Outline of today’s lecture

Lecture 3: Prediction and part-of-speech tagging

Corpora in NLP
Word prediction
Part-of-speech (POS) tagging
Evaluation in general, evaluation of POS tagging

First of three lectures that concern syntax (i.e., how words fit together). This lecture: ‘shallow’ syntax: word sequences and POS tags. Next lectures: more detailed syntactic structures.
Corpora

- corpus: text that has been collected for some purpose.
- balanced corpus: texts representing different genres
 genre is a type of text (vs domain)
- tagged corpus: a corpus annotated with POS tags
- treebank: a corpus annotated with parse trees
- specialist corpora — e.g., collected to train or evaluate particular applications
 - Movie reviews for sentiment classification
 - Data collected from simulation of a dialogue system
Uses of prediction

- unsupervised training for various models (esp. neural networks, lecture 9).
- language modelling for broad-coverage speech recognition to disambiguate results from signal processing: e.g., using n-grams or (recently) LSTMs.
- word prediction for communication aids: e.g., to help enter text that’s input to a synthesiser
- text entry on mobile phones and similar devices
- spelling correction, text segmentation
- estimation of entropy
bigrams (n-gram with N=2)

A probability is assigned to a word based on the previous word:

\[P(w_n|w_{n-1}) \]

where \(w_n \) is the \(n \)th word in a sentence.
Probability of a sequence of words (assuming independence):

\[P(W_1^n) \approx \prod_{k=1}^{n} P(w_k|w_{k-1}) \]
bigrams: probability estimation

Probability is estimated from counts in a training corpus:

\[
\frac{C(w_{n-1}w_n)}{\sum_{w} C(w_{n-1}w)} \approx \frac{C(w_{n-1}w_n)}{C(w_{n-1})}
\]

i.e. count of a particular bigram in the corpus divided by the count of all bigrams starting with the prior word.
\[\langle s \rangle \text{ good morning} \langle /s \rangle \langle s \rangle \text{ good afternoon} \langle /s \rangle \langle s \rangle \text{ it is very good} \langle /s \rangle \langle s \rangle \text{ it is good} \langle /s \rangle \]

<table>
<thead>
<tr>
<th>sequence</th>
<th>count</th>
<th>bigram probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle s \rangle</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>\langle s \rangle \text{ good}</td>
<td>3</td>
<td>.6</td>
</tr>
<tr>
<td>\langle s \rangle \text{ it}</td>
<td>2</td>
<td>.4</td>
</tr>
<tr>
<td>\text{ good}</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>\text{ good morning}</td>
<td>1</td>
<td>.2</td>
</tr>
<tr>
<td>\text{ good afternoon}</td>
<td>2</td>
<td>.4</td>
</tr>
<tr>
<td>\text{ good} \langle /s \rangle</td>
<td>2</td>
<td>.4</td>
</tr>
<tr>
<td>\langle /s \rangle</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>\langle /s \rangle \langle s \rangle</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Sentence probabilities

Probability of \(\langle s \rangle \) it is good afternoon \(\langle /s \rangle \) is estimated as:
\[
P(\text{it}|\langle s \rangle)P(\text{is}|\text{it})P(\text{good}|\text{is})P(\text{afternoon}|\text{good})P(\langle /s \rangle|\text{afternoon})
\]
\[
= .4 \times 1 \times .5 \times .4 \times 1 = .08
\]

What about the probability of \(\langle s \rangle \) very good \(\langle /s \rangle \) ?
\[
P(\text{very}|\langle s \rangle)\]
Sentence probabilities

Problems because of **sparse data**:

- **smoothing**: distribute ‘extra’ probability between rare and unseen events (e.g., *add-one smoothing*)
- **backoff**: approximate unseen probabilities by a more general probability, e.g. unigrams

cf Chomsky: Colorless green ideas sleep furiously smoothing means unseen phrases have a non-zero probability estimate.
Practical application

- **Word prediction**: guess the word from initial letters. User confirms each word, so we predict on the basis of individual bigrams consistent with letters.

- **Speech recognition**: given an input which is a lattice of possible words, we find the sequence with maximum likelihood. Implemented efficiently using dynamic programming (Viterbi algorithm).
Part of speech tagging

They can fish.

- They_pronoun can_modal fish_verb.
 ('can' meaning 'are able to')
- They_pronoun can_verb fish_plural-noun.
 ('can' meaning 'put into cans')

Ambiguity

can: modal verb, verb, singular noun
fish: verb, singular noun, plural noun
Tagset (CLAWS 5)

tagset: standardized codes for fine-grained parts of speech.

