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The Task: Beefing up Sentiment Classification

Revive your code for Naive Bayes

Revive your code for Sign Test

Revive your code for Cross-validation

New today: install a Support Vector Machine classifier

New today: use a stemmer

New today: bigrams as well as unigrams

Submit code running on your lab accounts/machines.
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Procedure/Timeline

Practical Session Today:

How to develop the baseline system(s)
How to write the (baseline) Report 1 (20%; ticked)

Practical Session Nov 7:

Move to doc2vec system
Some diagnostics
Write Report 2 (40%; assessed)

Nov 9: Early (voluntary) Submission of Report 1
(guaranteed feedback)

Nov 14: Submit Report 1 (baselines)

Practical Session Nov 21: Text understanding

Nov 21: Early submissions get feedback on their Report 1

Nov 30: Submit Reports 2 and 3
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Naive Bayes

Naive Bayes Classifier:

ĉ = argmax
c∈C

P(c |~f ) = argmax
c∈C

P(c)
n∏

i=1

P(fi |c)

Feature vector ~f ; most probable class ĉ; C set of classes.

Write code that calculates P(fi |c) for each fi of ~f , using
only the Training Set

Then apply the classifier to the Test Set.

When you design your data structures, please think about
later parts of this practical where you will dynamically split
data into Training and Test on the fly, and train on
different sets each time (Cross-Validation)
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Smoothing

When using a NB classifier, you need to consider what to
do with unseen words – words which occur in the
development/test data but which do not occur in the
training data at all

Modify your calculation of log probabilities to use Laplace
smoothing (add a small positive constant κ)

Smoothing in general: Instead of

count(wi , c)∑
w∈V

count(w , c)

Use
count(wi , c) + κ∑

w∈V
count(w , c) +

∑
w∈V

κ

You will see a big improvement in NB Classification with
Smoothing
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N-Fold Cross-Validation

For each split X – use all others for training, test on split
X only

The final performance is the average of the performances
for each fold/split

Apply sign test across splitting methods – why does it
make sense to do so? What does it tell us if we pass this
test? (optional)

BTW, the way we have chosen to distribute data among
splits is called stratified cross-validation (each split mirrors
the distribution of classes observed in the overall data)
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N-Fold Cross-Validation: Splitting

Split data into N splits / folds / chuncks

Different strategies for splitting:

Consecutive splitting:
cv000–cv099 = Split 1
cv100–cv199 = Split 2

. . .

Round-robin splitting (mod 10):
cv000, cv010, cv020,. . . = Split 1
cv001, cv011, cv021,. . . = Split 2

. . .

Random sampling/splitting: Not used here (but you may
choose to split this way in a non-educational situation)
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Relationship to Pang et al. (2002)

Your rough target for the baseline is a simplified
implementation of Pang et al (2002)

And Pang is doing some additional things not included in
your baseline:

POS-tagging
Maximum Entropy Classifier

Replication sometimes requires interpretation on your part.
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Statistical Tests – Comparing systems

You will compare systems to each other, first NB vs NB
smoothed.

But: How do you know which system is “better”?

Better in science means statistically better
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Statistical Significance Testing

Null Hypothesis: two result sets come from the same
distribution

System 1 is (really) equally good as System 2

First, choose a significance level (α), e.g., α = 0.01

We then try to reject the null hypothesis with at least
probability 1− α (99% in this case)

Rejecting the null hypothesis means showing that the
observed result is very unlikely to have occurred by chance

If we manage to do so, we can report a statistically
significant difference at α = 0.01

Now – a particularly nice and simple test (non-parametric
and paired): the sign test
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Sign Test (non-parametric and paired)

The sign test uses a binary event model

Here, events correspond to documents (2, 000 events in
our case)

Events have binary outcomes:

Positive: System 1 beats System 2 on this document
Negative: System 2 beats System 1 on this document
(Tie: System 1 and System 2 could also have the identical
result on this document – more on this later)

Call the probability of a positive outcome q (here q = 0.5)

Binary distribution allows us to calculate the probability
that, say, at least 1, 247 out of 2, 000 such binary events
are positive

Or otherwise the probability that at most 753 out of
2, 000 are negative
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Binomial Distribution B(N , q)

Probability of X = k negative events out of N:

Pq(X = k |N) =
(N
k

)
qk (1− q)N−k

At most k negative events:

Pq(X ≤ k |N) =
k∑

i=0

(N
i

)
qi (1− q)N−i
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Binary Event Model and Statistical Tests

If the probability of observing our events under Null
Hypothesis is very small (smaller than our pre-selected
significance level α, e.g., 1%), we can safely reject the
Null hypothesis

The calculated P(X ≤ k) directly gives us the probability
p we are after

This means there is only a 1% chance that System 1 does
not beat System 2
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Two-Tailed vs. One-Tailed Tests

So far we’ve been testing difference in a specific direction:

The probability that, say, at least 1, 247 out of 2, 000 such
binary events are positive [One-tailed test]

A more conservative, rigorous test would be a
non-directional one (though some debate on this)

Testing for statistically significant difference regardless of
direction [Two-tailed test]
This is given by 2P(X ≤ k) (because B(N, 0.5) is
symmetric)
We’ll be using the two-tailed test for the practical
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Don’t Ignore Ties

When comparing two systems in classification tasks, it is
common for a large number of ties to occur

Disregarding ties will tend to affect a study’s statistical
power

Here we will treat ties by adding 0.5 events to the positive
and 0.5 events to the negative side (and round up at the
end)

Sign test implementation details in instructions handout

Simone Teufel NLP Practical: Part I



New: Support Vector Machines

SVM is a generalisation of simple maximal margin
classifier and support vector classifier

Both of these require that classes are separable by linear
boundary.

Support Vector Machines can use non-linear boundaries
(kernels)

Further extensions lead to multi-class SVMs
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Hyperplanes and support vectors

A hyperplane in p-dimensions is a flat p − 1-dimensional
affine subspace
Compute the distance between data points and various
hyperplanes
Select the one that creates the largest margin (best
separation) between the two classes.
Support vectors are data points lying on the margin.
The size of the margin = the SVM’s confidence in the
classification.

Images from: https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93Simone Teufel NLP Practical: Part I



Support Vector Machines

SVM-Light: implementation of Support Vector Machines
(Joachims, 1999)

Easy to use (just download the binaries and convert your
features to SVM-Light format)
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New: Stemming

Pang et al. (2002) test whether stemming works.

Please replicate.

Use the Porter stemmer.
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New: Bigrams

Pang et al. (2002) test unigrams, bigrams and trigrams.

Trigrams don’t help (why not?)

Please replicate unigrams and bigrams.
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Questions?
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