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Lecture 3/3

= Problems with locks
= Atomic blocks and composition
= Hardware transactional memory

= Software transactional memory
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Our Vision for the Future

In this course, we covered .... ‘
Best practices ... |'
New and clever ideas ... ‘

And common-sense observations.
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Our Vision for the Future

L_N‘evertheless F .

Concurrent programming is still too hard ... ‘

| Here we explore why this is ....
And what we can do about it. ==
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Locking

=
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Coarse-Grained Locking

& O

Easily made correct ...
But not scalable.
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Fine-Grained Locking

& O

Can be tricky ...

6=
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Locks are not Robust

570

If a thread holding
a lock is delayed ...

NoO one else can
make progress
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Locking Relies on Conventions

 Relation between

— Locks and objects AGIE] COTTMET
from Linux Kernel

— Exists only in programmer’s,  (attip: Bradley kuszmaul)

/*

*
*
*
*
*

When a locked buffer is visible to the I/O layer
BH Launder is set. This means before unlocking

we must clear BH Launder, mb() on alpha and then
clear BH Lock, so no reader can see BH Launder set
on an unlocked buffer and then risk to deadlock.
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Simple Problems are hard

double-ended queue
1| <= =] :|;-|- -

1l
No Iinterference If O
ends “far g==-t ©

Interference OK If o

aueue is small
Clean solution is

publishable result:
[Michael & Scott PODC 97]

g
B S
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Locks Not Composable

® O

Transfer item from one
gueue tpanathor

Must be atomic :

No duplicate or missing items
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Locks Not Composable

‘ Lock source
Unlock source

& target
| Lock target |

O
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Locks Not Composable

LO{  Methods cannot provide

Inte 1zation
Objects must expose

| ock tarl locking protocols to clients
* Clients must devise and

nrotocols
Abstraction broken!
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Monitor Wait and Signal

Empty
buffer

If buffer is empty,
wait for item to show up
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Walit and Signal do not Compose

'%’f ther?
. all 10r eltner -
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The Transactional Manifesto

« Current practice inadequate
— to meet the multicore challenge

 Research Agenda
— Replace locking with a transactional API
— Design languages or libraries
— Implement efficient run-time systems
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Transactions

Block of code .... ‘

Atomic: appears to happen

Instantaneously

Serializable: all appear to

Commit: takes effect
(atomically)

Abort: has no effect
(typically restarted)
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Atomic Blocks

atomic {
x.remove (3) ;
y.add(3) ;

}

atomic {
y = null;
}

=N
|53
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Atomic Blocks

No data race

Art of Multiprocessor 20
Programming




A Double-Ended Queue

/public void LeftEnqg(item x) { )
Qnode q = new Qnode (x) ;
g.left = left;

left.right = q;

left = qg;

J V_/

Write sequential Code
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A Double-Ended Queue

public void LeftEng(item x)
atomic {
Qnode q = new Qnode (x) ;
g.left = left;
left.right = q;
left = qg;
}
}
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A Double-Ended Queue

[ atomic {

=~

Enclose in atomic block
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Warning

* Not always this simple
— Conditional waits
— Enhanced concurrency
— Complex patterns

e Butoftenitis...
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Composition?

O

O
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Composition?

public void Transfer (Queue<T> ql, g2)

A

atomic { ‘]
T x = gl.deq(); ‘Trivial or what?
g2.enqg(x) ;

el el B
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Conditional Waiting

public T LeftDeq() {
atomic {
if (left == null)
[ retry;

Roll back transaction
and restart when
something changes
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Composable Conditional Waiting

L 1St manthad If it vatvine I
Run 2"Y method. If it retries ...

Entire statement retries
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Hardware Transactional

Memory
» Exploit Cache coherence @ " W
 Already almost does it RIS g

880 USA 070686880
73CCLVC008502
e

— Invalidation
— Consistency checking
« Speculative execution

— Branch prediction =
optimistic synch!

Haswell
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AA Transactional Memory
m active

| | caches

< Interconnect >

| | | | | memory
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Transactional Memor
active w

&

active

T
Sches
| | | | | memory
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Transactional Memory

committed

active
T
| A Sches
| | | | | memory
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Transactional Me %
committed S

,O

active

| | | | memory
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Rewind
| O

active

| | | | | memory
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Transaction Commit

« At commit point
— If no cache conflicts, we win.

* Mark transactional entries

— Read-only: valid

— Modified: dirty (eventually written back)
 That's all, folks!

— Except for a few details ...
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Not all 28 and

e Limits to
— Transactional cache size
— Scheduling quantum

 Transaction cannot commit if it Is
— Too big

— Too slow
— Actual limits platform-dependent
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HTM Strengths &
Weaknesses

* |deal for lock-free data structures




HTM Strengths &
Weaknesses

* Practical proposals have limits on
— Transaction size and length
— Bounded HW resources
— Guarantees vs best-effort




HTM Strengths &
Weaknesses

* On fall

— Diagnostics essential
— Try again in software?

