(Overview of) Natural Language Processing
Lecture 2: Morphology and finite state techniques

Paula Buttery (Materials by Ann Copestake)

Computer Laboratory
University of Cambridge

October 2018
Outline of today’s lecture

Lecture 2: Morphology and finite state techniques
A brief introduction to morphology
Using morphology in NLP
Aspects of morphological processing
Finite state techniques
More applications for finite state techniques
Morphology is the study of word structure

We need some vocabulary to talk about the structure:

- **morpheme**: a minimal information carrying unit
- **affix**: morpheme which only occurs in conjunction with other morphemes (affixes are bound morphemes)
- words made up of **stem** and zero or more affixes. e.g. *dog+s*
- **compounds** have more than one stem. e.g. *book+shop+s*
- stems are usually **free** morphemes (meaning they can exist alone)
- Note that *slither, slide, slip* etc have somewhat similar meanings, but *sl*- not a morpheme.
Affixes come in various forms

- suffix: *dog+s, truth+ful*
- prefix: *un+wise*
- infix: (maybe) *abso-bloody-lutely*
- circumfix: not in English
 German *ge+kauf+t* (stem *kauf*, affix *ge_t*)

Listed in order of frequency across languages
Inflectional morphemes carry grammatical information

- Inflectional morphemes can tell us about tense, aspect, number, person, gender, case...
- e.g., plural suffix +s, past participle +ed
- all the inflections of a stem are often referred to as a paradigm
A brief introduction to morphology

Derivational morphemes change the meaning

- e.g., un-, re-, anti-, -ism, -ist ...
- broad range of semantic possibilities, may change part of speech: help → helper
- indefinite combinations:
 anti-anti-dis-establish-mentarianism
 anti-anti-dis-establish-ment-arian-ism
Languages have different typical word structures

- **isolating** languages: low number of morphemes per word (e.g. Yoruba)
- **synthetic** languages: high number of morphemes per word
 - **agglutinative**: the language has a large number of affixes each carrying one piece of linguistic information (e.g. Turkish)
 - **inflected**: a single affix carries multiple pieces of linguistic information (e.g. French)

What type of language is English?
English is an analytic language

English is considered to be analytic:

- very little inflectional morphology
- relies on word order instead
- and has lots of helper words (articles and prepositions)
- but not an isolating language because has derivational morphology
English is an analytic language

English has a mix of morphological features:

- suffixes for inflectional morphology
- but also has inflection through sound changes:
 - *sing*, *sang*, *sung*
 - *ring*, *rang*, *rung*
 - BUT: *ping*, * pinged*, * pinged*
 - the pattern is no longer **productive** but the other inflectional affixes are
- and what about:
 - *go*, *went*, *gone*
 - *good*, *better*, *best*
- uses both prefixes and suffixes for derivational morphology
- but also has zero-derivations: *tango*, *waltz*
Internal structure and ambiguity

Morpheme ambiguity: stems and affixes may be individually ambiguous: e.g. *paint* (noun or verb), *+s* (plural or 3persg-verb)

Structural ambiguity: e.g., *shorts* or *short -s*

blackberry *blueberry* *strawberry* *cranberry*

unionised could be *union -ise -ed* or *un- ion -ise -ed*

Bracketing: *un- ion -ise -ed*

▶ *un- ion* is not a possible form, so not *((un- ion) -ise) -ed*

▶ *un-* is ambiguous:
 ▶ with verbs: means ‘reversal’ (e.g., *untie*)
 ▶ with adjectives: means ‘not’ (e.g., *unwise, unsurprised*)

▶ therefore *((un- ((ion -ise) -ed)))*
Using morphological processing in NLP

- compiling a **full-form** lexicon
- **stemming** for IR (not linguistic stem)
- **lemmatization** (often inflections only): finding stems and affixes as a precursor to parsing
 - morphosyntax: interaction between morphology and syntax
- **generation**
 - Morphological processing may be **bidirectional**: i.e., parsing and generation.

 party + PLURAL <-> parties
 sleep + PAST_VERB <-> slept
Spelling rules

- English morphology is essentially concatenative
- irregular morphology — inflectional forms have to be listed
- regular phonological and spelling changes associated with affixation, e.g.
 - -s is pronounced differently with stem ending in s, x or z
 - spelling reflects this with the addition of an e (boxes etc)

morphophonology

- in English, description is independent of particular stems/affixes
e-insertion

e.g. box^s to boxes

\[\varepsilon \rightarrow e/ \left\{ \begin{array}{c}s \\ x \\ z \end{array} \right\} ^{_} s \]

- map ‘underlying’ form to surface form
- mapping is left of the slash, context to the right
- notation:
 - _ position of mapping
 - \(\varepsilon \) empty string
 - ^ affix boundary — stem ^ affix

- same rule for plural and 3sg verb
- formalisable/implementable as a finite state transducer
Lexical requirements for morphological processing

