NON-BLOCKING DATA STRUCTURES
AND TRANSACTIONAL MEMORY

Tim Harris, 17 Oct 2018

Lecture 3/3

= Problems with locks
= Atomic blocks and composition
= Hardware transactional memory

= Software transactional memory

Transactional Memory

[HE AR

MULTIPROCESSOR

PROGRAMMING

Companion slides for
The Art of Multiprocessor Programming
by Maurice Herlihy & Nir Shavit

Our Vision for the Future

In this course, we covered ‘
Best practices ... |'
New and clever ideas ... ‘

And common-sense observations.

Art of Multiprocessor
Programming

Our Vision for the Future

L_N‘evertheless F .

Concurrent programming is still too hard ... ‘

| Here we explore why this is
And what we can do about it. ==

Art of Multiprocessor 5
Programming

Locking

=

Art of Multiprocessor
Programming

Coarse-Grained Locking

& O

Easily made correct ...
But not scalable.

Art of Multiprocessor
Programming

i
Sy

Fine-Grained Locking

& O

Can be tricky ...

6=

Art of Multiprocessor
Programming

Locks are not Robust

570

If a thread holding
a lock is delayed ...

NoO one else can
make progress

Art of Multiprocessor 9
Programming

Locking Relies on Conventions

 Relation between

— Locks and objects AGIE] COTTMET
from Linux Kernel

— Exists only in programmer’s, (attip: Bradley kuszmaul)

/*

*
*
*
*
*

When a locked buffer is visible to the I/O layer
BH Launder is set. This means before unlocking

we must clear BH Launder, mb() on alpha and then
clear BH Lock, so no reader can see BH Launder set
on an unlocked buffer and then risk to deadlock.

Art of Multiprocessor
Programming

Simple Problems are hard

double-ended queue
1| <= =] :|;-|- -

1l
No Iinterference If O
ends “far g==-t ©

Interference OK If o

aueue is small
Clean solution is

publishable result:
[Michael & Scott PODC 97]

g
B S

Art of Multiprocessor
Programming

Locks Not Composable

® O

Transfer item from one
gueue tpanathor

Must be atomic :

No duplicate or missing items

Art of Multiprocessor
Programming

12

Locks Not Composable

‘ Lock source
Unlock source

& target
| Lock target |

O

Art of Multiprocessor
Programming

Locks Not Composable

LO{ Methods cannot provide

Inte 1zation
Objects must expose

| ock tarl locking protocols to clients
* Clients must devise and

nrotocols
Abstraction broken!

Art of Multiprocessor
Programming

Monitor Wait and Signal

Empty
buffer

If buffer is empty,
wait for item to show up

Art of Multiprocessor 15
Programming

Walit and Signal do not Compose

'%’f ther?
. all 10r eltner -

Art of Multiprocessor 16
Programming

I e
EE e
£]

The Transactional Manifesto

« Current practice inadequate
— to meet the multicore challenge

 Research Agenda
— Replace locking with a transactional API
— Design languages or libraries
— Implement efficient run-time systems

Art of Multiprocessor 17
Programming

Transactions

Block of code ‘

Atomic: appears to happen

Instantaneously

Serializable: all appear to

Commit: takes effect
(atomically)

Abort: has no effect
(typically restarted)

Art of Multiprocessor
Programming

18

Atomic Blocks

atomic {
x.remove (3) ;
y.add(3) ;

}

atomic {
y = null;
}

=N
|53

Art of Multiprocessor
Programming

FALLOUT SHELTER
= =)

19

Atomic Blocks

No data race

Art of Multiprocessor 20
Programming

A Double-Ended Queue

/public void LeftEnqg(item x) {)
Qnode q = new Qnode (x) ;
g.left = left;

left.right = q;

left = qg;

J V_/

Write sequential Code

Art of Multiprocessor
Programming

21

A Double-Ended Queue

public void LeftEng(item x)
atomic {
Qnode q = new Qnode (x) ;
g.left = left;
left.right = q;
left = qg;
}
}

Art of Multiprocessor
Programming

i
B STy

22

A Double-Ended Queue

[atomic {

=~

Enclose in atomic block

Art of Multiprocessor
Programming

23

Warning

* Not always this simple
— Conditional waits
— Enhanced concurrency
— Complex patterns

e Butoftenitis...

Art of Multiprocessor 24
Programming

5

I e
EE e
£]

Composition?

O

O

Art of Multiprocessor
Programming

25

Composition?

public void Transfer (Queue<T> ql, g2)

A

atomic { ‘]
T x = gl.deq(); ‘Trivial or what?
g2.enqg(x) ;

el el B

Art of Multiprocessor 26
Programming

Conditional Waiting

public T LeftDeq() {
atomic {
if (left == null)
[retry;

Roll back transaction
and restart when
something changes

Art of Multiprocessor
Programming

27

Composable Conditional Waiting

L 1St manthad If it vatvine I
Run 2"Y method. If it retries ...

