover three ways of doing this:

1. Bisection method

2. Fixed-point iteration

3. Newton-Raphson method (a special case of fixed-point iteration)

For example, we know that the “golden ratio” φ =
1 +
√

5

2
≈ 1.618 satisfies

φ2 = φ+ 1, and we can compute it numerically as the positive root of

f(x) = x2 − x− 1.

Numerical Analysis 64 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Bisection method

Numerical Analysis 65 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Bisection method

The Bisection Method, a form of successive approximation, is a simple and

robust approach.

1. Choose initial values a, b such that sign(f(a)) 6= sign(f(b))

(Is this trivial for a computer?)

2. Find mid point c =
a+ b

2

3. If |f(c)| < desired accuracy then stop

4. If sign(f(c)) = sign(f(a)) then a = c else b = c

5. Goto 2

Numerical Analysis 66 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Bisection method

To find the golden ratio, let f(x) = x2 − x− 1.

i a b c sign(f(c)) err err/prev. err

0 1.0 2.0 1.5 -1 1.18E-01

1 1.5 2.0 1.75 1 1.32E-01 1.12E+00

2 1.5 1.75 1.625 1 6.97E-03 5.28E-02

3 1.5 1.625 1.5625 -1 5.55E-02 7.97E+00

4 1.5625 1.625 1.59375 -1 2.43E-02 4.37E-01

5 1.59375 1.625 1.609375 -1 8.66E-03 3.57E-01

6 1.609375 1.625 1.6171875 -1 8.46E-04 9.78E-02

7 1.6171875 1.625 1.62109375 1 3.06E-03 3.61E+00

8 1.6171875 1.62109375 1.619140625 1 1.11E-03 3.62E-01

9 1.6171875 1.619140625 1.6181640625 1 1.30E-04 1.18E-01

10 1.6171875 1.6181640625 1.61767578125 -1 3.58E-04 2.75E+00

Numerical Analysis 67 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Bisection method

The absolute error is halved at each step (i.e. εn+1 ≈ 1
2εn) so the bisection

method has first-order convergence. It is also known as binary chop (gives

one bit per iteration, as we’ll see later on in the course).

First-order convergence requires a number of steps proportional to the number

of digits wanted, i.e. to the logarithm of the desired numerical precision.

Exercise: Compute the minimum number of iterations required by the bisection

method to converge to the root with maximum absolute error ε.

Exercise: When can the bisection method encounter problems?

Numerical Analysis 68 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

We wish to find a root of f(x), i.e. solve f(x) = 0. This can be rewritten as

g(x) = x, for some appropriate g, such that any solution to this second

equation is a solution to the original equation. We call such a solution a fixed

point of g, and it can be found numerically under certain conditions. The

theory of fixed-point iteration gives us theoretical tools to better analyse

convergence of algorithms.

Algorithm: Set x = g(x) and generate the sequence (xn) = x0, x1, x2, ... such

that xn+1 = g(xn). If the sequence (xn) converges to some r, i.e.

lim
n→∞

(xn) = r, then r is a fixed point of g and hence also a root of f .

Exercise: Use the above algorithm to approximate a root of x3 − 7x+ 2 = 0 for

x ∈ [0, 1]. Hint: Take g(x) = (x3 + 2)/7.

Numerical Analysis 69 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

Convergence. Does the previous algorithm always converge? No. It depends

on the choice of both g(x) and of x0. Example: Try the previous exercise for

x0 = 2.5. So when are we guaranteed to converge?

Convergence criterion: If g : I → I (maps I onto itself) and is differentiable

on I such that |g′(x)| < 1 for all x ∈ I then g has exactly one fixed point r in I

and the sequence (xn) defined previously with any x0 ∈ I will converge to r.

The proof is left as an exercise (Hint: The mean value theorem is handy) but

realise first that if g : I → I then for any x0 ∈ I we have g(x0) = x1 ∈ I and

g(g(x0)) = x2 ∈ I and so on. In other words, the entire sequence (xn) is

guaranteed to be contained by I if x0 ∈ I.

Numerical Analysis 70 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

Why does this make sense? Error analysis. Let’s look at the error εn at the nth

step. The nth estimate xn can be written as xn = εn + r, and we have:

εn+1 + r = g(εn + r)

≈ g(r) + εng
′(r)

εn+1 ≈ εng′(r),

where our friend Taylor saved us once again, and we also used g(r) = r. Hence,

if |g′(r)| < 1 then the sequence (en) will converge to 0, and (xn) to r.

Remark: We can in fact say more than that. If 0 < g′(x) < 1 then

convergence of (xn) is monotonic, whereas if −1 < g′(x) < 0 it is oscillatory

(εn alternates sign, which is obvious in the above equation), and if ∃x s.t.

g′(x) = 0 then it may be both (e.g. try g(x) = 3x(1− x) and x0 = 0.01).

Numerical Analysis 71 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

(a) monotonic

convergence

(b) oscillatory

convergence

(c),(d) divergence

[courtesy of Gavin

Esler @ DAMTP]

Numerical Analysis 72 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

The evolution/beheaviour of (xn) can be visualized using Cobweb plots:

https://en.wikipedia.org/wiki/Cobweb_plot

Live cobweb plots: https://www.desmos.com/calculator/unan9xh0og

Golden ratio example. Re-write the positive golden ratio φ2 = φ+ 1 as the

solution to x =
√
x+ 1, i.e. the fixed point of g(x) =

√
x+ 1. Letting

xn+1 =
√
xn + 1 with x0 = 2 we get:

Numerical Analysis 73 Easter Term 2018/19

https://en.wikipedia.org/wiki/Cobweb_plot
https://www.desmos.com/calculator/unan9xh0og

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

i x err err/prev. err

1 1.7320508075688772 1.1402e-01

2 1.6528916502810695 3.4858e-02 3.0572e-01

3 1.6287699807772333 1.0736e-02 3.0800e-01

4 1.6213481984993949 3.3142e-03 3.0870e-01

5 1.6190578119694785 1.0238e-03 3.0892e-01

. . .

26 1.6180339887499147 1.9762e-14 3.0690e-01

27 1.6180339887499009 5.9952e-15 3.0337e-01

28 1.6180339887498967 1.7764e-15 2.9630e-01

29 1.6180339887498953 4.4409e-16 2.5000e-01

30 1.6180339887498949 0.0000e+00 0.0000e+00

31 1.6180339887498949 0.0000e+00 nan

32 1.6180339887498949 0.0000e+00 nan

Numerical Analysis 74 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

Analysing the error we get:

εn+1 ≈ εng′(φ)

= εn
(
2
√
φ+ 1

)−1

≈ 0.3εn

i.e. first-order convergence. Note that this doesn’t mean all fixed-point iteration

methods have first-order convergence.

Numerical Analysis 75 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

We said that convergence depends on the choice of g(x). What if we chose

g(x) = x2 − 1 instead of g(x) =
√
x+ 1? We have g′(x) = 2x. We can easily

show that there is no interval I = [a, b] such that we have both g(I) ⊆ I and

|g′(I)| ⊂ [0, 1). So far, this means we are simply not guaranteed convergence.

|2x| < 1 implies a > −1/2 and b < 1/2 but g([−0.5, 0.5]) = [−1,−0.75], i.e.

there is no x ∈ (−0.5, 0.5) such that g(x) = x. Will it necessarily diverge?

Divergence criterion. If |g′(r)| > 1 for all fixed points r of g then r are called

repelling fixed points and all sequences (xn) will diverge (unless x0 = r, of

course). In practice, if |g′(x)| � 1 for all x in the vicinity of r then we expect

divergence.

Hence, the answer here is yes, the above choice for g(x) will always give

divergent sequences (xn) unless x0 is φ or ψ.

Numerical Analysis 76 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

Setting x0 = φ+ 10−16 gives the following (xn):

i x err err/prev. err

1 1.6180339887498951 2.2204e-16

2 1.6180339887498958 8.8818e-16 4.0000e+00

3 1.6180339887498978 2.8866e-15 3.2500e+00

4 1.6180339887499045 9.5479e-15 3.3077e+00

5 1.6180339887499260 3.1086e-14 3.2558e+00

6 1.6180339887499957 1.0081e-13 3.2429e+00

7 1.6180339887502213 3.2641e-13 3.2379e+00

. . .

32 3.9828994989829472 2.3649e+00 3.8503e+00

33 14.8634884189986121 1.3245e+01 5.6009e+00

34 219.9232879817058688 2.1831e+02 1.6482e+01

Numerical Analysis 77 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

So how do I chose my g(x) and x0 in practice? One way is to follow the

previous approach: Extract scenarios that fall under the convergence criterion.

Specifically, analyse the behaviour of g′(x) and of g(x), bounding each of them

accordingly, in order to determine a corresponding interval I, then choose any

x0 in that interval. [Intentionally vague to enable supervision exercises.]

Exercise: Find an interval I and a starting x0 for the other choice of g in the

previous exercise to find roots of f(x) = x3 − 7x+ 2. Obviously, please present

analytic arguments rather than trial and error.

Numerical Analysis 78 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Fixed-point iteration

You can also use the fixed-point theory to solve theoretical problems or prove

existence of roots and convergent sequences before running the iterations.

Exercise: Let f : R→ R be a differentiable function, with |f ′(x)| ≤ 0.49 for all

x. Show that the equation f(x) =
2x+ sin(x)

2
has a unique solution in R.

Numerical Analysis 79 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Newton-Raphson method

Now that you know a bit about fixed-point iteration, let’s introduce the most

widely known root finding method, the Newton-Raphson (NR) method. Again,

we wish to find roots of f(x) using a converging sequence (xn). But we want

to do it faster. There are several ways to derive the NR expression. We shall

call on Taylor, again – we’re not as awesome as Newton and Raphson, even

though neither of them gave the form that is used today, i.e. using calculus,

which was given by Simpson (*).

(*) Newton’s original method (1685) was purely algebraic, which he applied only to

polynomials and used a sequence of polynomials instead of successive approximations xn.

Raphson’s simplified version (1690) was also only algebraic and he applied it only to

polynomials but used xn approximations. Simpson gave the form used today 50 years later

(1740), along with other important results in the same paper.

Numerical Analysis 80 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Assuming r is a root of f and that f is continuously differentiable in the

vicinity of r with f ′(r) 6= 0, then a sequence (xn) that converges to r for

n→∞ can be found using the Taylor expansion of f :

f(r) = f(xn + εn) = f(xn) + f ′(xn)εn +O(ε2n) = 0.

εn ≈ −
f(xn)

f ′(xn)
.

r = xn + εn ≈ xn −
f(xn)

f ′(xn)
.

in other words xn − f(xn)
f ′(xn) is the next estimate of r, and hence we write:

xn+1 = xn −
f(xn)

f ′(xn)
,

which is the well known NR expression.

It is also a fixed-point iteration method: g(x) = x− f(x)

f ′(x)
and xn+1 = g(xn).

Numerical Analysis 81 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Newton-Raphson method

In short, the NR method improves an initial estimate x0 of the root by

repeatedly setting xn+1 = xn − f(xn)
f ′(xn) .

This can be interpreted geometrically

as following a tangent to the function

to y = 0, and using the corresponding

x as the next approximation.

-1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33

-3-3

-2.5-2.5

-2-2

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

2.52.5

33

00

Numerical Analysis 82 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Newton-Raphson method

Why would you be cool if you regarded NR as a fixed-point iteration method?

Because knowing the theory behind fixed-point iteration methods allows you to

say more about the NR method. For example, you can extract conditions that

guarantee convergence for the NR method.

Exercise: What conditions should f satisfy for the NR method to have

guaranteed convergence? Answer: Use the fixed-point convergence criterion for

the NR iterator function g.

Numerical Analysis 83 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Newton-Raphson method - Order of convergence

What about convergence speed? Let r be the root of f(x) which we hope to

converge to. Letting εn = xn − r as usual gives:

εn+1 = xn+1 − r = xn −
f(xn)

f ′(xn)
− r = εn −

f(xn)

f ′(xn)

= εn −
f(r + εn)

f ′(r + εn)

= εn −
f(r) + εnf

′(r) + ε2nf
′′(r)/2 +O(ε3n)

f ′(r) + εnf ′′(r) +O(ε2n)
(Taylor)

= εn − εn
f ′(r) + εnf

′′(r)/2 +O(ε2n)

f ′(r) + εnf ′′(r) +O(ε2n)
(Since f(r) = 0)

≈ ε2n
f ′′(r)

2f ′(r)
+O(ε3n) (εn is small so bottom line ≈ f ′(r))

i.e. second-order convergence. Spot any flaws with the above proof?

Numerical Analysis 84 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Taylor remainder and Error bound

Let’s derive the error bound introduced earlier in the course. In many practical

applications, we want to obtain an upper bound on the error of our

approximations. This is highly desirable, and many times required as part of the

design of algorithms, evaluation of their performance or to offer performance

guarantees, the latter being vital in some life critical applications.

The following is the derivation done at the blackboard.

From Wikipedia

We first introduce the Mean Value Theorem

(without proof). Cauchy’s MVT states that

given a continuously differentiable function f on

an interval [a, b], there exists c ∈ [a, b] such that

f ′(c) =
f(b)− f(a)

b− a
.

Numerical Analysis 85 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Geometrically, it means there always exists some point C between any 2 points

on a continuously differentiable function, such that the line passing through

said 2 points, the secant, is parallel to the tangent at C.

