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Our Vision for the Future 

In this course, we covered …. 

Best practices … 

New and clever ideas … 

And common-sense observations. 
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Our Vision for the Future 

In this course, we covered …. 

Best practices … 

New and clever ideas … 

And common-sense observations. 

Nevertheless … 

Concurrent programming is still too hard … 

Here we explore why this is …. 

And what we can do about it. 
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Locking 
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Coarse-Grained Locking 

Easily made correct … 

But not scalable. 
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Fine-Grained Locking 

Can be tricky … 
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Locks are not Robust 

If a thread holding 

a lock is delayed … 

No one else can 

make progress 
Art of Multiprocessor 

Programming 



Locking Relies on Conventions 

• Relation between 

– Locks and objects 

– Exists only in programmer’s mind 

 

 

 

 

 

/*  

 * When a locked buffer is visible to the I/O layer 

 * BH_Launder is set. This means before unlocking 

 * we must clear BH_Launder, mb() on alpha and then 

 * clear BH_Lock, so no reader can see BH_Launder set 

 * on an unlocked buffer and then risk to deadlock.  

 */  

Actual comment 

from Linux Kernel 
(hat tip: Bradley Kuszmaul) 
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Simple Problems are hard 

enq(x) enq(y) 
double-ended queue 

No interference if 

ends “far apart” 
Interference OK if 

queue is small 
Clean solution is 

publishable result: 
[Michael & Scott PODC 97] 
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Locks Not Composable 

Transfer item from one 

queue to another 
Must be atomic : 

No duplicate or missing items 
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Locks Not Composable 

Lock source 

Lock target 

Unlock source 

& target 
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Locks Not Composable 

Lock source 

Lock target 

Unlock source & 

target 

Methods cannot provide 

internal synchronization 
Objects must expose 

locking protocols to clients 

Clients must devise and 

follow protocols 
Abstraction broken! 
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Monitor Wait and Signal 

zzz 

Empty 

buffer 
Yes! 
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If buffer is empty, 

  wait for item to show up 



16 

Wait and Signal do not Compose 

empty 

empty zzz… 
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Wait for either? 
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The Transactional Manifesto 

• Current practice inadequate 

– to meet the multicore challenge 

• Research Agenda 

– Replace locking with a transactional API  

– Design languages or libraries 

– Implement efficient run-time systems 
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Transactions 

Block of code …. 

Atomic: appears to happen 

instantaneously 

Serializable: all appear to 

happen in one-at-a-time 

order Commit: takes effect 

(atomically) 

Abort: has no effect 

(typically restarted) 
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atomic { 

 x.remove(3); 

 y.add(3); 

} 

 

atomic { 

 y = null; 

}  

Atomic Blocks 
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atomic { 

 x.remove(3); 

 y.add(3); 

} 

 

atomic { 

 y = null; 

}  

Atomic Blocks 

No data race 
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public void LeftEnq(item x) { 

  Qnode q = new Qnode(x); 

  q.left = left; 

  left.right = q; 

  left = q; 

} 

A Double-Ended Queue 

Write sequential Code 
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public void LeftEnq(item x)  

 atomic { 

  Qnode q = new Qnode(x); 

  q.left = left; 

  left.right = q; 

  left = q; 

 } 

} 

A Double-Ended Queue 



Art of Multiprocessor 

Programming 

23 23 

public void LeftEnq(item x) { 

 atomic { 

  Qnode q = new Qnode(x); 

  q.left = left; 

  left.right = q; 

  left = q; 

 } 

} 

A Double-Ended Queue 

Enclose in atomic block 
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Warning 

• Not always this simple 

– Conditional waits 

– Enhanced concurrency 

– Complex patterns 

• But often it is… 
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Composition? 
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Composition? 

public void Transfer(Queue<T> q1, q2) 

{ 

 atomic { 

  T x = q1.deq(); 

  q2.enq(x); 

 } 

} 

Trivial or what? 
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public T LeftDeq() { 

 atomic { 

  if (left == null) 

    retry; 

  … 

  

 } 

} 

Conditional Waiting 

Roll back transaction 

and restart when 

something changes 
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Composable Conditional Waiting 

atomic { 

 x = q1.deq();  

} orElse { 

 x = q2.deq(); 