CLAWS 5: over 60 tags, including:

<table>
<thead>
<tr>
<th>NN1</th>
<th>singular noun</th>
<th>NN2</th>
<th>plural noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNP</td>
<td>personal pronoun</td>
<td>VM0</td>
<td>modal auxiliary verb</td>
</tr>
<tr>
<td>VVB</td>
<td>base form of verb</td>
<td>VVI</td>
<td>infinitive form of verb</td>
</tr>
</tbody>
</table>

▶ They_PNP can_VM0 fish_VVI ._PUN
▶ They_PNP can_VVB fish_NN2 ._PUN
▶ They_PNP can_VM0 fish_NN2 ._PUN no full parse
▶ etc
Why POS tag?

Coarse-grained syntax / word sense disambiguation: fast, so applicable to very large corpora.

- Some linguistic research and lexicography: e.g., how often is *tango* used as a verb? *dog*?
- Named entity recognition and similar tasks (finite state patterns over POS tagged data).
- Features for machine learning e.g., sentiment classification. (e.g., *stink_V* vs *stink_N*).
- Fast preliminary processing for full parsing: provide guesses at unknown words, cut down search space.
Stochastic part of speech tagging using Hidden Markov Models (HMM)

1. Start with untagged text.
2. Assign all possible tags to each word in the text on the basis of a lexicon that associates words and tags.
3. Find the most probable sequence (or n-best sequences) of tags, based on probabilities from the training data.
 - lexical probability: e.g., is *can* most likely to be VM0, VVB, VVI or NN1?
 - and tag sequence probabilities: e.g., is VM0 or NN1 more likely after PNP?
Assigning probabilities

Estimate tag sequence: n tags with the maximum probability, given n words:

$$
\hat{t}_1^n = \arg\max_{t_1^n} P(t_1^n | w_1^n)
$$

By Bayes theorem:

$$
P(t_1^n | w_1^n) = \frac{P(w_1^n | t_1^n)P(t_1^n)}{P(w_1^n)}
$$

but $P(w_1^n)$ is constant:

$$
\hat{t}_1^n = \arg\max_{t_1^n} P(w_1^n | t_1^n)P(t_1^n)
$$
Bigrams

Bigram assumption: probability of a tag depends on previous tag, hence product of bigrams:

\[P(t^n_1) \approx \prod_{i=1}^{n} P(t_i | t_{i-1}) \]

Probability of word estimated on basis of its tag alone:

\[P(w^n_1 | t^n_1) \approx \prod_{i=1}^{n} P(w_i | t_i) \]

Hence:

\[\hat{t}^n_1 = \arg\max_{t^n_1} \prod_{i=1}^{n} P(w_i | t_i) P(t_i | t_{i-1}) \]
Example

Tagging: *they fish* (ignoring punctuation)
Assume PNP is the only tag for *they*, and that *fish* could be NN2 or VVB.
Then the estimate for PNP NN2 will be:

\[
P(\text{they}|\text{PNP}) \cdot P(\text{NN2}|\text{PNP}) \cdot P(\text{fish}|\text{NN2})
\]

and for PNP VVB:

\[
P(\text{they}|\text{PNP}) \cdot P(\text{VVB}|\text{PNP}) \cdot P(\text{fish}|\text{VVB})
\]
Training stochastic POS tagging

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP those_DT0 towns_NN2 ._PUN But_CJC now_AV0 few_DT0 people_NN2 fish_VVB in_PRP these_DT0 areas_NN2 ._PUN

<table>
<thead>
<tr>
<th>sequence</th>
<th>count</th>
<th>bigram probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NN2 PRP</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>NN2 PUN</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>NN2 VVB</td>
<td>1</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Also lexicon: fish NN2 VVB
Assigning probabilities, more details

- Maximise the overall tag sequence probability — e.g., use Viterbi.
- Actual systems use trigrams — smoothing and backoff are critical.
- Unseen words: these are not in the lexicon, so use all possible open class tags, possibly restricted by morphology.
Evaluation of POS tagging

- percentage of correct tags
- one tag per word (some systems give multiple tags when uncertain)
- over 95% for English on normal corpora (but note punctuation is unambiguous)
- performance plateau about 97% on most commonly used test set for English
- baseline of taking the most common tag gives 90% accuracy
- different tagsets give slightly different results: utility of tag to end users vs predictive power
Evaluation in general

- **Training data and test data** Test data must be kept unseen, often 90% training and 10% test data.
- **Baseline**
- **Ceiling** Human performance on the task, where the ceiling is the percentage agreement found between two annotators (interannotator agreement)
- **Error analysis** Error rates are nearly always unevenly distributed.
- **Reproducibility**
Representative corpora and data sparsity

- test corpora have to be representative of the actual application
- POS tagging and similar techniques are not always very robust to differences in genre
- balanced corpora may be better, but still don’t cover all text types
- communication aids: extreme difficulty in obtaining data, text corpora don’t give good prediction for real data