However, we can also regard the above secant to be a (gross) approximation of

f on [a, b] in the absence of more information about f . Hence, substituting

a = x0, b = x, c = ξ1 we can thus rewrite the above equation as

f(x) = f(x0) + f ′(ξ1)(x− x0).

This is in fact a truncated Taylor series to the 1st term (zero order polynomial),

and

R1(x) = f ′(ξ1)(x− x0)

is the remainder of our approximation (first order polynomial). We’d like to find

an expression, and in the end a bound, for such a remainder when the Taylor

series is truncated to k terms. We now assume that f is k + 1 times

differentiable around x0.

Aiming to obtain the next Taylor polynomial approximations, we need to make

Numerical Analysis 86 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

the 2nd derivative appear. What if we use the MVT again but this time on the

function f ′(x)? We have

f ′′(ξ2) =
f ′(x)− f ′(x0)

x− x0

which rearranged gives

f ′(x) = f ′(x0) + f ′′(ξ2)(x− x0).

Since we want to obtain f(x) we now integrate, and we do so between x0 and

x, i.e. apply
∫ x
x0
·dt (to avoid confusion, write f ′ using a different variable, e.g.

f ′(t) = f ′(x0) + f ′′(ξ2)(t− x0))

f(x)− f(x0) = f ′(x0)(x− x0) + f ′′(ξ2)
(x− x0)2

2
.

After rearranging, we find the Taylor expansion up to the 2nd term, and the

remainder

R2(x) = f ′′(ξ2)
(x− x0)2

2
.

Numerical Analysis 87 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Obviously, continuing in the same manner up to the nth term, we find that

Rk+1(x) = f (k+1)(ξk+1)
(x− x0)k+1

(k + 1)!
.

This is the Lagrange form of the Taylor remainder. The proof follows by

induction as we did above, via MVT and then integration.

Mathematically, bounding |R| in the above expression means to find a constant

M that is greater than all values of |f (k+1)(ξk+1)| when ξk+1 ranges in a

chosen neighbourhood of the expansion point x0, typically [x0 − α, x0 + α] for

some α > 0. We write

M = Mn,α ≥ |f (k+1)(ξ)|

for all ξ ∈ [x0 − α, x0 + α] and thus

|R(x)| ≤ M
|x− x0|k+1

(k + 1)!

In practice, in the above expression for Rk+1(x), x would be our input value

and x0 our evaluation point, and together they give the error range at the

Numerical Analysis 88 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

input, while R(x) is the error at the output sit it is the difference between the

true output value f(x) and the approximated value f∗(x) (i.e. the truncated

Taylor series). We can thus write

|f(x)− f∗(x)| ≤ M
|x− x∗|k+1

(k + 1)!

which is called the Lagrange error bound. We can compute M more simply as

M = max
ξ∈[min(x,x∗),max(x,x∗)]

|f (k+1)(ξ)|.

The above M will give the smallest upper bound on the error, which is

desirable in practice. However, it may be that we cannot compute it, e.g.

because we can’t or it’s expensive to compute f (k+1)(ξ). In that case, we can

choose any M that is greater than the above expression and still obtain an

upper bound; it just won’t be the smallest upper bound.

Numerical Analysis 89 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Newton-Raphson method - Order of approximation

Let’s now use the Lagrange error bound to investigate the NR method’s

convergence speed. Obviously, for NR we have k = 1. Now set x = r (the root)

and x∗ = xn (the nth NR estimate). Hence, denoting the error at the nth

iteration by εn = r − xn we have:

|f(r)− f∗(r)| ≤ M |r − xn|2

2

|f(r)− f(xn)− εnf ′(xn)| ≤ Mε2n
2

.

But f(r) = 0 and the NR equation gives xn − xn+1 = f(xn)
f ′(xn) = εn+1 − εn,

hence:

|εn+1f
′(xn)− εnf ′(xn) + εnf

′(xn)| ≤ Mε2n
2

|εn+1| ≤
Mε2n

2|f ′(xn)|
. �

Numerical Analysis 90 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

You are now extra cool, because you have shown that NR has second-order

convergence while at the same time providing an upper bound for the error

(recall that you can compute M).

Conditions: Remember that the above is subject to several conditions on f ′

and f ′′, as specified in the NR method and the Lagrange remainder;

specifically: f ′(x) 6= 0 in the vicinity of r, f ′′(x) continuous in the vicinity of r.

We may also add that x0 must be sufficiently close to r to avoid divergence.

Numerical Analysis 91 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Newton-Raphson method - Golden ratio example

To compute the golden ratio, we have f(x) = x2 − x− 1.

i x err err/prev. err

0 2.0 3.8197E-01
1 1.66666666666667 4.8633E-02 1.2732E-01
2 1.61904761904762 1.0136E-03 2.0843E-02
3 1.61803444782168 4.5907E-07 4.5290E-04
4 1.61803398874999 9.4147E-14 2.0508E-07
5 1.61803398874990 0.0000E+00 0.0000E+00

Second-order convergence is much faster: it requires a number of steps

proportional to the logarithm of the desired number of digits.

Exercise: Use the NR method to find the golden ratio as a fixed-point iteration

method, by considering the iteration function g(x) = x− f(x)/f ′(x):

https://www.desmos.com/calculator/unan9xh0og

Numerical Analysis 92 Easter Term 2018/19

https://www.desmos.com/calculator/unan9xh0og

UNIVERSITY OF
CAMBRIDGE

Newton-Raphson method

How to choose x0? This is one of the most important steps. A ”bad” initial

guess x0 can cause divergence. A common approach to find a ”good” x0 is to

first linearise the function f , i.e. a linear approximation of f , and then extract

x0 as the root of that. For example, let f(x) = x sin(πx) + e−x. We can

linearise this using Taylor, truncate it to the linear term, which is f(x) ≈ 1− x
and extract x0 as its root, i.e. x0 = 1. Note that in practice you may not

always be able to use Taylor to linearise, and you may need to resort to other

techniques (logs, differentials, evolutionary algorithms etc – beyond the course,

but the curious can look these up).

Numerical Analysis 93 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Newton-Raphson method

The NR method usually converges quickly, but does have known problems:

• Overshoot. It overshoots if the 1st derivative is badly behaved at r. For

example, NR for f(x) = |x|a for a ∈ [0, 1/2] will overshoot and diverge, as

f ′(x) is very large near the root x = 0 (where it tends to infinity). For

a = 1/2 it will oscillate between two values.

• Only linear (first-order) convergence for roots with multiplicity. However, if

the multiplicity m of the root is known then the modified algorithm

xn+1 = xn −m f(xn)
f ′(xn) preserves quadratic convergence.

• Bad initial guess x0. It can cause divergence but there are workarounds as

explained earlier.

Numerical Analysis 94 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

-5-5 -4-4 -3-3 -2-2 -1-1 11 22 33 44

-4-4

-3-3

-2-2

-1-1

11

22

33

44

55

00

-5-5 -4-4 -3-3 -2-2 -1-1 11 22 33 44

-6-6

-5-5

-4-4

-3-3

-2-2

-1-1

11

22

33

44

55

00

• Stationary points. If any xn is stationary point then this will throw the

sequence off and it will diverge (division by 0, essentially).

• Possibility of oscillating. For example, f(x) = x3 − 2x+ 2. Choosing

x0 = 0 will oscillate between x2n = 0 and x2n+1 = 1. What if we extracted

a ”better” x0 as explained earlier?

Numerical Analysis 95 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Secant method

From Wikipedia

Start with two initial values x0 and

x1 (any two points?). Build the line

through the points (x0, f(x0)) and

(x1, f(x1)):

y =
f(x1)− f(x0)

x1 − x0
(x− x1) + f(x1).

Find the root of this line:

x = x1 − f(x1)
x1 − x0

f(x1)− f(x0)
,

which becomes the next estimate x2.

Numerical Analysis 96 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Secant method

Repeat with x1 and x2 and so on, to obtain the general recurence for the

secant method:

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)

or:

xn+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)

Numerical Analysis 97 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Secant method

It can be regarded as a result of the NR method. Recall the numerical

differentiation approximation? We can say that each secant line is in fact an

approximation of the derivative at the new point, i.e.

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1
.

Substitute this into the NR equation xn+1 = xn −
f(xn)

f ′(xn)
and we obtain the

secant method equation.

In other words, in the NR method, if instead of f ′(xn) you compute a

numerical approximation of the derivative at xn, then you are in fact doing the

secant method, and not the NR method.

Numerical Analysis 98 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Secant method

How fast does it converge? Let’s derive its order of convergence. We’ll try to

find the value of p such that |εn+1| ≈ |εn|p. Let xn = εn + r where f(r) = 0,

i.e. r is a root. Substituting in the secant recurrence we get:

εn+1 = εn − f(xn)
εn − εn−1

f(xn)− f(xn−1)

=
εn−1f(xn)− εnf(xn−1)

f(xn)− f(xn−1)

= εnεn−1

f(xn)
εn
− f(xn−1)

εn−1

f(xn)− f(xn−1)

= εnεn−1

f(xn)−f(r)
xn−r − f(xn−1)−f(r)

xn−1−r

f(xn)− f(xn−1)

Numerical Analysis 99 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

knowing that subtracting f(r) doesn’t change anything. Denoting by

F (x) = f(x)−f(r)
x−r then we have

εn+1 = εnεn−1
F (xn)− F (xn−1)

f(xn)− f(xn−1)
.

We aim to get rid of the f, F terms. When we see successive terms subtracted,

that’s an indication that the mean value theorem may come in handy. The

mean value theorem says that there exists νn, ξn between xn and xn−1 such

that:

f(xn)− f(xn − 1) = f ′(νn)(xn − xn−1)

and

F (xn)− F (xn − 1) = F ′(ξn)(xn − xn−1)

which gives

εn+1 = εnεn−1
F ′(ξn)

f ′(νn)
.

We now need to bound the fraction in order to extract a dependency between

Numerical Analysis 100 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

only ε’s. We only need to find a bound on the interval between xn−1 and xn,

and we could already bound it as it is, making an argument that F

approximates f ′ by the way it’s defined, and hence F ′ approximates f ′′, and so

we can say that F ′(ξn)/f ′(νn) is upper bounded over the interval between

xn−1 and xn by a constant M corresponding to where F ′ (and thus f ′′) is

maximum and f ′ is minimum. However, we can obtain those expressions, by

first looking at F ′:

F ′(x) =
f(r) + f ′(x)(x− r)− f(x)

(x− r)2
,

where we can spot that the numerator is the difference between f(r) and its

truncated Taylor expansion up the 1st derivative, which is equal to the Taylor

remainder, for which we already derived an expression earlier in the course

(reminder: f(r) = f(x) + f ′(x)(r − x) + f ′′(ζ)(r − x)2/2 where ζ is some

value between r and x). Substituting into F ′ and then back above we get:

εn+1 = εnεn−1
f ′′(ζn)

2f ′(νn)
,

Numerical Analysis 101 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

where we now have f ′′ explicitly, and we proceed to bounding the fraction as

described above, to say that:

εn+1 ≤ εnεn−1M,

in other words

εn+1 ≈ εnεn−1.

Note that for the above bound and relationship to hold we need f to be twice

differentiable over the interval of convergence.

The order of convergence is given by p such that εn+1 ≈ εpn. Remember that all

these equation hold in the limit (i.e. when n→∞). Substituting this above

twice, we get:

εp
2

n−1 ≈ ε
p+1
n−1

or εp
2−p−1
n−1 ≈ 1, which means p2 − p− 1 must be 0 (well, tends to 0) as n→∞

since we know εn−1 → 0. This is the known golden ratio equation, and hence

p = φ = (1 +
√

5)/2, i.e. Superlinear convergence! Faster than bisection.

Slower than NR.

Numerical Analysis 102 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Secant method

Pros?

• Doesn’t need derivatives (can be used where NR cannot).

• Doesn’t need to check for opposite signs (hmm...).

• Faster than bisection.

• ”Old school” – predates NR by about 3000 years!

Disadvantages?

• Doesn’t always converge ... because it doesn’t check for opposite signs! It

does not enforce bracketing of the root like the bisection method does, so

it can fail. But we can modify it so that it does always converge :).

Numerical Analysis 103 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

False position method

From Wikipedia

Modified secant method to enforce

bracketing of the root. Same recur-

rence formula as secant, but instead of

applying it on xn and xn−1, it applies

it on xn and the last estimate xk such

that f(xn) and f(xk) have different

sign. Needs a little storage memory.

Always converges! Provided we start

with two points with different signs ...

Numerical Analysis 104 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gradient descent

Gradient descent or steepest descent is a method used to find minima of a

multidimensional function f . Gradient descent is a fundamental concept and

method for a huge number of applications, e.g. machine learning, solving linear

systems, etc.

Problem: Let f : RN → R be a continuously differentiable function. We want

to find a minimum of f iteratively, using successive estimates xn, i.e. we want

to decrease towards the minimum at every iteration, i.e. f(xn+1) ≤ f(xn).

Let’s look at the uni-dimensional case (N = 1) first.

Numerical Analysis 105 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

If we subtract from x0 a small fraction of f ′(x0), then we are guaranteed to

progress towards the minimum. In other words, we should proceed in the

opposite direction of the gradient.