N =
."k.{;,"\,
—



Compoes

. aP®
s‘c‘c'“o
: «‘(ﬁ“ 400

. e‘\“w

‘ Locks don't compose, transactions do. f
oS .“\'ew 2 e
Co‘“Q yeat® i

500
e oﬁ \,6%2 - C-;an
3‘9 A Ca& “\.‘\w"

o®

ﬁs{g < v AW
',9&?‘ 3%’ > o0 e ’
< oo~ (o e ¥ o o
1\ <@ a0 ? gsO\'“. o™ £
it g o> S
PRIIY. 5@ o 39220 eV,

But practical HTM doesn'’t really sup

composition!




Transactional Consistency

 Memory Transactions are collections of
reads and writes executed atomically

* They should maintain consistency

— External: with respect to the interleavings
of other transactions (linearizability).

— Internal: the transaction itself should
operate on a consistent state.




External Consistency

Invariant x = 2y

X Transaction A:

. Write x
v Write y

Transaction B:

Read x
Read y
Compute z = 1/(x-y) = 1/2
Application
= Memory




A Simple Lock-Based STM

e STMs come In different forms
— Lock-based
— Lock-free

* Here : a simple lock-based STM

 Lets start by Guaranteeing External
Consistency
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Synchronization

* Transaction keeps
— Read set: locations & values read
— Write set: locations & values to be written

* Deferred update
— Changes installed at commit

* Lazy conflict detection
— Conflicts detected at commit
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STM: Transactional Locking

Application >< 6 Array of
Memory V# version #s &

locks
/6 Vi#
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Mem

Reading an Object

Locks

V#

V#

V#

V#

V#

Add version numbers
& values td read set
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To Write an Object

Mem
Locks

#

#

H

V#

FIEIEIEE]

#

Add version numbers &

new values ta write set
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To Commit

Mem
Locks

VL Acquire write locks |
Check version numbers
unchanaed
Install new values |
Increment version numbelgl

| Unlock.

EE
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Encounter Order Locking (Undo LogQ)

Mem Locks

V€ | 0 1. To Read: load lock + location
2. Check unlocked add to Read-Set
X || v#10 3. To Write: lock location, store value
v# 0 4. Add old value to undo-set
v | [ yses o 5. Validate read-set v#' s unchanged
6. Release each lock with v#+1
v 0
v# 0

Quick read of values freshly
written by the reading transaction




Commit Time Locking (Write Buff)

Mem Locks

V# | 0

X || v#+1i0

v# 0

Y | | v#e1i0

V# | 0

Vit §o

NOoOA~WNE

To Read: load lock + location
Location in write-set? (Bloom Filter)
Check unlocked add to Read-Set
To Write: add value to write set
Acquire Locks

Validate read/write v#’ s unchanged
Release each lock with v#+1

Hold locks for very short duration




ops/sec

COM vs. ENC High Load

Red-Black Tree 20% Delete 20% Update 60% Lookup
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COM vs. ENC Low Load

Red-Black Tree 5% Delete 5% Update 90% Lookup
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Problem: Internal |ZOMBIES
Inconsistency

« A Zombie Is an active transaction destined to
abort.

 |If Zombies see inconsistent states bad things
can happen




Internal Consistency

‘ Invariant: x = 2y

X )
‘ Transaction A: reads x = 4 |

Transaction B: writes
y 8 to x, |6 to y, aborts A )

Transaction A: (zombie)
reads y = 4
computes |/(x-y)

\ Divide by zero FAIL!
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Solution: The Global Clock
(The TL2 Algorithm)

 Have one shared global clock

* Incremented by (small subset of) writing
transactions

* Read by all transactions

 Used to validate that state worked on Is
always consistent
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Read-Only Transactions

Locks

12

32

56

19

17

Copy version clock to local
read version clock

Shared Version Private Read
Clock Version (RV)
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Read-Only Transactions

Mem
Locks

. . . Copy version clock to local
1 ° | 1

Read lock, version #,and }——
memory

17 Shared Version Private Read
Clock Version (RV)

19
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Read-Only Transactions

Mem
Locks

. . . ‘ Copy version clock to local

Read lock, version #, and

| 1 ||

m{ IS
On Commlt:

56 — check unlocked & —
version #s less than

19 t local read clock
<

17 Shared Version Private Read
Clock Version (RV)
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Read-Only Transactions

Mem
Locks

. . . Copy version clock to local
1 ° 1 1

Read lock, version #,and &

We have taken a snapshot without
keeping an explicit read set!

!"E

version ass than

8 o
2 G

17 Shared Version Private Read
Clock Version (RV)

Art of Multiprocessor 59
Programming




Example Execution: Read Only

Mem Locks

87

34

88

99

44

50

O ol O | O0|O)|O

100

Trans

Shared Version Clock

1. RV < Shared Version Clock

2. On Read: read lock, read mem,
read lock: check unlocked,
unchanged, and v# <= RV

3. Commit.

Reads form a snapshot of memory.
No read set!