} 

Run 1st method. If it retries … 
Run 2nd method. If it retries … 

Entire statement retries 
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Hardware Transactional 

Memory 
• Exploit Cache coherence 

• Already almost does it 

– Invalidation 

– Consistency checking 

• Speculative execution 

– Branch prediction = 

optimistic synch! 
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HW Transactional Memory 

Interconnect 

caches 

memory 

read active 

T 
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Transactional Memory 

read 

active 
T T 

active 

caches 

memory 
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Transactional Memory 

active 
T T 

active committed 

caches 

memory 
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Transactional Memory 
write 

active 

committed 

T 
D caches 

memory 
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Rewind 

active 
T T 

active 
write aborted 

D caches 

memory 
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Transaction Commit 

• At commit point 

– If no cache conflicts, we win. 

• Mark transactional entries 

– Read-only: valid 

– Modified: dirty (eventually written back) 

• That’s all, folks! 

– Except for a few details … 
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Not all Skittles and Beer 

• Limits to 

– Transactional cache size 

– Scheduling quantum 

• Transaction cannot commit if it is 

– Too big 

– Too slow 

– Actual limits platform-dependent 



HTM Strengths & 

Weaknesses 

• Ideal for lock-free data structures 
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– Guarantees vs best-effort 



HTM Strengths & 

Weaknesses 
• Ideal for lock-free data structures 

• Practical proposals have limits on 

– Transaction size and length 

– Bounded HW resources 

– Guarantees vs best-effort 

• On fail 

– Diagnostics essential 

– Try again in software? 



Composition 

 
Locks don’t compose, transactions do. 

Composition necessary for Software Engineering. 

But practical HTM doesn’t really support 

composition! 
Why we need STM 



Transactional Consistency 

• Memory Transactions are collections of 

reads and writes executed atomically 

• They should maintain consistency 

– External: with respect to the interleavings 

of other transactions (linearizability). 

– Internal: the transaction itself should 

operate on a consistent state.  



External Consistency 

Application  

Memory 

X 

Y 

4 

2 

8 

4 

Invariant x = 2y 

Transaction A:  

Write x 

Write y 

Transaction B:  

Read x 

Read y  

Compute z = 1/(x-y) = 1/2 
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A Simple Lock-Based STM 

• STMs come in different forms 

– Lock-based 

– Lock-free 

• Here : a simple lock-based STM 

• Lets start by Guaranteeing External 

Consistency 
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Synchronization 

• Transaction keeps 

– Read set: locations & values read 

– Write set: locations & values to be written 

• Deferred update 

– Changes installed at commit 

• Lazy conflict detection 

– Conflicts detected at commit 
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STM: Transactional Locking 

 Map 

Application  

Memory 

V# 

V# 

V# 

Array of 

version #s & 

locks  
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Reading an Object 
Mem 

Locks 

V# 

V# 

V# 

V# 

V# 

Add version numbers 

& values to read set  
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To Write an Object 
Mem 

Locks 

V# 

V# 

V# 

V# 

V# 

Add version numbers & 

new values to write set  
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To Commit 
Mem 

Locks 

V# 

V# 

V# 

V# 

V# 

X 

Y 

V#+1 

V#+1 

Acquire write locks 

Check version numbers 

unchanged 
Install new values 

Increment version numbers 

Unlock. 



Encounter Order Locking (Undo Log) 

1. To Read: load lock + location 

2. Check unlocked add to Read-Set 

3. To Write: lock location, store value  

4. Add old value to undo-set 

5. Validate read-set v#’s unchanged 

6. Release each lock with v#+1 

 V#       0   V#      0  

 V#       0  

 V#      0  

 V#       0  

 V#      0  

 V#       0  

X  V#      1  

 V#       0  Y  V#      1  

 V#       0   V#     0  

Mem    Locks 

 V#+1  0  

 V#+1  0  

 V#      0  

 V#      0  

 V#       0  

 V#+1   0  

 V#       0  

 V#       0  

 V#       0  

 V#       0  

 V#+1   0  

 V#       0  

X 

Y 

Quick read of values freshly  

written by the reading transaction 



Commit Time Locking (Write Buff) 