Mathematically, if we take x1 = x0 − γf ′(x0) where γ > 0 is sufficiently small,

then f(x1) ≤ f(x0). Exercise: Prove that this is true. We then proceed

iteratively as

xn+1 = xn − γf ′(xn)

until |f ′(xn)| < ε for a desired ε. Spot the fixed-iteration?

Numerical Analysis 106 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

This is yet another fixed-point iteration, with the iterator function

g(x) = x− γf ′(x),

which is in fact not really surprising. As we said earlier, many problems can be

recast as root finding problems. Finding a minimum of f can be posed as

finding a root of f ′. Fixed-point iteration theory now also gives us convergence

and divergence criteria.

Exercise: Find a minimum point of f(x) = x4 − 3x3 + 5x+ 1. Discuss the

importance of “sufficiently small” when choosing γ. Hint: Desmos :).

Intuition: As we approach the minimum, f ′(x) itself gets smaller and aids in

taking gradually smaller steps to avoid overshooting. A sufficiently small γ is

important in the early steps, or else we may overshoot the minimum.

NOTE: In machine learning, γ is called the learning rate.

Let’s now tackle the multidimensional case.

Numerical Analysis 107 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

When f is multi-variable we need to be more careful, but we can also do

smarter things! When f was uni-dimensional, decreasing towards −f ′(x0)

would always hit the minimum (there’s nowhere else to go in 1D). However,

when f is multidimensional, we have a gradient vector ∇f . Decreasing in the

direction of −∇f(x0) will miss the minimum, unless f is symmetric (i.e. the

gradient at every point points towards the minimum) or we just happened to be

lucky when choosing x0.

Numerical Analysis 108 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Most functions are not symmetric, which means we will have to change

direction at every step. The same principle holds, though: Search in the

direction opposite the gradient. In the absence of other information about f ,

this would be the steepest descent (*), hence the name.

The fact that the minimum is not (guaranteed to be) in the direction of

−∇f(x0) means there is scope for being smarter regarding γ: it allows us to

compute γ adaptively, i.e. we can choose between a fixed γ or computing γn at

every iteration which can speed up the process. The algorithm is thus as

follows, starting with a point x0:

1. Set the search direction dn = −∇f(xn).

2. Compute γn or use a fixed (but small) γn = γ.

3. Set xn+1 = xn + γndn.

4. Repeat until ||∇f(xn)|| < ε for a desired ε.

(*) Not necessarily fastest convergence! Lookup conjugate gradient descent.

Numerical Analysis 109 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gradient descent - fixed γ

Let f(x, y) = x2y2 + x2 + y2 − 3x− 2y, γ = 0.1 be fixed, and x0 = [0, 0]T .

∇f(x) =


∂f

∂x

∂f

∂y


=

2xy2 + 2x− 3

2x2y + 2y − 2



Numerical Analysis 110 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gradient descent - fixed γ

x0 = [0, 0]T

∇f(x0) = [−3,−2]T

x1 = x0 − 0.1∇f(x0)

= [0.3, 0.2] -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

2.52.5

33

00

Numerical Analysis 111 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gradient descent - adaptive γ

x0 = [0, 0]T

∇f(x0) = [−3,−2]T

-1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

2.52.5

33

00

Numerical Analysis 112 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gradient descent - adaptive γ

Find γn that minimises the projection of f onto the plane given by ∇f(xn), i.e.

find γn as the solution to d
dγ f(xn+1) = d

dγ f(xn − γ∇f(xn)) = 0.

Numerical Analysis 113 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

x0 = [0, 0]T

∇f(x0) = [−3,−2]T

Project f onto the plane y =

2/3x to obtain a 1D function

f(x, 2/3x) = 4x4/9 + 13x2/9−
13x/3. Its minimum is at x0 =

0.96 (how?), which gives y =

0.64. Hence

x1 = x0 + [0.96, 0.64]T

= [0.96, 0.64]T .

-5-5 -4.5-4.5 -4-4 -3.5-3.5 -3-3 -2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5 66

-4.5-4.5

-4-4

-3.5-3.5

-3-3

-2.5-2.5

-2-2

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

11

1.51.5

00

Numerical Analysis 114 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gradient descent - adaptive γ

x1 = [0.96, 0.64]T

∇f(x1) = [−0.29, 0.45]T

Repeat. -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

2.52.5

33

00

Numerical Analysis 115 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gradient descent

From Wikipedia

As with the NR method, it has

undesired behaviour if the gradi-

ent has unhelpful properties.

e.g. the Rosenbrock function:

f(x, y) = (1− x)2+

+ 100(y − x2)2

Narrow curved valley which con-

tains the minimum. The bottom

of the valley is very flat.

Numerical Analysis 116 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gradient descent

From Wikipedia

Rosenbrock function:

f(x, y) = (1− x)2+

+ 100(y − x2)2

Because of the curved flat val-

ley the gradient descent is zig-

zagging very slowly with small

step sizes towards the minimum.

It’s repeating the same search

direction (i.e. parallel or close

to parallel vectors) many times.

Numerical Analysis 117 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gradient descent

The worst case for gradient descent is when each gradient line at one point is

the tangent line at the next point (valley), repeating the same search direction

many times:

Local minima only: As was obvious, gradient descent only finds local minima,

dictated by the choice of x0. It finds the global minimum only if f is convex.

Numerical Analysis 118 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Simulated annealing

Simulated annealing is a Monte Carlo method for finding the global minimum

(or maximum) of a function. It may be preferred over gradient descent and its

relatives when finding an approximate global minimum is more important than

finding a local minimum precisely.

In each iteration, a new candidate state is selected randomly, and then

accepted or discarded randomly.

Numerical Analysis 119 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Simulated annealing

The method uses randomness to allow it to regress to worse solutions (with low

probability), making it possible to escape from local minima.

The randomness is controlled by the temperature, T , with a high temperature

meaning more randomness. A high temperature allows more-distant candidate

states to be considered, and increases the probability of accepting a worse

solution. Over time, the temperature is reduced, allowing the solution to

converge to a minimum.

NOTE: Any problem whose state can be evaluated can be solved using this

method, e.g. travelling salesman

Numerical Analysis 120 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Simulated annealing

Starting with an initial estimate x0 and T0:

1. Randomly select a candidate state cn+1 = C(xn, Tn) .

2. xn+1 = cn+1 with probability P (f(xn), f(cn+1), T), otherwise xn+1 = xn.

3. Decrease temperature Tn+1 = A(Tn).

The choice of C,P,A depend on the problem, but may look something like this:

C(x, T) = x+ uniform random(−1, 1) · eT

P (y, y′, T) =
1

1 + e
y′−y
T

A(T) = 0.999T

A necessary condition is that when T → 0 then P (y, y′, T)→ 0 if y′ > y, else

to a positive value. Q: Why not always switch to cn+1 if f(cn+1) < f(xn)?

Numerical Analysis 121 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Part 5

Linear Systems

Numerical Analysis 122 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Using matrices to solve simultaneous equations

A system of linear simultaneous equations can be written in matrix form.

x+ 2y + 3z = 1

4x+ 5y + 6z = 1

7x+ 8y + 8z = 0


1 2 3

4 5 6

7 8 8




x

y

z

 =


1

1

0


We wish to find x such that Ax = b.

These kinds of systems appear virtually everywhere in the real world ...

Numerical Analysis 123 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Vectors and matrices - summary of notations/concepts

Lowercase bold letters denote vectors, e.g. x,b, while uppercase bold letters

denote matrices, e.g. A.

We may drop the bold face if the context implies it.

We write A ∈ Rm×n to denote a real valued matrix with m rows and n columns.

We write AT to mean the transpose of A, i.e. the ith row becomes the ith

column (or vice versa).

A =

0 1

2 3

 , AT =

0 2

1 3


Transposing gives several useful properties, such as

(A+B)T = AT +BT , (AB)T = BTAT and others (more below).

A vector v with n entries means v = [v1, v2, ..., vn]T , i.e. a column vector by

default, unless otherwise specified. vT is a row vector, vT = [v0, v1, ..., vn−1].

Numerical Analysis 124 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

The `p-norm of a vector v is:

‖v‖p = (vp1 + vp2 + ...+ vpn)1/p.

When p = 2 we obtain the “2-norm”, or Euclidean norm, or magnitude and

we write ‖v‖ for short. The `2 norm has direct physical meaning (e.g. ‖v‖2 is

the discrete signal’s energy).

We often work with ‖v‖2 instead, to avoid roots:

‖v‖2 = vTv =

n∑
i=1

v2
i .

The scalar (or dot) product of two vectors (separated by angle θ):

v ·w = vTw =

n∑
i=1

viwi = ‖v‖‖w‖ cos θ

Two vectors are orthogonal if their scalar product is zero.

A set of orthogonal vectors is a set of vectors orthogonal on each other.

Numerical Analysis 125 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

A set of orthonormal vectors is a set of orthogonal vectors of magnitude 1.

A matrix A is symmetric if AT = A.

A matrix A is anti-symmetric if AT = −A.

A matrix A is diagonal if it’s zero everywhere except on the main diagonal.

Usually refers to square matrices, which are then also symmetric.

A matrix is orthogonal if all of its column vectors are orthonormal. Orthogonal

matrices have some interesting properties: AAT = I, ‖Av‖2 = ‖v‖2 and

Av ·Aw = v ·w.

The inverse of a matrix, A−1, is such that AA−1 = A−1A = I. The concept

of an inverse exists for any sized matrix (does not have to be square). We also

have (AB−1)T = AT−1
.

A square matrix is called non-singular if it has an inverse.

The determinant of a square matrix A, denoted by |A| or det(A), is a scalar

value which encodes useful properties of a matrix. For example, A−1 exists iff

|A| 6= 0; A is non-singular iff |A| 6= 0; |AT | = |A|; and others.

Numerical Analysis 126 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Using matrices to solve simultaneous equations

Example: Google’s PageRank.

Consider a web page important if other important pages link to it.

More-important pages will appear higher in the search results. Each page shares

its own importance equally among all pages it links to.

A B

C D

1

2
D = A

1

3
A+

1

2
C +

1

2
D = B

1

3
A = C

1

3
A+B +

1

2
C = D


0 0 0 1

2

1
3 0 1

2
1
2

1
3 0 0 0

1
3 1 1

2 0




A

B

C

D

 =


A

B

C

D


Now solve Mx = x, or equivalently, (M − I)x = 0, where I is the identity

matrix.

Numerical Analysis 127 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Using matrices to solve simultaneous equations

We will cover a few ways to solve problems of the form Ax = b:

• Matrix inverse

• Gaussian elimination

• LU factorisation

• Cholesky factorisation

• QR factorisation

Each method has its own advantages and disadvantages.

We shall focus for now only on the case when A is square. A unique solution

exists if and only if A is non-singular, i.e. det(A) 6= 0.

Numerical Analysis 128 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Matrix inverse

If we know the matrix A’s inverse, A−1:

Ax = b

A−1Ax = A−1b

x = A−1b

but finding the inverse of large matrices can fail or be unstable.

Numerical Analysis 129 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gaussian elimination

This matrix phrasing of the school technique for solving simultaneous equations.

We can freely add multiples of any row to any other (must do so on b as well):

1. Transform the matrix into upper-triangular form:

For each row ai, with i from 1 to n− 1 inclusive:

For each element ai,j, with j from 0 to i− 1 inclusive:

Set ai,j to zero by setting ai = ai − ai,j
aj,j

aj

2. Back substitute to find the unknown values

Upper-

triangular:


u00 u01 u02

0 u11 u12

0 0 u22


Lower-

triangular:


l00 0 0

l10 l11 0

l20 l21 l22



Numerical Analysis 130 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gaussian elimination: example

Problem to solve:
1 2 3

4 5 6

7 8 8



x0

x1

x2

 =


1

1

0


Add -4 times first row to the second:

1 2 3

0 −3 −6

7 8 8



x0

x1

x2

 =


1

−3

0


Add -7 times first row to the third:

1 2 3

0 −3 −6

0 −6 −13



x0

x1

x2

 =


1

−3

−7


Add -2 times second row to the third:

1 2 3

0 −3 −6

0 0 −1



x0

x1

x2

 =


1

−3

−1



We now have upper-triangular form.

Complexity is O(n3).

Numerical Analysis 131 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Forward/back substitution

We can now use back substitution to find the unknown values.


1 2 3

0 −3 −6

0 0 −1



x0

x1

x2

 =


1

−3

−1


1. The bottom row immediately gives x2 = 1.

2. Substituting this into the second row, −3x1 − 6 = −3, so x1 = −1.

3. Finally, the first row gives x0 − 2 + 3 = 1, so x0 = 0.

Complexity is O(n2).

Forward substitution works in the same way, but for lower-triangular matrices

instead of upper-triangular ones.

Numerical Analysis 132 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gaussian elimination: pivoting

The very first step is to multiply the top line by −A0,1

A0,0
.

What if the pivot element A0,0 is zero or very small/big?

Dividing by a small pivot can blow up the result, and cause overflow in

computations.

Solution: Rows can be freely interchanged without altering the equations.

Hence we are free to choose which remaining row to use for each outer loop

step, so always choose the row with the largest leading value.

Selecting the best next row is partial row pivoting.

Various other quick processes can also be used before we start: scaling rows so all have

similar magnitudes, or permuting columns. Column permutation requires we also

permute the rows in x to preserve the result.

Permuting both rows and columns (total pivoting) can lead to more accurate

solutions in computations, but the search complexity is undesirable.

