5: Overtraining and Cross-validation

Machine Learning and Real-world Data

Simone Teufel and Ann Copestake

Computer Laboratory
University of Cambridge

Lent 2017
Last session: smoothing and significance testing

- You improved your NB system by smoothing.
- You were then able to estimate whether such a manipulation makes a statistically significant change.
- Let us now think about what our NB classifier has learned.
 - We hope it has learned that “excellent” is an indicator for Positive
 - We hope it hasn’t learned that certain people are bad actors.
- Why?
Let's do something crazy

- Subtask 1 today – Test on training data
- You were told earlier never to do this
- Because the result would not be realistic
- Because optimising on such a result would create a classifier that would do exactly the wrong thing
Beware overtraining!

- The danger here is one of the biggest dangers in ML, an undesired effect is called **overtraining**.
- Overtraining is learning accidental, non-generalising properties from our dataset...
- ... which are however not representative of the overall population.
- Other names for this phenomenon:
 - Overfitting
 - Type III errors
 - “Testing hypotheses suggested by the data” errors
What we really want

- We want a classifier that performs well on new, never-before seen data.
- We don’t really care how it does on out test data, but the test data is all we have to assess how well we are doing.
- We can’t afford getting new test data each time.
- You will test how well your system (trained on data from up to 2001) performs on reviews from 2015
Danger of overtraining

- Maybe vampires rather than superheros were in fashion in 2001 than in 2016.
- New actors, new directors, good directors gone bad. . .
- Overtraining is when you think you are making improvements (because your performance on the test data goes up) . . .
- . . .but in reality you are making your classifier worse because it generalises less well to data other than your test data.
- It has picked up accidental properties of the (small) test data.
Crossvalidation: idea

- We can alleviate this problem a bit by at least using all our data as test data, so that we have more of a diagnostic.
- But hang on, can we do this?
- Isn’t there an imperative of never testing on training?
- This rule can never be broken.
- But we can still manage to use every little bit of training data for testing sometimes.
- By cleverly iterating the test and training split around
N-Fold Cross-Validation: Splitting

- Split data into N folds.
- For each fold X – use all others for training, test on fold X only.
- The final performance is the average of the performances for each fold.
N-Fold Cross-Validation and statistical testing

- Apply sign test across splitting methods – why does it make sense to do so? What does it tell us if we pass this test?
- Stratified cross-validation: each split is arranged in such a way that it mirrors the distribution of classes observed in the overall data.
- There are advantages and disadvantages of doing it this way
First task today

- Combine training and testset into one pool.
- Implement different cross validation schemes:
 - Random
 - Random Stratified
 - Sequential
- Measure performance and compare to performance on test corpus alone
Statistical testing across N-fold Cross Validation

Consecutive Chunks
Fold 1: Train(1, 2, 3, 4), Test(5, 6)
Fold 2: Train(3, 4, 5, 6), Test(1, 2)
Fold 3: Train(1, 2, 5, 6), Test(2, 3)

Chunks Modulo 3
Fold 1: Train(1, 2, 4, 5), Test(3, 6)
Fold 2: Train(2, 3, 5, 6), Test(1, 4)
Fold 3: Train(1, 3, 4, 6), Test(2, 5)
Cross-validation doesn’t solve all our problems

- OK, we have Cross-validation and some safety from overtraining.
- Nevertheless, even with cross-validation we still use data that is in some sense “seen”.
- So it is no good for incremental, small improvements reached via feature engineering.
- We also cannot use the crossvalidation trick to set global parameters
- because we only want to accept parameters that are independent.
- As always, the danger is learning accidental properties that don’t generalise.
- Remember the evaluation corpus we set aside in the first session?
Evaluation Corpus

- The evaluation corpus is never used in training or testing.
- We can therefore use this corpus for two things which are useful:
 - We can use it to set any parameters in any algorithm, before we start with training/testing.
 - We can also use this corpus as a stopping criterion for feature engineering
 - We can detect “improvements” that help in crossvalidation over the test and train corpus, but lead to performance losses on the evaluation corpus
 - We stop “fiddling” with the features when the result on evaluation corpus start decreasing (in comparison to the crossvalidation results).
Second task today

- Use your evaluation corpus as an alternative to cross-validation.
 - Use it for parameter setting to find a good weight for your symbolic system from Task 1 – maybe you should weight strongly positive words more? But how much more?
 - Figure out a way of triggering a “stop” condition on incremental changes (incremental changes could be punctuation treatment etc).