NLP Practical: Part II

Simone Teufel

Michaelmas 2018/19

1This part of practical based on a design by Helen Yannadoukakis
Today’s Practical Session
- Move to doc2vec system
- Better statistical test
- Some diagnostics
- Write Report 2 (40%; assessed)

Nov 9: Early (voluntary) Submission of Report 1 (guaranteed feedback)

Nov 14: Submit Report 1 (baselines)

Practical Session Nov 21: Text understanding

Nov 21: Early submissions get feedback on their Report 1

Nov 30: Submit Reports 2 and 3
What you should have by now

- NB classifier
- code for feature treatment
- SVM Light or some other SVM
- crossvalidation code
- stemming
- Sign test
Two important changes/errata

- Change of report length:
 - Report 1: 500 words (∼ one page)
 - Report 2: 1000 words
 - Report 3: 1000 words

- For parameter setting of SVM: use validation corpus

- Sorry for late announcement
Use of Validation corpus is another guard against overfitting

Use it for tuning model parameters
 - eg feature frequency cutoff for SVM BOW
 - eg setting parameters for doc2vec

Rules: never train nor test on validation corpus

Here: designate 10% (first fold)
How to use the validation corpus (here)

- Declare fold 1 (n=10 Round Robin Xval) as validation corpus
- You can now set all your parameters to your heart’s content on this validation corpus, without risking overtraining.
 - Train on all remaining 90%
 - Test each parameter on the validation corpus
- After parameter setting, run an entirely new experiment, using only the information of what parameters work best.
- This entirely new experiment is a cross-validation as you did before.
- Note: you have lost some data, and your folds are now a bit smaller.
Standard way to use the validation corpus

- Work with a 10-10-80 split (validation, test, training)
- Set your parameters by training on the 80% training split
- Choose the best parameters by comparing results on the validation split
- Then test the best system, with the supposedly best parameters, only once, on the test data.
- Not done here, as we want to compare to published cross-validated results.
- **word2vec**: learning neural word embeddings (Mikolov et al., 2013)
- word2vec is a distributional model with dimensionality reduction created on-the-fly, via prediction.
- **doc2vec** (Le and Mikolov, 2014):\(^2\) embeddings for *sequences* of words
- Agnostic to granularity: sentence, paragraph, document
- Learned ‘document’ vector effective for various/some tasks, including sentiment analysis

\(^2\)Or paragraph vectors, or document vectors . . .
Distributed representation of words

Task: predict the next word given the context

Optimisation objective:

\[
\frac{1}{T} \sum_{t=k}^{T-k} \log p(w_t | w_{t-k}, \ldots, w_{t+k})
\]

Softmax output layer:

\[
p(w_t | w_{t-k}, \ldots, w_{t+k}) = \frac{\exp y_{w_t}}{\sum_i \exp y_i}
\]

\[
y = b + U h(w_{t-k}, \ldots, w_{t+k}; W)
\]
Add paragraph token: each paragraph mapped to a unique vector

Paragraph vector now also contributes to the prediction task
 - Shared across all contexts from the same paragraph

Works as a “memory” of context / topic
Train paragraph vector to predict context words in a window (no word order, given a document vector).
This is similar to word2vec Skip-gram model, which was trained to predict context words given a word vector.
Our level of granularity: document / review

Parameters:

- Training algorithm (dm, dbow)
- The size of the feature vectors (e.g., 100 dimensions good enough for us)
- Number of iterations / epochs (e.g., 10 or 20)
- Context window
- Hierarchical softmax (faster version) . . .

Use gensim python library
Doc2vec: how can we use it for sentiment analysis?

- Train vectors using a larger 100,000 review corpus (details in instructions)
- Vectors can then be used as features within a typical supervised machine learning framework
A more powerful test: Permutation test

- Paired samples: two systems are run on identical data
- Tests whether the population mean is different (H_1) or the same (H_0)
- Non-parametric tests: no assumptions about distribution in your underlying data

$$\alpha = P(\text{Type I Error}) = P(\text{Reject } H_0 | H_0 \text{ is True})$$

- α is the probability of a false positive (significance level).

$$\beta = P(\text{Type II Error}) = P(\text{Do Not Reject } H_0 | H_1 \text{ is True})$$

- β is the probability of a false negative. $1 - \beta$ is the power of the test.
Consider the n paired results of System A and B.