Numerical Analysis 133 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

LU factorisation

A popular factorization for solving linear systems, inverting matrices or

computing determinants by a computer is to decompose into lower- and

upper-triangular matrices A = LU , then

1. find y from Ly = b using forward substitution with the triangular form L,

2. find x from Ux = y using back substitution.


a00 a01 a02

a10 a11 a12

a20 a21 a22

 =


l00 0 0

l10 l11 0

l20 l21 l22



u00 u01 u02

0 u11 u12

0 0 u22



Numerical Analysis 134 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

LU factorisation

Find L and U such that A = LU .

Dolittle algorithm:

Do a normal Gaussian elimination on A to get U (ignoring any r.h.s.

to hand), but keeping track of the steps you would make on a r.h.s.

in an extra matrix. The extra matrix turns out to be L.

More precisely, starting with L = I and U = A:

For each row ui, with i from 1 to m− 1 inclusive:

For each element ui,j, with j from 0 to i− 1 inclusive:

Set ui,j to zero by setting ui = ui − ui,j
uj,j

uj

Set li,j =
ui,j
uj,j

Complexity: O(n3). A minor overhead on top of Gaussian elimination.

Numerical Analysis 135 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

LU factorisation: example

Recall the steps we took in the Gaussian elimination example. This time,

maintain L and U so that they always multiply to give the original matrix.

A = LU 1 2 3
4 5 6
7 8 8

 =

 1 0 0
0 1 0
0 0 1

 1 2 3
4 5 6
7 8 8


[Add -4 times first row to the second] =

 1 0 0
4 1 0
0 0 1

 1 2 3
0 −3 −6
7 8 8


[Add -7 times first row to the third] =

 1 0 0
4 1 0
7 0 1

 1 2 3
0 −3 −6
0 −6 −13


[Add -2 times second row to the third] =

 1 0 0
4 1 0
7 2 1

 1 2 3
0 −3 −6
0 0 −1



Numerical Analysis 136 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

LU factorisation

Unlike Gaussian elimination, b is not considered for decomposition. This is

highly useful as the A = LU can be reused to solve other linear systems for

different vectors b. Solving for each b requires O(n2) operations, which

becomes faster than Gaussian elimination when multiple linear systems need to

be solved for different b.

A matrix implementation is as follows: Denote columns of L by the vectors lk

and the rows of U by the row vectors uTk .

1. Set A0 = A.

2. For all k = 1, .., n set uTk to the kth row of Ak−1 and lk to the kth column

of Ak−1 scaled so that Lk,k = 1 (i.e. divide by the kth element on the diagonal

of Ak−1).

3. Calculate Ak = Ak−1 − lku
T
k

Numerical Analysis 137 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Vector operations. In practice it’s useful to operate on vectors rather than

multiple loops on scalars, as modern CPUs have vector processing units (e.g.

AVX for Intel) that implement vector operations using fewer CPU cycles.

Problems? What if A1,1 (or uj,j) is zero? This will give a non-existing

factorisation although one may exist (even when A is singular).

Solution? As with Gaussian elimination, we can permute rows. This

corresponds to:

PA = LU

where P is a permutation matrix. This is called an LUP factorisation. It can

be shown that any square matrix has an LUP decomposition for an appropriate

choice of P , and that the decomposition is numerically stable. This is highly

useful in practice.

Is that still agnostic to b?

Numerical Analysis 138 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

LU decomposition

- Any square matrix admits an LUP decomposition.

- If A is non-singular (invertible), then it admits an LU decomposition iff all

leading principal minors are non-zero.

- If A is singular with rank k < n, then it admits an LU decomposition if (not

iff) its k leading principal minors are non-zero.

- L is always non-singular (diagonal is all 1s). U will have A’s rank.

Numerical Analysis 139 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

LU decomposition

Besides solving Ax = b, LU factorisation can be used to:

• Determine whether A has an inverse:

A−1 exists iff all diagonal elements of L and U are non-zero.

• Calculate the inverse of A:

A−1 = U−1L−1, with the inverse of triangular matrices being easy to

compute.

• Calculate the determinant of A:

det(A) = det(L)det(U) =
n−1∏
k=0

Lk,k

n−1∏
k=0

Uk,k =
n−1∏
k=0

Uk,k

Numerical Analysis 140 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Cholesky factorisation

If A is symmetric and positive definite, we can optimise LU factorisation by

setting U = LT . We only need to compute half the terms.

Positive definite: A is positive definite if the scalar vTAv > 0 for all v. We’ll

see later that this also means all eigenvalues of A are positive. Intuitively, this

places restrictions on how far vectors can be rotated by matrix A.

We also have positive semi-definite (≥ 0), negative definite (< 0), negative

semi-definite (≤ 0).

Luckily, these properties commonly arise in real problems, e.g. covariance

matrices, physics, and any AAT where A contains only real numbers.

Numerical Analysis 141 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Cholesky factorisation

We can find the elements of L by simply expanding out LLT .

LLT =


L00 0 0

L10 L11 0

L20 L21 L22



L00 L10 L20

0 L11 L21

0 0 L22



=


L2

00 (symmetric)

L10L00 L2
10 + L2

11

L20L00 L20L10 + L21L11 L2
20 + L2

21 + L2
22

 = A

Complexity: O(n3), but twice as fast as LU factorisation, and no need for

pivoting.

Numerical Analysis 142 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Cholesky factorisation

The recursive formulas to find the entries of L are:

Lj,j =

√√√√Aj,j −
j−1∑
k=0

L2
j,k

Li,j =
1

Lj,j

(
Ai,j −

j−1∑
k=0

Li,kLj,k

)
for i > j

And we get:

L =


√
A00 0 0

A10/L00

√
A11 − L2

10 0

A20/L00 (A21 − L20L10) /L11

√
A22 − L2

20 − L2
21



Numerical Analysis 143 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Cholesky factorisation: example

 1 2 −1
2 8 −8
−1 −8 11

 =

 L2
00 (symmetric)

L10L00 L2
10 + L2

11

L20L00 L20L10 + L21L11 L2
20 + L2

21 + L2
22


(L00 =

√
1) :

 1 (symmetric)
L10 L2

10 + L2
11

L20 L20L10 + L21L11 L2
20 + L2

21 + L2
22


(L10 = 2, L20 = −1) :

 1 (symmetric)
2 4 + L2

11

−1 −2 + L21L11 1 + L2
21 + L2

22


And so on. We finish with:

L =

 1 0 0

2 2 0

−1 −3 1



Numerical Analysis 144 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Cholesky factorisation

Computing inverses. We can use Cholesky factorisation to find A−1 even

when A is not symmetric. We first find the inverse of AAT , which is always

symmetric and positive-definite (why?). Then we do:

AT (AAT)−1 = A−1

Test for positive-definiteness. Cholesky factorisation is the widely used

method for testing if a matrix is positive definite, by testing if its Cholesky

decomposition exists.

Complex matrices. The matrix A needs to be self-adjoint to admit a Cholesky

decomposition (self adjoint or Hermitian means A is its own conjugate

transpose, A = A∗ = AT).

Any problems?

Numerical Analysis 145 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Ill-conditionedness

As we did with error propagation, it’s important to know how much a small

perturbation at the input can affect the output (we don’t want a small change

in the input to make our output explode!). Such small perturbations can arise

from measurement error, or truncation error, rounding error, etc. from previous

calculations.

The condition number of a numerical problem measures that aspect for the

worst case. We can think of it as the maximum ratio of the relative change in

the output to the relative change in the input, for all possible inputs.

A problem is well-conditioned if it has a low condition number.

A problem is ill-conditioned if it has a large condition number.

The condition number is a property of the problem, regardless of the algorithm

used to solve the problem.

Numerical Analysis 146 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Ill-conditionedness

Before we look at condition numbers for linear systems, let’s analyze functions.

As per the definition above we can say the condition number is when we

consider a small perturbation ε at the input, i.e. ε/x is the relative error at the

input:

K(x) = lim
ε→0

∣∣∣∣∣∣∣∣
f(x+ ε)− f(x)

f(x)
ε

x

∣∣∣∣∣∣∣∣ =

∣∣∣∣xf ′(x)

f(x)

∣∣∣∣
Exercise: Discuss f(x) = 1/(1− x) for x close to 1.

Numerical Analysis 147 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Ill-conditionedness

For linear systems where we look to solve Ax = b accurately, the condition

number tells us how much x will change with small perturbations in b.

The condition number of matrix A is the maximum ratio of the relative change

in x to the relative change in b, for all b.

Let ε be a (vector) perturbation in b, hence the relative change in b is

‖ε‖/‖b‖ = ‖ε‖/‖Ax‖. Assuming A is invertible, then x = A−1b and hence the

relative change in x is ‖A−1ε‖/‖x‖. Thus, the condition number is:

K(A) = max
x,ε6=0

∥∥A−1ε
∥∥

‖x‖
/
‖ε‖
‖Ax‖

= max
e6=0

∥∥A−1ε
∥∥

‖ε‖
×max

x 6=0

‖Ax‖
‖x‖

The condition number can also be defined in terms of the matrix’ eigenvalues

(which we’ll see later in the course) which provides a more sensible way to

compute the condition number of a matrix.

Numerical Analysis 148 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Ill-conditionedness

Consider solving

x+ 3y = 17

2x− y = 6
i.e.

 1 3

2 −1

 x

y

 =

 17

6


Multiply first equation (or matrix row) by 2 and subtract giving

0x+ 7y = 34− 6

Hence y = 4 and (so) x = 5. Geometrically, this just means finding where the

two lines given by x+ 3y = 17 and 2x− y = 6 intersect. In this case things are

all nice because the first line has slope -3, and the second line slope 1/2 and so

they are nearly at right angles to each other.

Numerical Analysis 149 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Ill-conditionedness

Remember, in general, that if a b

c d

 x

y

 =

 p

q


Then  x

y

 =

 a b

c d

−1 p

q

 =
1

ad− bc

 d −b

−c a

 p

q



Problems if ad− bc is small (not necessarily in absolute terms; it’s sufficient to

be small relative to a2 + b2 + c2 + d2). The lines then are nearly parallel!

Numerical Analysis 150 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Ill-conditionedness

Consider the harmless-looking 1.7711 1.0946

0.6765 0.4181

 x

y

 =

 p

q


Solving we get x

y

 =

 41810000 −109460000

−67650000 177110000

 p

q


Big numbers from nowhere! Small absolute errors in p or q will be greatly

amplified in x and y.

Consider this geometrically: we are projecting 2-D to nearly 1-D: so getting

back will be tricky.

Numerical Analysis 151 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Ill-conditionedness

e.g. Matlab given a singular matrix finds (due to rounding error) a spurious

inverse (but at least it’s professional enough to note this):

A = [16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1];

>> inv(A)

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 9.796086e-18.

ans = 1.0e+15 *

0.1251 0.3753 -0.3753 -0.1251

-0.3753 -1.1259 1.1259 0.3753

0.3753 1.1259 -1.1259 -0.3753

-0.1251 -0.3753 0.3753 0.1251

Note the 1015!!

Numerical Analysis 152 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Ill-conditionedness in matrix factorizations: Cholesky

If the matrix A is very ill-conditioned then the classic Cholesky decomposition is

problematic, as it requires taking square roots: some of the numbers under the

square roots can become negative in computations due to (rounding) error

accumulation, though they are always positive theoretically. This can be

addressed by adding a diagonal matrix D to the factorisation:

A = LDLT

=


1 0 0

L10 1 0

L20 L21 1



D0 0 0

0 D1 0

0 0 D2




1 L10 L20

0 1 L21

0 0 1



=


D1 (symmetric)

L10D0 L2
10D0 +D1

L20D0 L20L10D0 + L21D1 L2
20D0 + L2

21D1 +D2



Numerical Analysis 153 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Ill-conditionedness in matrix factorizations: Cholesky

The recursive formulas to find the entries of D and L are:

Dj = Ajj −
j−1∑
k=0

L2
jkDk

Lij =
1

Dj

(
Aij −

j−1∑
k=0

LikLjkDk

)
for i > j

Note the lack of square roots! This gives:

L =


1 0 0
A10

D0
1 0

A20

D0

A21 − L20L10D0

D1
1

 D =


A00 0 0

0 A11 − L2
10D0 0

0 0 A22 − L2
20D0 − L2

21D1



Same number of values as the classic Cholesky decomposition (just spread over

3 matrices instead of 2), so this has the same O(n3) cost.

Numerical Analysis 154 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

QR factorisation

Another factorisation A = QR, but we will create a matrix with a different

useful property. We will construct Q to be orthogonal. R is upper-triangular.

Why are orthogonal matrices useful? Recall:

• Their transpose is also their inverse: QQT = I

• They preserve the 2-norm of vectors (energy): ‖Qv‖2 = ‖v‖2

• They preserve scalar products: Qv ·Qw = v ·w

This means that transforming a matrix or vector with Q does not drastically

change the size of its elements. The process is numerically stable.

Rotations and reflections are examples of transformations which can be

represented using orthogonal matrices.

Numerical Analysis 155 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

QR factorisation

Once we have this factorisation, we can solve:

Ax = b

QRx = b

Solve Qy = b, where y = Rx

QTQy = QTb

y = QTb

Solve Rx = y using back substitution

Also works when A (and R) is tall, i.e. m× n with m ≥ n.

Numerical Analysis 156 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

How do we “build” orthogonal vectors?