RV



Ordinary (Writing) Transactions

Mem

Locks
12 Copy version clock to local
read version clock
32
56
19

17 Shared Version Private Read
Clock Version (RV)
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Ordinary Transactions
M

@
3

Locks
12 Copy version clock to local
M
On read/write, check: —
Unlocked & version # < RV
56 Add to R/WV set

17 Shared Version Private Read
Clock Version (RV)
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Mem

Locks

On Commit

Acquire write locks

2

E ‘

19

17

= > @ me> Nl Mmoo M me>

Private Read
Version (RV)

Shared Version
Clock
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Mem

On Commit

Locks

Acquire write locks ‘

Increment Version Clock ‘

2

(@))

19

17

= > @ me> Nl Mmoo M me>

Private Read
Version (RV)

Shared Version
Clock
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Mem

On Commit

Locks

Acquire write locks ‘

Increment Version Clock |

32

Check version numbers < RV ‘

=

19

17

= > @ me> Nl Mmoo M me>

Shared Version

Private Read

Clock Version (RV)

Art of Multiprocessor
Programming

65



On Commit

Acquire write locks ‘

Increment Version Clock

Update memory

Private Read

Shared Version Version (RV)

Clock
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On Commit

Mem
Locks

D&
HE

Acquire write locks ‘

Increment Version Clock

Update memory

Update write version #s

.
. . . Shared Version Private Read

Version (RV)

Clock
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Example: Writing Trans

pem Lok . Shared Version Clock

1. RV < Shared Version Clock
2. On Read/Write: check
unlocked and v# <= RV then
add to Read/Write-Set
Acquire Locks

WV = F&I(VClock)

Validate each v# <= RV
Release locks with v# €< WV

i ? . N Reads+Inc+Writes
_ =serializable

o 01 b w




TM Design Issues

* Implementation ‘
choices
« Language design

ISSuUes

¢ Semantic issues ’
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Granularity

* Object
— managed languages, Java, C#, ...

— Easy to control interactions between
transactional & non-trans threads

 Word
—C, C++, ...

— Hard to control interactions between
transactional & non-trans threads
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Direct/Deferred Update

* Deferred
— modify private copies & install on commit
— Commit requires work
— Consistency easier

* Direct
— Modify In place, roll back on abort

— Makes commit efficient
— Consistency harder
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Conflict Detection

* Eager

— Detect before conflict arises

— “Contention manager” module resolves
* Lazy

— Detect on commit/abort
* Mixed

— Eager write/write, lazy read/write ...
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Conflict Detection

« Eager detection may abort transactions
that could have committed.

» Lazy detection discards more
computation.
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Contention Management &
Scheduhng

e How to resolve
conflicts?

« Who moves forward
and who rolls back?

 Lots of empirical
work but formal
work in infancy
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Contention Manager Strategies

* Exponential backoff
* Priority to ¥

— Oldest?

— Most work?

— Non-waiting?
 None Dominates

Judgment of Solomon

* But needed anyway
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/O & System Calls?

e Some I/O revocable

— Provide transaction-
safe libraries

— Undoable file
system/DB calls

 Some not
— Opening cash
drawer
— Firing missile
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/O & System Calls

 One solution: make transaction
Irrevocable

— If transaction tries I/O, switch to irrevocable
mode. g

- HGHADGR
* There can be only one ... i
— Requires serial execution

* No explicit aborts
— In Irrevocable transactions
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Exceptions

Inti=0;
try {
atomic {

|++;
node = new Node();
}
} catch (Exception e) {
print(i);
}
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Exceptions

Throws OutOfMemoryException!

[node = new Node () ;
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Exceptions

Throws OutOfMemoryException!

[node = new Node();

[print(i); L
- = What is
printed?
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Unhandled Exceptions

e Aborts transaction
— Preserves Iinvariants
— Safer

« Commits transaction

— Like locking semantics

— What if exception object refers to values
modified in transaction?
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Nested Transactions

atomic void foo () {
bar () ;

}

atomic void bar () {

}
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Nested Transactions

* Needed for modularity

— Who knew that cosine() contained a
transaction?

* Flat nesting
— If child aborts, so does parent

 First-class nesting
— If child aborts, partial rollback of child only
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Hatin" on TM
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Gartner Hype Cycle

4 VISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

You are here

Slope of Enlightenment

Hat tip: Jeremy Kemp
Trough of Disillusionment

| Technology Trigger TIME
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Thanks ! nTINn
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Overview

= Building shared memory data structures
= Lists, queues, hashtables, ...
= Why?
= Used directly by applications (e.qg., in C/C++, Java, C#, ...)

= Used in the language runtime system (e.g., management of
work, implementations of message passing, ...)

= Used in traditional operating systems (e.g., synchronization
between top/bottom-half code)

= Why not?
= Don't think of “threads + shared data structures” as a
default/good/complete/desirable programming model
o It's better to have shared memory and not need it...
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Different techniques for different problems

Ease to
write

When can it

Correctness
be used?

How well

How fast is it? .
does it scale?