You will observe a difference d between the means of system A and B.

If there is no real difference between the systems (and they come from one and the same distribution), it should not matter how many times I swap the two results, right?

There are 2^n permutations (each row can be 0 or 1; swapped or not).

How many of these permutations result in a difference d as high as the unpermuted version, or higher?

That proportion is your p

Final twist: If you cannot test 2^n resamplings, test a large enough random subset.
The Permutation test evaluates the probability that the observed difference in mean M between the runs has been obtained by random chance.

If the two runs are indeed the same, then the paired re-assignments should have no impact on the difference in M between the samples.

Re-sampling: For each paired observation in the original runs, a_i and b_i, a coin is flipped. If 1, then swap the score for b_i with a_i. Otherwise, leave the pair unchanged.

Repeat R times; compare differences in M.
Monte Carlo Permutation Test

The probability of observing the difference between the original runs by chance approximated by:

\[p = \frac{s + 1}{R + 1} \]

(1)

- \(s \): number of permuted samples with difference in \(M \) higher than the one observed in the original runs
- If \(R < 2^n \) because of size, we call this a Monte Carlo Permutation test.
Permutation test: Example with real-valued results

<table>
<thead>
<tr>
<th>Item</th>
<th>Original</th>
<th>One permutation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System A</td>
<td>System B</td>
</tr>
<tr>
<td>Item 1</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>Item 2</td>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td>Item 3</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>Item 4</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>Item 5</td>
<td>0.04</td>
<td>0.3</td>
</tr>
<tr>
<td>Item 6</td>
<td>0.02</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed MAP</th>
<th>Original</th>
<th>One permutation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0267</td>
<td>0.117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absolute Observed Difference</th>
<th>Original</th>
<th>One permutation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.178</td>
<td>0.0017</td>
</tr>
</tbody>
</table>

- 2^6 possible permutations for coin throws over 6 items
- Exhaustive resampling: 2 out of 64 permutations are equal or larger than the observed difference in MAP, 0.178.
- p-value $= \frac{2}{64} = 0.0462$.
- Reject Null hypothesis at confidence level $\alpha = 0.05$.

Simone Teufel
NLP Practical: Part II
What you should do

- Implement Monte Carlo Permutation test
- Use it in the future for all stat. testing where possible
- Use \(R = 5000 \)
Getting high numerical results isn’t everything – neither in this practical nor in science in general

Good science means:
- An interesting research question
- Sound methodology
- Insightful analysis (something non-obvious)
Goal of this Practical – “good science”

- Getting high numerical results isn’t everything – neither in this practical nor in science in general
- Good science means:
 - An interesting research question
 - Sound methodology
 - **Insightful analysis (something non-obvious)**
Insightful analysis

- Finding out what the model is really doing (visualisation via t-SNE, selected / targeted experimentation . . .)
- E.g., see Lau and Baldwin (2016), and Li et al. (2015):
 - Are meaningfully similar documents close to each other?
 - Are document embeddings close in space to their most critical content words?
 - Error analysis – on which documents does SVM misclassify in the worst way? Patterns?
Visualisation example using t-SNE

Figure from arxiv.org/abs/1607.05368

From Lau and Baldwin (2016)
Introduction: pretend this is not a class assignment but your own idea

Reader has no pre-knowledge

Describe your data/datasets

Describe your methodology appropriately
 - Not too detailed (otherwise you look like a beginner)
 - Enough detail for somebody expert (reimplementation)
 - Technical terms: use them – define them first

Describe your numerical results (after your methods, clearly separated)

Analyse your numerical results: what is a source of errors? Interpretability of doc2vec space?
Questions?