To obtain Q we have to build a set of n orthogonal vectors starting from the

vectors ak of A, regarding A = (a0, ...,an−1). The following procedure can also

be used to generate random orthogonal matrices, which is in fact another

popular usage of the QR factorisation (randomize A then use QR).

Numerical Analysis 157 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

QR factorisation: Gram-Schmidt algorithm

This is one method for performing QR factorisation, with complexity O(m3).

We proceed in a similar way to Gaussian elimination, but instead of subtracting

to create zeros, we subtract to make the columns orthogonal to each other.

The algorithm processes one column of A (m× n), Q (m×m) and R (m× n)

at a time, so it can be easier to think of the matrices in terms of their column

vectors:

A = (a0, ...,an−1), Q = (q0, ...,qm−1), R = (r0, ..., rn−1)

Numerical Analysis 158 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

QR factorisation: Gram-Schmidt algorithm

Normalise the first column to have unit magnitude:

q0 =
a0

‖a0‖
, r0 = (‖a0‖, 0, 0, ..., 0)

From a1 build a vector w1 orthogonal to q0 (and therefore to a0), i.e. find the

component of a1 that is orthogonal to q0:

w1 = a1 − (q0 · a1)q0 subtract a1’s component along q0

q1 =
w1

‖w1‖
, r1 = (q0 · a1, ‖w1‖, 0, ..., 0)

Continue through the remaining columns:

wk = ak −
k−1∑
i=0

(qi · ak)qi

qk =
wk

‖wk‖
, rk = (q0 · ak,q1 · ak, ...,qk−1 · ak, ‖wk‖, 0, ..., 0)

Numerical Analysis 159 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

QR factorisation: Gram-Schmidt algorithm example

Let’s work through the following example:

A =

 1 1 1
−1 0 1
1 1 2

 = QR =

 q00 q01 q02

q10 q11 q12

q20 q21 q22

 r00 r01 r02

0 r11 r12

0 0 r22



First column: normalise a0:

‖a0‖ =
√

12 + (−1)2 + 12 =
√

3

 1 1 1
−1 0 1
1 1 2

 =


1√
3

q01 q02

− 1√
3

q11 q12
1√
3

q21 q22


 √3 r01 r02

0 r11 r12

0 0 r22



Numerical Analysis 160 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

QR factorisation: Gram-Schmidt algorithm example

Second column:

q0 · a1 =
1√
3
· 1 +− 1√

3
· 0 +

1√
3
· 1 =

2√
3

w1 = (1, 0, 1)− 2√
3

(
1√
3
,− 1√

3
,

1√
3

)
=

(
1

3
,
2

3
,
1

3

)

‖w1‖ =

√(
1

3

)2

+

(
2

3

)2

+

(
1

3

)2

=

√
6

3

 1 1 1
−1 0 1
1 1 2

 =


1√
3

1√
6

q02

− 1√
3

2√
6

q12
1√
3

1√
6

q22



√

3 2√
3

r02

0
√

6
3 r12

0 0 r22



Numerical Analysis 161 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

QR factorisation: Gram-Schmidt algorithm example

Third column:

q0 · a2 =
1√
3
· 1 +− 1√

3
· 1 +

1√
3
· 2 =

2√
3

q1 · a2 =
1√
6
· 1 +

2√
6
· 1 +

1√
6
· 2 =

5√
6

w2 = (1, 1, 2)− 2√
3

(
1√
3
,− 1√

3
,

1√
3

)
− 5√

6

(
1√
6
,

2√
6

1√
6

)
=

(
−1

2
, 0,

1

2

)

‖w2‖ =

√(
−1

2

)2

+ 02 +

(
1

2

)2

=

√
2

2

 1 1 1
−1 0 1
1 1 2

 =


1√
3

1√
6
− 1√

2

− 1√
3

2√
6

0
1√
3

1√
6

1√
2



√

3 2√
3

2√
3

0
√

6
3

5√
6

0 0
√

2
2


Finished!

Numerical Analysis 162 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

QR factorisation: Gram-Schmidt algorithm

• If we ever find a wk which is 0, we do not add it to Q – it means that ak is

not orthogonal to the previous components.

• If the above happens, Q will not be full when all columns of A have been

processed. In that case, fill the remaining columns in any way that makes

the matrix orthogonal (how?). The corresponding rows of R will be all zero.

Error amplification: Small errors in the dot products of the QR steps

(summing up many numbers) can grow (rapidly) and hinder the orthogonality

of Q; the theoretical zeros of QTQ = I can get quite a bit larger than zero.

Solution: Orthogonality is preserved if we decompose Q into a product of two

orthogonal matrices (factoriception?). The curious can lookup the techniques

of Givens rotations or Householder reflections.

Numerical Analysis 163 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Comparison of techniques for solving linear systems

• Matrix is triangular?

Use in that form.

• Matrix rows OR columns can be permuted to be triangular?

Use the permutation.

• Matrix rows AND columns can be permuted to be triangular?

Requires an expensive search unless the matrix is sparse.

• Matrix is symmetric and positive definite?

Use Cholesky factorisation.

• None of the above, but the matrix is square?

– one r.h.s.: use Gaussian Elimination.

– multiple r.h.s.: use LU factorisation.

Numerical Analysis 164 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Comparison of techniques for solving linear systems

• Interested in computing the determinant or inverse of a matrix? (Or

just checking whether an inverse exists?)

Use LU factorisation.

• Want to check if a matrix is positive-definite?

Use Cholesky factorisation (and see if it fails).

• Matrix is tall (overspecified)?

Use QR factorisation.

• Matrix is fat (underspecified)?

Select the best solution under some metric function (coming up soon).

Numerical Analysis 165 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Part 6

Least Squares

Numerical Analysis 166 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Least Squares (LS) is a method to approximate solutions to overdetermined

systems (more equations than unknowns), i.e. situations where we typically

acquire more measurements than there are variables in the system. It is most

used in data fitting, regression or prediction by minimizing the sum of squared

residuals (why squares?). There are linear and non-linear LS methods.

Here we’ll start from simple linear examples, and without much mathematical

formalism, then formalize the method later. Let’s take a first easy example.

You have a spring and want to estimate its force constant, knowing that the

deformation is proportional to the applied force

y = kF.

The above is our system model or model function. You now take n

measurements where you apply known force values Fi and measure the

deformation yi corresponding to each, obtaining

yi = kFi + εi,

Numerical Analysis 167 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

where εi are statistical errors uncorrelated with Fi, with mean 0, constant

variance and not autocorrelated (more on this later), that the measurement

device and/or process have introduced. In LS lingo, F is called the

independent/predictor/control variable and y is called the dependent/predicted

variable (these are just a few of ridiculously many used namings: https://en.wikipedia.

org/wiki/Dependent_and_independent_variables#Statistics_synonyms).

We want to fit a line that best fits this dataset, that is we want to find an

estimate k̂ of k (the slope of the line) that gives a line of best fit:

Fitting a line in the LS sense means that we want to find k̂ as the ”best”

estimate of k, such that the sum of squared differences between each

Numerical Analysis 168 Easter Term 2018/19

https://en.wikipedia.org/wiki/Dependent_and_independent_variables#Statistics_synonyms
https://en.wikipedia.org/wiki/Dependent_and_independent_variables#Statistics_synonyms

UNIVERSITY OF
CAMBRIDGE

measurement yi and kFi for all k is minimum. These differences are called

residuals for some value of k (see also the Note below):

ri = yi − kFi.

In other words our estimate k̂ will be the value of k which minimizes

S(k) =
n∑
i=1

ri =
n∑
i=1

(yi − kFi)2,

i.e.

k̂ = argmin
k

S(k).

To find k̂ we differentiate S(k) to get

dS

dk
=

d

dk

∑
i

(yi − kFi)2 = −2
∑
i

Fi(yi − kFi)

and equating to 0 we get

k =

∑
i Fiyi∑
i F

2
i

.

Numerical Analysis 169 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Compare this with the poor man’s approach (PMA) where we compute k̂ as the

sample mean of all ratios yi/Fi, i.e. k̂ = 1
n

∑
i yi/Fi, after randomizing εi.

Note or errors vs residuals: The errors εi and the residuals ri are not the

same (!), though they can be easily confused in literature, mostly due to

notation used in the equations they appear. The errors εi are statistical errors,

i.e. the differences between the measurements and the true (unobservable!)

values. The residuals ri are the differences between the measurements and the

predicted (fitted) values from our assumed model. We can define residuals ri

for any value of k, not just k̂ (the one that gives the best fit in the LS sense),

which is why the notation above did not say ri = yi − k̂Fi, but instead

ri = yi − kFi with k to be found later via minimization.

Numerical Analysis 170 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

What if we had an experiment where our points were shifted up by some

constant?

0 2 4 6 8 10 12 14 16 18 20 22

0

5

10

15

20

We now switch to the popular notation in LS literature, where β represent

model parameters to be found (previously k), and x represent control variables.

In this case we would assume that the system’s model is

y = β0 + β1x,

Numerical Analysis 171 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

i.e. β0 is the shift (intercept) and β1 is the slope. The measurements are

yi = β0 + β1xi + εi,

and we need to estimate both β0 and β1 by finding β̂0 and β̂1 that minimize

the sum of squared residuals

ri = yi − (β0 + β1xi).

This time the function S is of two variables

S(β0, β1) =
∑
i

r2
i =

∑
i

(yi − β0 − β1xi)
2

and we use partial derivatives in turn wrt β0 and β1 in order to find β̂0 and β̂1

as the solutions to:

∂S

∂β1
= 0 and

∂S

∂β0
= 0

Numerical Analysis 172 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

which, after a bit of algebra give:

β̂1 =

∑
i xiyi −

1
n

∑
i xi
∑

i yi∑
i x

2
i −

1
n(
∑

i xi)
2

and β̂0 =
1

n

∑
i

yi − β̂1
1

n

∑
i

xi.

The above is known as simple linear regression and is by far the most widely

known and used form of fitting/regression in a plethora of applications. One

can recognize that the numerator and denominator of β̂1 are the sample

covariance and sample variance, while the terms in β0 are the sample means.

What about a poor man’s approach (PMA) in this case? We can extract β̂0 and β̂1 as

follows. Compute the sample means xm = 1
n

∑
i xi and ym = 1

n

∑
i yi. Shift all the

data points down and left by ym and xm respectively, and then compute the slope β̂1

as the mean of ratios β̂1 = 1
n

∑
i
yi−ym

xi−xm
and β̂0 directly as β̂0 = ym − β̂1xm (the latter

is the same as the least squares’ β̂0). Randomize a few examples and observe what

happens to the PMA fitted line. What can you say about the accuracy and why?

Numerical Analysis 173 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Can we fit any polynomial, or other functions?

The short answer is yes (but we should be careful about high order polynomials; we’ll

see why later). All the above models are called linear LS because they are linear

in the parameters βj (and not in x or y). For example, we can apply a

quadratic fit model:

y = β0 + β1x+ β2x
2

and it would be a linear model, because it is linear in βj . We would define the

residuals ri and the residual function S in the same way,

S(β0, β1, β2) =
∑

i(yi − β0 − β1xi − β2x
2
i)

2 and take three partial derivatives

to find β̂0, β̂1, β̂2 as the solutions to:

∂S

∂β0
= 0 and

∂S

∂β1
= 0 and

∂S

∂β2
= 0

all of which are simple linear equations, hence easy to solve (algebra gets more

tedious on paper).

Numerical Analysis 174 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Always linear equations: As long as our model is linear in βj then we will

always get linear equations from the partial derivatives, owing to the choice of

”squares” as the metric for our minimization problem (this is sometimes used as

an answer to ”why squares?”). The ”coefficient” of βj can be any function

φj(x), not just polynomial powers, and the model would be a linear LS model,

i.e.

y =

p∑
j=1

βjφj(x),

is a general form for a linear LS model with a single independent/input variable

(x) and p model parameters (βj) that we need to estimate. For example,

y = β0 cosx+ β1e
x is yet another example of a linear LS model, with

measurements (observed values) yi = β0 arctanxi + β1e
xi + εi, where εi are

statistical errors, uncorrelated with xi, with mean 0. In short, if

∂S

∂βj
= C

where C is a constant wrt all βj then we have a linear LS model.

Numerical Analysis 175 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Reducing to line fit. When we have only two parameters to estimate β0 and

β1 and one of them is just a shift (intercept), i.e. the model is

y = β0 + β1φ(x), where φ(x) is an arbitrary function, then we can see this is a

line fit by writing z = φ(x) and zi = φ(xi), reusing the results obtained

previously for fitting a line, then substituting at the end. LS is completely

agnostic to the ‘coefficient’ of β1.

If φ is bijective, and hence invertible, then we can also ‘replot’ the points xi on

the x-axis as φ−1(xi) to turn the curve β0 + β1φ(x) into a straight line.

Numerical Analysis 176 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Multiple independent variables x

The underlying model of a system may consist of multiple independent

variables, or you may want to want to predict data taking into account multiple

variables (e.g. car sales depending on gas mileage, top speed, engine power,

price, etc). We shall first give a similar algebraic form as until now, but then

formalise it more succinctly using vectors and matrices. In this case, our linear

model becomes

y = β0x0 + · · ·+ βpxp (3)

and the measurements become

yi = β0x0i + · · ·+ βpxpi + εi. (4)

For example, the following would give a plane in 3D space:

y = β0 + β1x1 + β2x2

Numerical Analysis 177 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

y = 2 + x1 − x2

and the measurements yi = β0 + β1x1i + β2x2i + εi would give points above &

below (hopefully close enough) to this plane depending on the statistical errors

εi. This plane is the true model, i.e. unknown to us, which we try to estimate

via linear LS, i.e. we try to fit a plane ŷ = β̂0 + β̂1x1 + β̂2x2 (instead of a curve

in 2D) through the points yi in 3D space.