- affixes, plus the associated information conveyed by the affix

ed PAST_VERB
 ed PSP_VERB
 s PLURAL_NOUN

- irregular forms, with associated information similar to that for affixes

began PAST_VERB begin
 begun PSP_VERB begin

- stems with syntactic categories (plus more)
Finite state automata for recognition

day/month pairs:

0,1,2,3 digit / 0,1 0,1,2
digit
digit

- double circle indicates accept state
- accepts e.g., 11/3 and 3/12
- also accepts 37/00 — overgeneration
Recursive FSA

comma-separated list of day/month pairs:

- 0,1,2,3
- digit
- / 0,1
- 0,1,2
- 1 2 3 4 5 6
- digit
digit
digit

- list of indefinite length
- e.g., 11/3, 5/6, 12/04
e-insertion

e.g. box \textasciitilde s to boxes

\[\varepsilon \to e/ \left\{ \begin{array}{c} s \cr x \cr z \end{array} \right\} \textasciitilde _ s \]

- map ‘underlying’ form to surface form
- mapping is left of the slash, context to the right
- notation:
 - _ position of mapping
 - \varepsilon empty string
 - \textasciitilde affix boundary — stem \textasciitilde affix
Finite state transducer

\[\varepsilon \rightarrow e/ \begin{cases} \{s, x, z\}^\wedge s \\ s \downarrow x \uparrow z \end{cases} \]

surface : underlying

\[\text{c a k e s} \leftrightarrow \text{c a k e}^\wedge s \]

\[\text{b o x e s} \leftrightarrow \text{b o x}^\wedge s \]
Analysing \textit{b o x e s}

Input: b
Output: b
(Plus: ϵ. $^\wedge$)
Analysing $b \ o \ x \ e \ s$

Input: $b \ o$
Output: $b \ o$
Analysing \texttt{b o x e s}

\hspace{1cm}

\textbf{Input: \texttt{b o x}}

\textbf{Output: \texttt{b o x}}
Analysing \textit{b o x e s}

Input: \textit{b o x e}
Output: \textit{b o x e}

Output: \textit{b o x e}

\textbf{Diagram:}

- State 1: \textit{e} \rightarrow \textit{e}
- State 2: \textit{e} \rightarrow \textit{^}
- State 3: (Transition)
- State 4: (Transition)

(Overview of) Natural Language Processing Lecture 2: Morphology and finite state techniques

- Lecture 2: Morphology and finite state techniques
- Finite state techniques
Analysing $b\;o\;x\;e\;\epsilon\;s$

Input: $b\;o\;x\;e$
Output: $b\;o\;x\;\hat{}$

Input: $b\;o\;x\;e\;\epsilon$
Output: $b\;o\;x\;e\;\hat{}$
Analysing $b\ o\ x\ e\ s$

Input: $b\ o\ x\ e\ s$
Output: $b\ o\ x\ ^\ ^s$

Input: $b\ o\ x\ e\ \epsilon\ s$
Output: $b\ o\ x\ e\ ^\ ^s$

Diagram:

1. $s:s$
2. $s:s$
3. $s:s$
4. $s:s$

Graph showing transitions and states for input and output with boxes for specific states and transitions.
Analysing *b o x e s*

Input: *b o x e s*
Accept output: *b o x e s*

Input: *b o x e s*
Accept output: *b o x e s*

Input: *b o x e s*
Accept output: *b o x e s*

Input: *b o x e s*
Accept output: *b o x e s*
Using FSTs

- FSTs assume **tokenization** (word boundaries) and words split into characters. One character pair per transition!
- Analysis: return character list with affix boundaries, so enabling lexical lookup.
- Generation: input comes from stem and affix lexicons.
- One FST per spelling rule: either compile to big FST or run in parallel.
- FSTs do not allow for internal structure:
 - can’t model *un- ion -ize -d* bracketing.
 - can’t condition on prior transitions, so potential redundancy
Some other uses of finite state techniques in NLP

- Grammars for simple spoken dialogue systems (directly written or compiled)
- Partial grammars for text preprocessing, tokenization, named entity recognition etc.
- Dialogue models for spoken dialogue systems (SDS) e.g. obtaining a date:
 1. No information. System prompts for month and day.
 2. Month only is known. System prompts for day.
 3. Day only is known. System prompts for month.
 4. Month and day known.
Lee and Glass sentence segmentation

Figure 1: System diagram

- Speech signal
- Timing information
- Sentence Length Model
- N-gram Language Model
- Input text (transcription/ASR)
- Prosodic Modeling (SVM Classifier)
- Prosodic Model
- Log-linear Model Composition (FST Composition)
- N-best Path Searching
- Output text (with SU breaks)
Concluding comments

- English is an outlier among the world’s languages: very limited inflectional morphology.
- English inflectional morphology hasn’t been a practical problem for NLP systems for decades.
- Limited need for probabilities, small number of possible morphological analyses for a word.
- Lots of other applications of finite-state techniques: fast, supported by toolkits, good initial approach for very limited systems.