1. To Read: load lock + location 

2. Location in write-set? (Bloom Filter) 

3. Check unlocked add to Read-Set 

4. To Write: add value to write set 

5. Acquire Locks 

6. Validate read/write v#’s unchanged 

7. Release each lock with v#+1 

 V#       0   V#      0  

 V#       0  

 V#      0  

 V#       0  

 V#      0  

 V#       0  

 V#      0  

 V#       0   V#      0  

 V#       0   V#     0  

Mem    Locks 

 V#+1  0  

 V#      0  

 V#      0  

Hold locks for very short duration 

 V#      1  

 V#      1  

 V#      1  X 

Y 

 V#+1  0  

 V#      1   V#+1   0  

 V#       0  

 V#+1   0  

 V#       0  

 V#       0  

 V#       0  

 V#       0  

 V#+1   0  

 V#       0  

X 

Y 



COM vs. ENC High Load 

ENC 

Hand 

MCS 

COM 

Red-Black Tree 20% Delete 20% Update 60% Lookup 



COM vs. ENC Low Load 

COM 
ENC 

Hand 

MCS 

Red-Black Tree 5% Delete 5% Update 90% Lookup 



Problem: Internal 

Inconsistency 

• A Zombie is an active transaction destined to 

abort. 

• If Zombies see inconsistent states bad things 

can happen 
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Internal Consistency 

x 

y 

4 

2 

8 

4 

Invariant: x = 2y 

Transaction A: reads x = 4 

Transaction B: writes 

8 to x, 16 to y, aborts A ) 

Transaction A: (zombie) 

reads y = 4 

computes 1/(x-y) 

Divide by zero FAIL! 
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Solution: The Global Clock  

(The TL2 Algorithm) 

• Have one shared global clock 

• Incremented by (small subset of) writing 

transactions 

• Read by all transactions 

• Used to validate that state worked on is 

always consistent 
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Read-Only Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
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Read-Only Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
Read lock, version #, and 

memory 
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Read-Only Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock Read lock, version #, and 

memory, check version # less 

than read clock 

100 

On Commit: 

check unlocked & 

version #s less than 

local read clock 
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Read-Only Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
Read lock, version #, and 

memory On Commit: 

check unlocked & 

version #s less than 

local read clock 100 

We have taken a snapshot without 

keeping an explicit read set! 



Example Execution: Read Only 

Trans 

1. RV  Shared Version Clock 

2. On Read: read lock, read mem, 

read lock: check unlocked, 

unchanged, and v# <= RV 

3. Commit. 

 87       0   87       0  

34       0  

 88       0  

 V#       0  

 44       0  

 V#       0  

 34       0  

 99       0   99       0  

 50       0   50       0  

Mem    Locks 

Reads form a snapshot of memory. 

No read set!  

100 Shared Version Clock 

 87       0  

 34       0  

 99       0  

 50       0  

87        0  

34        0  

88        0  

 V#       0  

44        0  

 V#       0  

99        0  

50        0  

100 RV 
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Ordinary (Writing) Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
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Ordinary Transactions 
Mem 

Locks 

12 

32 

56 

19 

17 

100 

Shared Version 

Clock 

Private Read 

Version (RV) 

Copy version clock to local 

read version clock 
On read/write, check: 

Unlocked & version # < RV 

Add to R/W set 
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On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 
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On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 101 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 

Increment Version Clock 
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On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 101 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 

Increment Version Clock 

Check version numbers ≤ RV 
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On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 101 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 

Increment Version Clock 

Check version numbers ≤ RV 
Update memory x 

y 
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On Commit 
Mem 

Locks 

100 

Shared Version 

Clock 

100 101 

12 

32 

56 

19 

17 Private Read 

Version (RV) 

Acquire write locks 

Increment Version Clock 

Check version numbers ≤ RV 
Update memory 

Update write version #s 

x 

y 

101 

101 



Example: Writing Trans 

1. RV  Shared Version Clock 

2. On Read/Write: check 

unlocked and v# <= RV then 

add to Read/Write-Set 

3. Acquire Locks 

4. WV = F&I(VClock) 

5. Validate each v# <= RV 

6. Release locks with v#  WV 

Reads+Inc+Writes 

=serializable 

100 Shared Version Clock 

 87       0   87       0  

34       0  

 88       0  

 44       0  

 V#       0  

 34       0  

 99       0   99       0  

 50       0   50       0  

Mem    Locks 

 87       0  

 34       0  

 99       0  

 50      0  

 34       1  

 99       1  

 87        0  

X 

Y 

Commit 

 121     0  

 121      0  

 50        0  

87        0  

121      0  

88        0  

 V#       0  

44        0  

 V#       0  

121      0  

50        0  

100 RV 

100 120 121 

X 

Y 
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TM Design Issues 

• Implementation 

choices 

• Language design 

issues 

• Semantic issues 
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Granularity 