For any linear problem with p independent variables, we perform the same steps

as before, extracting the residuals ri = yi −
∑

j βjxji and minimizing the

Numerical Analysis 178 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

objective function

S(β) =
∑
i

r2
i =

∑
i

(yi −
∑
j

βjxji)
2

by taking all partial derivatives

∂S

∂βk
= 0 for all k = 1, . . . , p

to find the estimates β̂k. Being linear, the above p equations are

straightforward

−2
∑
i

xki(yi −
∑
j

βjxji) = 0 (5)

which give

β̂k =

∑
i xki(yi −

∑
j 6=k β̂jxji)∑

i x
2
ki

. (6)

Numerical Analysis 179 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Functions of xj

The previous case of a single independent variable is a special case of multiple

independent variables, by taking some of the variables as functions of previous

variables. For example, the single variable quadratic model

y = β0 + β1x+ β2x
2 is obtained by making x0 = 1 (i.e. kept constant and

equal to 1 throughout all measurements) and x2 = x2
1.

Moreover, similar to the single variable case, any of the variables can be

functions, i.e. some φj(xj) instead of xj , and the model would still be linear,

since it’s linearity in βj that matters. For example

y = β0 arctanx0 + β1x
3
1 + β2e

x2

is a linear model with 3 independent variables. By making the change of

variable z0 = arctanx0, z1 = x3
1, z2 = ex2 we reuse the same result for the

estimates β̂j and substitute back at the end.

Numerical Analysis 180 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Thus a fully general form for the linear LS model is:

y =

p∑
j=1

βjφj(xj),

though we shall stick to y =
∑p

j=1 βjxj for simplicity of notation.

Numerical Analysis 181 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Matrix formulation of linear LS

The n equations (4) with i = 1, . . . , n can be written in matrix form directly as
y1

...

yn

 =


x11 · · · xp1

...
. . .

...

x1n · · · xpn



β1

...

βp

+


ε1
...

εn

 (7)

or more simply:

y = Xβ + ε. (8)

The above is a linear system of equations, with more equations (n) than

unknowns (p). As we know, it does not have a unique solution, the point of LS

is to estimate one that gets us close to the measurements yi.

From here on we shall only work with vectors and matrices, and shall

drop the underscores, that is:

y = Xβ + ε. (9)

Numerical Analysis 182 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Similarly, the residuals become

r = y −Xβ (10)

and the objective function to minimize becomes

S(β) =
∑
i

r2
i = ‖r‖2 = ‖y −Xβ‖2 (11)

and we equate its gradient to 0 (differentiation steps below are left as an exercise):

∇S(β) = ∇(y −Xβ)T (y −Xβ)

= ∇(yT − βTXT)(y −Xβ)

= ∇(yT y − yTXβ − βTXT y + βTXTXβ)

= −XT y −XT y + 2XTXβ

= −2XT (y −Xβ)

= 0

(12)

Numerical Analysis 183 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

which gives the famous closed form of the linear LS estimator:

β̂ = (XTX)−1XT y. (13)

Why does this make sense?

Let’s see how this makes sense, and in the process also confirm Gauss’s choice

to minimize the sum of squared residuals.

Take as an example a linear LS model with p = 2 independent variables and

n = 3 measurements, i.e. the vectors y, ε have 3 elements, and the matrix X

would be 3-by-2. The following figure shows this case, though we can

extrapolate it to any n, p (planes become hyperplanes).

Numerical Analysis 184 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

image adapted from Wikipedia

Let us write the matrix X as X = [X1 X2], i.e. the vectors X1 and X2 are the

the 2 columns of X. These 2 vectors span a subspace of R3, shown as the

green plane in the figure. The vector y of measurements does not live in this

subspace (if it did, then it would necessarily be a linear combination of X1 and

X2, i.e. the system y = Xβ would have a unique solution). We have free

choice of the coefficients β1 and β2 to make the vector X1β1 +X2β2 = Xβ

Numerical Analysis 185 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

land on any point in this subspace. Since we live in this subspace, we will never

be able to get to y (to solve the linear system exactly) so the best we can do is

to get as close as possible to y, while staying in the subpace. That point must

be the orthogonal projection of y onto this subspace, since that gives the

shortest distance to our subspace, i.e. the vector y −Xβ̂. Being orthogonal to

our subspace, it is orthogonal to all vectors in this subspace, in particular X1

and X2 (which spanned the subspace to begin with), i.e.

XT
1 (y −Xβ̂) = 0 and XT

1 (y −Xβ̂) = 0

or simply

XT (y −Xβ̂) = 0

This is exactly the same condition that we derived before by minimizing the

objective function S(β) which shows that the sum of squared residuals is

justified as a choice for an objective function to minimize.

The matrix X

Obviously, XTX needs to be invertible. It is a square symmetric matrix (called

Numerical Analysis 186 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

the Gramian matrix of X). If it is not invertible (singular) then it means some

of its columns are a linear combination of the other columns. We can show (*)

that if this is the case, then it implies that the columns of X itself (which is the

matrix of our independent variables’ values) are also linearly dependent. That

is, not all of our assumed independent variables are actually independent, i.e.

some of our variables are in fact redundant, and we need to estimate fewer

parameters βj than we thought, in which case we need to redo our model and

recompute the above with reduced X, y, β.

(*) If the columns of XTX ∈ Rp×p are linearly dependent then there is a vector

v ∈ Rp such that XTXv = 0. Left multiplying by vT we get vTXTXv = ||Xv||2 = 0,

hence Xv = 0, hence the columns of X itself are also linearly dependent.

Cholesky to compute the estimate. Attempt a Cholesky decomposition LLT

of XTX, which we know is symmetric. Cholesky requires XTX to also be

positive definite. If it fails then XTX is singular, so we know we have redundant

variables used in the model (X has redundant columns). If it succeeds then we

can invert LLT efficiently as (LT)−1L−1, to obtain our linear LS estimate β̂.

Numerical Analysis 187 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Example 1

Find an approximate solution to Xβ = y where:

X =


0 1

1 1

2 1

 and y =


6

0

0

 .
We have

XTX =

 0 1 2

1 1 1




0 1

1 1

2 1

 =

 5 3

3 3


and

XT y =

 0 1 2

1 1 1




6

0

0

 =

 0

6

 .

Numerical Analysis 188 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Gaussian/ Direct/

Cholesky/ LU/ QR/

etc to solve 5 3

3 3

β =

 0

6


and obtain

β̂ =

 −3

5

 .

Numerical Analysis 189 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Goodness of fit: R2

Numerical Analysis 190 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

A measure for goodness of fit is the so called coefficient of determination

denoted by R2 (the square is misleading, as this quantity can get negative

depending on the model), defined as:

R2 = 1−
∑

i r
2
i∑

i(yi − ym)2
= 1−

∑
i(yi − ŷi)2∑
i(yi − ym)2

,

where ym = 1
n

∑
i yi is the sample mean, and ŷ = Xβ̂ is our fitted model. The

fraction above is called the fraction of unexplained variance, because it is the

ratio between the variance of the model’s residuals, called the unexplained

variance, and the total variance of the data itself.

Interpretation. A value of R2 = 0.7 can be interpreted as saying that 70% of

the variance in the dependent (output) variable y can be explained by the

independent (input) variables xj . The other 30% can be attributed to

unknown, confounding variables (variables that influence both the independent

and dependent variables) or inherent variability.

Numerical Analysis 191 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Alternative definition: Sometimes R2 is defined differently, as:

R2 =

∑
i(ŷi − ym)2∑
i(yi − ym)2

,

to mean the fraction of explained variance instead. Note that the two

definitions are not necessarily equal. They are equal when the two variances add

up to the total variance, which reduces to yT ȳ = ŷT ȳ, where ȳ = [ym, . . . , ym].

Inflation of R2 and adjusted R2. If we add a new independent variable

βp+1xp+1 to our model, then the minimum sum of squared residuals usually

decreases, it never increases! (**) This is an artificial increase in accuracy of

our fitted model and is an artefact of the LS method. It is a problem because it

means we can add a totally random and unrelated variable (e.g. the first letter

of the driver of the car in the car sales estimation experiment) and make our

model appear to have a better fit, which would be misleading.

To compensate for this, we can define a so called Adjusted R2, which scales the

Numerical Analysis 192 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

unexplained variance according to the number of variables in the model:

R2
adj = 1−

1
n−p−1

∑
i r

2
i

1
n−1

∑
i(yi − ym)2

= 1− (1−R2)
n− 1

n− p− 1
.

The above inflation can also be understood at a high level as follows: adding a

new independent variable means we add an extra degree of freedom to our

model (e.g. from a line fit to a plane fit). This gives us more headroom for

optimization (e.g. we can tilt the plane along the line) to obtain a lower

minimum of fit. In general, a constrained problem gives worse results than an

unconstrained problem, but is generally more efficient to compute.

(**) Similar to extracting the minimum value from a list of numbers: adding a new number to

the list cannot increase the previous minimum but may lower it. Here, we obtain the new

fitted model by minimizing the objective function Snew(β1, . . . , βp, βp+1). If we force βp+1 = 0

when minimizing then we obtain the minimum of the original objective function S(β1, . . . , βp).

Thus, when βp+1 is unconstrained, the minimum of the new objective function Snew is

necessarily lower or maximum equal, i.e. the new model can never be a worse fit.

Numerical Analysis 193 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Note 1: R2 shows correlation, not causality. It does not mean that xi

necesasrily cause y. For example, there is correlation between icecream sales

and shark attacks (true story) ... obviously, other variables not taken into

account are causing the latter or have more relevant correlation (e.g. sunny

weather).

Note 2: R2 can be negative if an intercept term is not included (x0i 6= 1),

because it can cause a bad fit, enough to cause the sum of squared residuals to

be greater than the data’s total variance. In general, R2 gets negative if the

model is a sufficiently bad fit. The definition of R2 in statistics as “the ratio

between the explained variance and total variance” for the simple LS model in

fact holds only when an intercept term is included.

Numerical Analysis 194 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Least Squares Applications

- http://setosa.io/ev/ordinary-least-squares-regression/

- Interpolation/extrapolation, outliers, overfitting, low/high variance,

ill-conditioned X (e.g. Vandermonde matrix for polynomial fit)

- Recursive prediction

- Homoscedasticity and weighted LLS (no time)

- Gradient descent, global minimum (no time, though intuitive)

- Nonlinear LS (no time)

- Underdetermined systems, regularization (moved to exercises)

Numerical Analysis 195 Easter Term 2018/19

http://setosa.io/ev/ordinary-least-squares-regression/

UNIVERSITY OF
CAMBRIDGE

Part 7

Eigenvalues

&

Eigenvectors

Numerical Analysis 196 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Recall Linear Transformations

We start with a short summary of some of the linear algebra properties covered

in the Maths course. Consider a simple vector v ∈ R2 and a matrix A ∈ R2×2:

A =

1 1

1 0

 ,
Think of A as a linear transformation intrinsic to A, i.e. it skews any vector v

in some way (scale, rotate, reflect, flatten, etc). In other words, think of the

product Av as of applying a linear transformation associated with A to the

vector v. To visualise said transformation, we look at what A does to the

canonical basis vectors i and j of the two-dimensional Euclidean space:1

0

 A7−→

1

1

 and

0

1

 A7−→

1

0

.

Numerical Analysis 197 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

1

0

 A7−→

1

1


0

1

 A7−→

1

0



Numerical Analysis 198 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Now, observe an arbitrary vector v,

v =

3

2

,
We can represents this vector using the basis vectors i and j,

v = 3

1

0

+ 2

0

1

.
Since A represents a linear transformation,

Av = A

3

1

0

+ 2

0

1

 = 3A

1

0

+ 2A

0

1

 = 3

1

1

+ 2

1

0

.
It is now rather easy to visualise what happens with vector v under the

transformation A.

Numerical Analysis 199 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

A7−→

Notice that although
[
1 1

1 0

] [
3

2

]
=

[
5

3

]
, i.e. A :

[
3

2

]
7−→

[
5

3

]
, the coordinates of vector v

with respect to (i, j) and (Ai,Aj) did not change; this depends on A, though.

General case

In general, let

A = [a1 a2 · · · an]

be an n× n matrix where ak ∈ Rn are column vectors and let v ∈ Rn. We can

think of the product Av as of applying the linear transformation associated

Numerical Analysis 200 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

with A to the vector v. This linear transformation maps the canonical

(Euclidean space) basis vectors ik to vectors ak respectively.

For any linear transformation A and any scalars α, β we have,

A(αx + βy) = αAx + βAy.

Given a vector v = (v1, v2, . . . , vn)T ∈ Rn we have

Av = A(v1i1 + v2i2 + · · ·+ vnin) = Av1i1 + Av2i2 + · · ·+ Avnin

= v1Ai1 + v2Ai2 + · · ·+ vnAin

= v1a1 + v2a2 + · · ·+ vnan.

In other words, the coordinates (elements) of the vector v with respect to the

vectors ik are the same as the coordinates (elements) with respect to the

vectors ak.

Note: While the vectors ik form a basis, the vectors ai do not necessarily form

a basis unless they are linearly independent, i.e. the matrix A is non-singular. If

Numerical Analysis 201 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

A is singular, then the vectors [ak] will be linearly dependent (and vice-versa)

and the representation of v will not be unique (i.e. there exists v1 6= v2 such

that Av1 = Av2). In other words, the columns ak of A will span the same

space as ik if and only if A is non-singular (plus the rest of the properties seen

in the Maths course).

Eigenvectors and eigenvalues

Are there any vectors v 6= 0 such that Av and v have the same direction? If

yes, v are called eigenvectors of A (the linear transformation A has preferred

directions). That is, we ask if there are any scalars λ 6= 0 such that

Av = λv. (14)

Numerical Analysis 202 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

This is equivalent to

Av = (λI)v

(A− λI)v = 0

det(A− λI) = 0.

The solutions λi to the above equation are called eigenvalues of A. The above

gives a polynomial, called the characteristic polynomial, and hence it can be

written as P (x) = a
∏
i(x− λi) for some scalar a. Using the coefficients of the

characteristic polynomial to find its roots can be a very ill-conditioned problem

(lookup Wilkinson’s polynomial) even if the original problem is well-conditioned

(coefficients can get extremely large, even though the roots themselves are all

far apart) due to round-off errors, which are increasingly problematic as n grows.

For n ≥ 5 there are no closed form solutions to the characteristic polynomial

(Abel-Ruffini theorem) and hence eigenvalues must be computed using

iterative methods. However, even for n = 3 the exact formula is impractical.

Numerical Analysis 203 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

To obtain the eigenvectors or A, we solve the linear systems (A− λiI)v = 0

for each λi (using any of the methods we learned so far, e.g. factorization), and

obtain the solutions vi. These are then the eigenvectors or A.

Note 1: Eigenvalues and eigenvectors can be complex valued even if A is real valued.

Alternatively, we may also say that A does not have eigenvalues or eigenvectors.

Note 2: Depending on A some eigenvalues and eigenvectors may not be distinct.

Let’s take the previous example. Applying equation (14) gives:

det

([
1 1

1 0

]
− λ

[
1 0

0 1

])
= λ2 − λ− 1 = 0

with its two famous solutions:

λ1,2 =
1±
√

5

2
.

These are the eigenvalues. To obtain the eigenvectors, we solve

(A− λiI)v = 0 for each λi:

Numerical Analysis 204 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

1 1

1 0

− λi
1 0

0 1

v =

1− λi 1

1 −λi

v = 0, i ∈ {1, 2}.

Solving these two linear systems gives

v1 = p

[
ϕ1

1

]
and v2 = q

[
ϕ2

1

]
for any p, q ∈ R \ {0}.

These are the eigenvectors. Notice that for any A and scalar c, we have

A(cv) = cAv. In other words, if v is an eigenvector, so is cv. We usually want

the ones with unit length, which in the above example are

vi =

λi
1


∥∥∥∥∥∥
λi

1

∥∥∥∥∥∥
, i ∈ {1, 2}.

Numerical Analysis 205 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Example 1. Eigenvectors v1 and v2, and the previous vector x = [3, 2]T . Notice that

the direction of x did not change much after applying Ax, because it is close to to one

of the eigenvectors (direction of [3, 2]T is the same as the direction of [1.5, 1]T which is

close to [ϕ, 1]T ≈ [1.618, 1]T).

Numerical Analysis 206 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Example 2. Let’s observe the same transformation A applied successively to vector

u = [1,−1]T , i.e. observe the vectors Au,A2u,A3u,A4u, They get closer and

closer to one of the eigenvectors. This is an iterative method for computing the largest

eigenvalue (and its corresponding eigenvector(s)), called power iteration.

Exercices: Explain why does it alternate direction around v2. What would happen if u

was collinear with one of the eigenvectors?

Numerical Analysis 207 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Example 3. If w was collinear with v2 then w = cv2 for some scalar c, i.e. w is also

an eigenvector. Applying A successively will preserve direction and scale it by λ2 each

time, i.e. a geometric progression with ratio λ2

‖Aw‖
‖w‖

=
‖A2w‖
‖Aw‖

= · · · = ‖Akw‖
‖Ak−1w‖

= λ2.

A matrix A will scale vectors along the eigenvector direction with the scaling factor

equal to the corresponding eigenvalue.

Numerical Analysis 208 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Computing eigenvalues and eigenvectors

Power iteration, as seen in the above example is an iterative way to compute

eigenvalues. It shows that computing eigenvectors first (before eigenvalues) is

more tractable for computers. Start with a random vector b0 and iterative via

bk+1 =
Abk
‖Abk‖

.

This assumes that A has an eigenvalue greater than all others, and that b0 is

not orthogonal on the eigenvector corresponding to said eigenvalue (i.e. has a

non-zero component along that direction). In that case, the algorithm gives

both the eigenvector b = limk→∞ bk and the eigenvalue λ = bTAb
bT b

. A variation

is to multiply with (A− µI)−1 instead of A, which will converge to an

eigenvalue close to µ. This algorithm is slow (linear/1st order convergence),

and depends on the initial choice.

The advent of the QR algorithm in 1961 was a dramatic change (there were

no efficient and accurate methods until then). The QR algorithm was named

Numerical Analysis 209 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

one of the 10 most influential algorithms of the 20th century. Using QR to find

the eigenvectors and eigenvalues is an iterative process that is fast, stable and

accurate. Start with A0 = A then for each k ≥ 0 iterate via

Ak = QkRk,

Ak+1 = RkQk,

where QkRk is the QR factorisation of Ak. Since QTkQk = I, we have

Ak+1 = QTkQkRkQk = QTkAkQk,

hence all Ak have the same eigenvalues. It can be shown that as this algorithm

converges, Ak converge to an upper triangular matrix, hence the eigenvalues

are simply its diagonal entries.

Exercise 1: Let A,B, P be n-by-n matrices, and P be invertible. Show that if

B = P−1AP (we say A and B are ‘similar’) then B and A have the same eigenvalues.

Exercise 2: Show that the eigenvalues of a triangular matrix are its diagonal entries.

Numerical Analysis 210 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Orthogonality and eigenbases

In our particular example we also have

v1 · v2 = ϕ1ϕ2 + 1 = 0,

i.e. the eigenvectors are orthogonal. This holds when A is real and symmetric

(the orthogonality theorem seen in the Maths course). If A is a real symmetric

n-by-n matrix then there is a set of n eigenvectors of A that form an

orthonormal basis of Rn. The reverse is also true (it is in fact an iff

statement). If the eigenvalues are all different (all have multiplicity 1) then any

set of eigenvectors corresponding to the eigenvalues will be orthogonal.

For a general n-by-n matrix A, eigenvectors corresponding to different

eigenvalues form a basis, called an eigenbasis, but not necessarily an orthogonal

one.

Numerical Analysis 211 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Practice Question

Take the following matrix

A =

 0 1

1 1


Start computing its first few powers by hand: A2, A3, etc. What pattern do you

see? Can you explain why this pattern shows up? Is there an efficient way to

compute arbitrary powers of this matrix, An for any n? Given that two

eigenvectors of this matrix are

v1 =

 2

1 +
√

5

 v2 =

 2

1−
√

5


see if you can figure out a way to compute An by first changing to an

eigenbasis, compute the new representation of An in that basis, then converting

back to our standard basis. What does this expression tell you?

Numerical Analysis 212 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Eigen* Applications

- http://setosa.io/ev/eigenvectors-and-eigenvalues/

- Google PageRank

- Principle Components Analysis (Trump & Brexit!),

http://setosa.io/ev/principal-component-analysis/

- Image compression

- Image feature extraction (no time)

Numerical Analysis 213 Easter Term 2018/19

http://setosa.io/ev/eigenvectors-and-eigenvalues/
http://setosa.io/ev/principal-component-analysis/

UNIVERSITY OF
CAMBRIDGE

Part 8

Floating point representation
Based on slides by David Greaves from 2018.

Numerical Analysis 214 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Review: signed and unsigned integers

An 8-bit value such as 10001011 can naturally be interpreted as either an

unsigned number (27 + 23 + 21 + 20 = 139) or as a signed number

(−27 + 23 + 21 + 20 = −117).

This places the decimal (binary!?!) point at the right-hand end. It could also be

interpreted as a fixed-point number by imagining a decimal point elsewhere

(e.g. in the middle) to get 1000.1011; this would have value

23 + 2−1 + 2−3 + 2−4 = 811
16 = 8.6875.

(The above is an unsigned fixed-point value for illustration, normally we use

signed fixed-point values.)

Numerical Analysis 215 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Representations of non-integer values

Non-integer values can be represented using fixed point or floating point.

A fixed point number has a fixed number of bits reserved for the integer part

and the fractional part, regardless its size.

Since an n bit representation can only represent 2n numbers, choosing where to

place the decimal point is a trade-off between precision and range. Fixed point

representations fall short when it comes to storing small numbers precisely.

Numerical Analysis 216 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Floating point introduction

All floating point numbers we are interested in can be written as

±m× βe.

We call m the mantissa (or significand), β the base, and e the exponent.

By allowing the exponent to change, we can place the radix point anywhere we

like among the value’s significant digits (even outside them), i.e. the radix point

can float.

Numerical Analysis 217 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Floating point representation

Floating point representation follows scientific notation. If we allocate a fixed

size of storage for every number then we need to

• fix a size of mantissa (sig.figs.)

• fix a size for exponent (exponent range)

We also need to agree what the number means, e.g. agreeing the base used by

the exponent.

Numerical Analysis 218 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Standards

In the past, every manufacturer produced their own floating point hardware and

floating point programs gave different answers. IEEE standardisation fixed this.

There are two different IEEE standards for floating-point computation.

IEEE 754 is a binary standard that requires β = 2, p = 24 (number of mantissa

bits) for single precision and p = 53 for double precision. It also specifies the

precise layout of bits in a single and double precision.

In 2008 it was augmented to include additional longer binary floating point

formats and also decimal floating formats.

IEEE 854 is more general and allows binary and decimal representation without

fixing the bit-level format.

Numerical Analysis 219 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

IEEE 754 Floating Point Representation

Here I give the version used on x86 (similar issues arise as in the ordering of

bytes with an 32-bit integer).

Single precision: 32 bits (1+8+23), β = 2, p = 24

sign
31

expt
30 23

mantissa
22 0

Double precision: 64 bits (1+11+52), β = 2, p = 53

sign
63

expt
62 52

mantissa
51 0

Value represented is typically: (s ?−1 : 1) ∗ 1.mmmmmm ∗ 2eeeee.

Note hidden bit: 24 (or 53) sig.bits, only 23 (or 52) stored!

(−1)sign(1.b51b50...b0)2 × 2e−1023 := (−1)sign

(
1 +

52∑
i=1

b52−i2
−i

)
× 2e−1023

Numerical Analysis 220 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Hidden bit and exponent representation

Advantage of base-2 (β = 2) exponent representation: all normalised numbers

start with a ’1’, so no need to store it.

Like base 10 where normalised numbers start 1..9, in base 2 they start 1..1.

Can you see any difficulties this might cause?

Numerical Analysis 221 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Hidden bit and exponent representation

If all numbers start with a 1, how can we represent zero?

We need to cheat, and while we’re at it, let’s create representations for some

other special values too.

Zero Exponent = 0, mantissa = 0

Infinity Exponent = maximum (e.g. 11111111), mantissa = 0

Denormalised number Exponent = 0, mantissa 6= 0

We can still do computations using these, but they no longer adhere to the

standard’s requirements for precision.

Not a number (NaN) Exponent = maximum (e.g. 11111111), mantissa 6= 0

These values allow us to recognise when a result is not useful, without

aborting an entire computation.

Numerical Analysis 222 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Hidden bit and exponent representation

So, we’ve given up the minimum and the maximum exponents to represent

these special values. In single precision, this leaves exponents 1 to 254 for

normalised numbers, and for double precision, it leaves 1 to 2046.

In practice, we use a biased exponent to allow negative exponents. In

single-precision, a stored exponent e represents a true exponent e− 127.

This representation is called “excess-127” (single precision) or “excess-1023”

(double precision).

Why use it?

Because it means that (for positive numbers, and ignoring NaNs) floating point

comparison is the same as integer comparison. Cool!

Why 127 not 128? The committee decided it gave a more symmetric number

range.

Numerical Analysis 223 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Digression

IEEE define terms emin , emax delimiting the exponent range and programming

languages define constants like

#define FLT_MIN_EXP (-125)

#define FLT_MAX_EXP 128

whereas on the previous slide I listed the min/max exponent uses as

1.mmmmmm ∗ 2−126 to 1.mmmmmm ∗ 2127.

BEWARE: IEEE and ISO C write the above ranges as 0.1mmmmmm ∗ 2−125

to 0.1mmmmmm ∗ 2128 (so all p digits are after the decimal point) so all is

consistent, but remember this if you ever want to use FLT_MIN_EXP or

FLT_MAX_EXP.

I’ve kept to the more intuitive 1.mmmmm form in these notes.

Numerical Analysis 224 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Solved exercises

What’s the smallest and biggest normalised numbers in single precision IEEE

floating point?