• Object 

– managed languages, Java, C#, … 

– Easy to control interactions between 

transactional & non-trans threads 

• Word 

– C, C++, … 

– Hard to control interactions between 

transactional & non-trans threads 
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Direct/Deferred Update 

• Deferred  

– modify private copies & install on commit 

– Commit requires work 

– Consistency easier 

• Direct  

– Modify in place, roll back on abort 

– Makes commit efficient 

– Consistency harder 
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Conflict Detection 

• Eager 

– Detect before conflict arises 

– “Contention manager” module resolves 

• Lazy 

– Detect on commit/abort 

• Mixed 

– Eager write/write, lazy read/write … 
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Conflict Detection 

• Eager detection may abort transactions 

that could have committed. 

• Lazy detection discards more 

computation.  
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Contention Management & 

Scheduling 

• How to resolve 

conflicts? 

• Who moves forward 

and who rolls back? 

• Lots of empirical 

work but formal 

work in infancy 
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Contention Manager Strategies 

• Exponential backoff 

• Priority to 

– Oldest? 

– Most work? 

– Non-waiting? 

• None Dominates 

• But needed anyway 
Judgment of Solomon 
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I/O & System Calls? 

• Some I/O revocable 

– Provide transaction-

safe libraries 

– Undoable file 

system/DB calls 

• Some not 

– Opening cash 

drawer 

– Firing missile 
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I/O & System Calls 

• One solution: make transaction 
irrevocable 

– If transaction tries I/O, switch to irrevocable 
mode. 

• There can be only one … 

– Requires serial execution 

• No explicit aborts 

– In irrevocable transactions 
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Exceptions 

int i = 0; 

try { 

  atomic { 

    i++; 

    node = new Node(); 

  } 

} catch (Exception e) { 

  print(i); 

} 
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Exceptions 

int i = 0; 

try { 

  atomic { 

    i++; 

    node = new Node(); 

  } 

} catch (Exception e) { 

  print(i); 

} 

Throws OutOfMemoryException! 
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Exceptions 

int i = 0; 

try { 

  atomic { 

    i++; 

    node = new Node(); 

  } 

} catch (Exception e) { 

  print(i); 

} 

Throws OutOfMemoryException! 

What is 

printed? 
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Unhandled Exceptions 

• Aborts transaction 

– Preserves invariants 

– Safer 

• Commits transaction 

– Like locking semantics 

– What if exception object refers to values 

modified in transaction? 
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Nested Transactions 

atomic void foo() { 

  bar(); 

} 

 

atomic void bar() { 

 … 

} 

     



Art of Multiprocessor 

Programming 

83 

Nested Transactions 

• Needed for modularity 

– Who knew that cosine() contained a 
transaction? 

• Flat nesting 

– If child aborts, so does parent 

• First-class nesting 

– If child aborts, partial rollback of child only 



Hatin’ on TM 

STM is too inefficient 



Hatin’ on TM 

Requires radical change in programming style 



Hatin’ on TM 

Erlang-style shared nothing only true path to salvation 



Hatin’ on TM 

There is nothing wrong with what we do today. 



Gartner Hype Cycle 

Hat tip: Jeremy Kemp 

You are here 



Thanks !  תודה   
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Overview 

 Building shared memory data structures 

 Lists, queues, hashtables, … 

 Why? 

 Used directly by applications (e.g., in C/C++, Java, C#, …) 

 Used in the language runtime system (e.g., management of 
work, implementations of message passing, …) 

 Used in traditional operating systems (e.g., synchronization 
between top/bottom-half code) 

 Why not? 

 Don’t think of “threads + shared data structures” as a 
default/good/complete/desirable programming model 

 It’s better to have shared memory and not need it… 
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Correctness 

Ease to  
write 

Different techniques for different problems 

91 

When can it 
be used? 

How well 
does it scale? 

How fast is it? 