Biggest: exponent field is 0..255, with 254 representing 2127. The biggest

mantissa is 1.111...111 (24 bits in total, including the implicit leading one) so

1.111...111× 2127. Hence almost 2128 which is 28 ∗ 2120 or 256 ∗ 102412, i.e.

around 3 ∗ 1038.

FLT_MAX from <float.h> gives 3.40282347e+38f.

Smallest? That’s easy: −3.40282347e+38! OK, I meant smallest positive. I

get 1.000...000× 2−126 which is by similar reasoning around 16× 2−130 or

1.6× 10−38.

FLT_MIN from <float.h> gives 1.17549435e-38f.

Numerical Analysis 225 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Solved exercises (2)

‘Denormalised numbers’ can range down to

2−23 · 2−126 = 2−149 ≈ 1.401298e-45, but there is little accuracy at this level.

And the precision of single precision? 223 is about 107, so in principle 7sf. (But

remember this is for representing a single number, operations will rapidly chew

away at this.)

And double precision? DBL MAX 1.79769313486231571e+308 and DBL MIN

2.22507385850720138e-308 with around 16sf.

How many single precision floating point numbers are there?

Answer: 2 signs * 254 exponents * 223 mantissas for normalised numbers plus 2

zeros plus 2 infinities (plus NaNs and denorms ...).

Numerical Analysis 226 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Solved exercises (3)

So you mean 0.1 is not exactly representable?

0.110 is 0.00011001100 . . .2 a recurring binary number! Check by evaluating the

geometric progression:

1
16 × ((20 + 2−1) + (2−4 + 2−5) + · · ·) = 1

16
20+2−1

1−(2−4)
= 1

10 .

However, we must round it to its nearest single precision IEEE number (note

round to nearest) i.e. 0 011 1101 1 100 1100 1100 1100 1100 1101 .

Decoded, this is 2−4 × 1.100 1100 · · · 11012, or

1
16 × (20 + 2−1 + 2−4 + 2−5 + · · ·+ 2−23).

= 0.10000000149

This is the source of the Patriot missile bug.

Numerical Analysis 227 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Dividing by a Constant: Example divide by ten.

In binary, one tenth is 0.0001100110011....

Divide a 32 bit unsigned integer by 10 by long multiplication by reciprocal using

the following hand-crafted code:

unsigned div10(unsigned int n)

{ unsigned int q;

q = (n >> 1) + (n >> 2); // Ultimately shifts of 4 and 5.

q = q + (q >> 4); // Replicate: 0.11 becomes 0.110011

q = q + (q >> 8); // 0.110011 becomes 0.110011001100110011

q = q + (q >> 16); // Now have 32 bit’s worth of product.

return q >> 3; // Doing this shift last of all

// gave better intermediate accuracy.

}

More on http://www.hackersdelight.org/divcMore.pdf

Numerical Analysis 228 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Solved exercises (4)

BTW, So how many times does

for (f = 0.0; f < 1.0; f += 0.1) { C }

iterate? Might it differ if f is single/double?

NEVER count using floating point unless you really know what you’re doing

(and write a comment half-a-page long explaining to the ‘maintenance

programmer’ following you why this code works and why näıve changes are

likely to be risky).

Numerical Analysis 229 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Signed zeros, signed infinities

Signed zeros can make sense: if I repeatedly divide a positive number by two

until I get zero (‘underflow’) I might want to remember that it started positive,

similarly if I repeatedly double a number until I get overflow then I want a

signed infinity.

However, while differently-signed zeros compare equal, not all ‘obvious’

mathematical rules still hold:

int main() {

double a = 0, b = -a;

double ra = 1/a, rb = 1/b;

if (a == b && ra != rb)

printf("Ho hum a=%f == b=%f but 1/a=%f != 1/b=%f\n", a,b, ra,rb);

return 0; }

Gives:

Ho hum a=0.000000 == b=-0.000000 but 1/a=inf != 1/b=-inf

Numerical Analysis 230 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Overflow Exceptions

Overflow is the main potential source of exception.

Using floating point, overflow occurs when an exponent is too large to be

stored.

Overflow exceptions most commonly arise in division and multiplication. Divide

by zero is a special case of overflow.

But addition and subtraction can lead to overflow. When?

Whether to raise an exception or to continue with a NaN? If we return

NaN it will persist under further manipulations and be visible in the output.

Underflow is normally ignored silently: whether the overall result is then poor is

down to the quality of the programming.

Numerical Analysis 231 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Exceptions versus infinities and NaNs?

The alternatives are to give either a wrong value, or an exception.

An infinity (or a NaN) propagates ‘rationally’ through a calculation and enables

(e.g.) a matrix to show that it had a problem in calculating some elements, but

that other elements can still be OK.

Raising an exception is likely to abort the whole matrix computation and giving

wrong values is just plain dangerous.

The most common way to get a NaN is by calculating 0.0/0.0 (there’s no

obvious ‘better’ interpretation of this) and library calls like sqrt(-1) generally

also return NaNs (but results in scripting languages can return 0 + 1i if, unlike

Java, they are untyped or dynamically typed and so don’t need the result to fit

in a single floating point variable).

Numerical Analysis 232 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

IEEE 754 History

Before IEEE 754 almost every computer had its own floating point format with

its own form of rounding – so floating point results differed from machine to

machine!

The IEEE standard largely solved this (in spite of mumblings “this is too

complex for hardware and is too slow” – now obviously proved false). In spite of

complaints (e.g. the two signed zeros which compare equal but which can

compare unequal after a sequence of operators) it has stood the test of time.

However, many programming language standards allow intermediate results in

expressions to be calculated at higher precision than the programmer requested

so

f(a*b+c) and

{ float t=a*b; f(t+c); } may call f with different values. (Sigh!)

Numerical Analysis 233 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

IEEE arithmetic

IEEE basic operations (+,−, ∗, / are defined as follows):

Treat the operands (IEEE values) as precise, and do perfect

mathematical operations on them. Round this mathematical value to

the nearest representable IEEE number and store this as the result. In

the event of a tie, choose the value with an even (i.e. zero) least

significant bit.

This is the binary version of Banker’s Rounding: 1.5→ 2.0, 4.5→ 4.0

[This last rule is statistically fairer than the “round down 0–4, round up 5–9”

which you learned in school. Don’t be tempted to believe the exactly 0.50000

case is rare!]

Numerical Analysis 234 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

IEEE Rounding

IEEE requires there to be a global flag which can be set to one of 4 values:

Unbiased which rounds to the nearest value. If the number falls midway it is

rounded to the nearest value with an even (zero) least significant bit. This

mode is required to be default.

Towards zero

Towards positive infinity

Towards negative infinity

Be very sure you know what you are doing if you change the mode, or if you are

editing someone else’s code which exploits a non-default mode setting.

Numerical Analysis 235 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Other mathematical operators?

Other mathematical operators are typically implemented in libraries. Examples

are sin, sqrt, log etc. It’s important to ask whether implementations of these

satisfy the IEEE requirements: e.g. does the sin function give the nearest

floating point number to the corresponding perfect mathematical operation’s

result when acting on the floating point operand treated as perfect? [This

would be a perfect-quality library with error within 0.5 ulp (Unit in the Last

Place) and still a research problem for most functions.]

Or is some lesser quality offered? In this case a library (or package) is only as

good as the vendor’s careful explanation of what error bound the result is

accurate to. ±1 ulp is excellent.

But remember (see ‘ill-conditionedness’) that a more important practical issue might

be how a change of 1 ulp on the input(s) affects the output – and hence how input

error bars become output error bars.

Numerical Analysis 236 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

The java.lang.Math libraries

Java has quite well-specified math routines, e.g. for asin() “arc sine”:

Returns the arc sine of an angle, in the range of -pi/2 through pi/2. Special

cases:

• If the argument is NaN or its absolute value is greater than 1, then the

result is NaN.

• If the argument is zero, then the result is a zero with the same sign as the

argument.

A result must be within 1 ulp of the correctly rounded result

(perfect accuracy requires result within 0.5 ulp).

Results must be semi-monotonic:

(i.e. given that arc sine is monotonically increasing, this condition requires that

x < y implies asin(x) ≤ asin(y))

Numerical Analysis 237 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Unreported Errors in Floating Point Computations

Overflow is reported (exception or NaN).

When we use floating point, unreported errors (w.r.t. perfect mathematical

computation) essentially arise from two sources:

• quantisation errors arising from the inexact representation of constants in

the program and numbers read in as data. (Remember even 0.1 in decimal

cannot be represented exactly in as an IEEE value, just like 1/3 cannot be

represented exactly as a finite decimal.)

• rounding errors produced by (in principle) every IEEE operation.

These errors build up during a computation, and we wish to be able to get a

bound on them (so that we know how accurate our computation is).

(Use all of the error analysis techniques you learned earlier in the course.)

Numerical Analysis 238 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Machine Epsilon

Machine epsilon (εm) is defined as the difference between 1.0 and the smallest

representable number which is greater than one, i.e. 2−23 in single precision,

and 2−52 in double (in both cases β−(p−1)). ISO 9899 C says:

The difference between 1 and the least value greater than 1 that is

representable in the given floating point type.

i.e. machine epsilon is 1 ulp for the representation of 1.0.

For IEEE arithmetic, the C library <float.h> defines

#define FLT_EPSILON 1.19209290e-7F

#define DBL_EPSILON 2.2204460492503131e-16

Numerical Analysis 239 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Machine Epsilon (2)

Machine epsilon is useful as it gives an upper bound on the relative error caused

by getting a floating point number wrong by 1 ulp, and is therefore useful for

expressing errors independent of floating point size.

Floating point (β = 2, p = 3) numbers: macheps=0.25

0.0

· · · 6

0.25

6666

0.5

6
0.625

6

0.75

6
0.875

6

1.0

-� 6
1.25

6

1.5

6
1.75

6

2.0

6
2.5

6

3.0

(The relative error caused by being wrong by 1 ulp can be up to 50% smaller

than this, consider 1.5 or 1.9999.)

Numerical Analysis 240 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Machine Epsilon (3)

Some sources give an alternative (bad) definition:

Microsoft MSDN documentation (Feb 2009):

Constant Value Meaning

FLT EPSILON 1.192092896e-07F Smallest such that

1.0+FLT EPSILON !=1.0

The value is right by the C standard, but the explanation inconsistent.

With rounding-to-nearest, the intermediate value only needs to be closer to

1 + εm than 1. Whoops:

float one = 1.0f, xeps = 0.7e-7f; // Smaller than FLT_EPSILON!

printf("%.7e + %.7e = %.7e\n", one, xeps, (float)(xeps+one));

===>>>> 1.0000000e+00 + 6.9999999e-08 = 1.0000001e+00

Numerical Analysis 241 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Machine Epsilon (4) – Negative Epsilon

We defined machine epsilon as the difference between 1.0 and the smallest

representable number which is greater than one.

What about the difference between 1.0 and the greatest representable number

which is smaller than one?

In IEEE arithmetic this is exactly 50% of machine epsilon.

Why? Let’s illustrate with precision of 5 binary places (4 stored). One is

20 × 1.0000, the next smallest number is 20 × 0.111111111 . . . truncated to fit.

But when we write this normalised it is 2−1 × 1.1111 and so its ulp represents

only half as much as the ulp in 20 × 1.0001.

Numerical Analysis 242 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Range reduction

Consider implementing the function sinx using its Taylor expansion:

sinx = x− x3

3!
+
x5

5!
− ...

If we are given an x with large magnitude:

• It will take longer for the terms to start shrinking, so we will need to

compute more of them to get a suitably precise result.

• The intermediate terms will be much larger than the final result, so there

will necessarily be loss of significance as the terms cancel each other.

Numerical Analysis 243 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Range reduction

Fortunately, sinx is periodic, so it is fairly straightforward to pre-process x to

give something which behaves nicely.

-1

1

0

• The obvious approach is to use modular arithmetic to bring x into the

range [−π, π).

• With a little thought, you may notice that [0, π2] is sufficient. This exploits

reflectional symmetry, so requires more-complex pre-processing, and also

post-processing of the result.

• [0, π4] is even better – how would that work?

Numerical Analysis 244 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

Range reduction

What if I make sure I don’t use large x in the first place?

Easier said than done. It’s easy to miss e.g. sin(2πft) in a loop, with t

incrementing on every timestep.

There are also some situations where the function is not periodic, so large x

make more sense.

Some series even require range reduction in order to guarantee convergence.

e.g.:

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ ... for |x| < 1

Numerical Analysis 245 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

sin 1e40

xcalc says:

sin 1e40 = 0.3415751

Does anyone believe this result? (Try your calculator/programs on it!)

Numerical Analysis 246 Easter Term 2018/19

UNIVERSITY OF
CAMBRIDGE

sin 1e40

The answer given by xcalc is totally bogus. Why?

1040 is stored (like all numbers) with a relative error of around machine epsilon.

(So changing the stored value by 1 ulp results in a relative error of around

machine epsilon, which is an absolute error of 1040×machine epsilon.) Even

for double (16sf), this absolute error of representation is around 1024. But the

sin function cycles every 2π. So we can’t even represent which of many billions

of cycles of sine that 1040 should be in, let alone whether it has any sig.figs.!

On a decimal calculator 1040 is stored accurately, but I would need π to 50sf to

have 10sf left when I have range-reduced 1040 into the range [0, π/2].

Numerical Analysis 247 Easter Term 2018/19