Entire statement retries

Art of Multiprocessor 28
Programming

Hardware Transactional

Memory
» Exploit Cache coherence @ " W
 Already almost does it RIS g

880 USA 070686880
73CCLVC008502
e

— Invalidation
— Consistency checking
« Speculative execution

— Branch prediction =
optimistic synch!

Haswell

Art of Multiprocessor
Programming

E gME

AA Transactional Memory
m active

| | caches

< Interconnect >

| | | | | memory

Art of Multiprocessor 30
Programming

E

Transactional Memor
active w

&

active

T
Sches
| | | | | memory
Art of Multiprocessor 31

Programming

Transactional Memory

committed

active
T
| A Sches
| | | | | memory
Art of Multiprocessor 32

Programming

Transactional Me %
committed S

,O

active

| | | | memory

Art of Multiprocessor 33
Programming

Rewind
| O

active

| | | | | memory

Art of Multiprocessor 34
Programming

Transaction Commit

« At commit point
— If no cache conflicts, we win.

* Mark transactional entries

— Read-only: valid

— Modified: dirty (eventually written back)
 That's all, folks!

— Except for a few details ...

Art of Multiprocessor
Programming

A

35

Not all 28 and

e Limits to
— Transactional cache size
— Scheduling quantum

 Transaction cannot commit if it Is
— Too big

— Too slow
— Actual limits platform-dependent

Art of Multiprocessor
Programming

E A-.‘!g

36

HTM Strengths &
Weaknesses

* |deal for lock-free data structures

HTM Strengths &
Weaknesses

* Practical proposals have limits on
— Transaction size and length
— Bounded HW resources
— Guarantees vs best-effort

HTM Strengths &
Weaknesses

* On fall

— Diagnostics essential
— Try again in software?

N =
."k.{;,"\,
—

Compoes

. aP®
s‘c‘c'“o
: «‘(ﬁ“ 400

. e‘\“w

‘ Locks don't compose, transactions do. f
oS .“\'ew 2 e
Co‘“Q yeat® i

500
e oﬁ \,6%2 - C-;an
3‘9 A Ca& “\.‘\w"

o®

ﬁs{g < v AW
',9&?‘ 3%’ > o0 e ’
< oo~ (o e ¥ o o
1\ <@ a0 ? gsO\'“. o™ £
it g o> S
PRIIY. 5@ o 39220 eV,

But practical HTM doesn'’t really sup

composition!

Transactional Consistency

 Memory Transactions are collections of
reads and writes executed atomically

* They should maintain consistency

— External: with respect to the interleavings
of other transactions (linearizability).

— Internal: the transaction itself should
operate on a consistent state.

External Consistency

Invariant x = 2y

X Transaction A:

. Write x
v Write y

Transaction B:

Read x
Read y
Compute z = 1/(x-y) = 1/2
Application
= Memory

A Simple Lock-Based STM

e STMs come In different forms
— Lock-based
— Lock-free

* Here : a simple lock-based STM

 Lets start by Guaranteeing External
Consistency

Art of Multiprocessor
Programming

I e
gz n
£]

43

Synchronization

* Transaction keeps
— Read set: locations & values read
— Write set: locations & values to be written

* Deferred update
— Changes installed at commit

* Lazy conflict detection
— Conflicts detected at commit

Art of Multiprocessor
Programming

I e
EE “n
< 2

44

STM: Transactional Locking

Application >< 6 Array of
Memory V# version #s &

locks
/6 Vi#

Art of Multiprocessor 45
Programming

Mem

Reading an Object

Locks

V#

V#

V#

V#

V#

Add version numbers
& values td read set

Art of Multiprocessor
Programming

46

To Write an Object

Mem
Locks

#

#

H

V#

FIEIEIEE]

#

Add version numbers &

new values ta write set

Art of Multiprocessor
Programming

47

To Commit

Mem
Locks

VL Acquire write locks |
Check version numbers
unchanaed
Install new values |
Increment version numbelgl

| Unlock.

EE

Art of Multiprocessor 48
Programming

Encounter Order Locking (Undo LogQ)

Mem Locks

V€ | 0 1. To Read: load lock + location
2. Check unlocked add to Read-Set
X || v#10 3. To Write: lock location, store value
v# 0 4. Add old value to undo-set
v | [yses o 5. Validate read-set v#' s unchanged
6. Release each lock with v#+1
v 0
v# 0

Quick read of values freshly
written by the reading transaction

Commit Time Locking (Write Buff)

Mem Locks

V# | 0

X || v#+1i0

v# 0

Y | | v#e1i0

V# | 0

Vit §o

NOoOA~WNE

To Read: load lock + location
Location in write-set? (Bloom Filter)
Check unlocked add to Read-Set
To Write: add value to write set
Acquire Locks

Validate read/write v#’ s unchanged
Release each lock with v#+1

Hold locks for very short duration

ops/sec

COM vs. ENC High Load

Red-Black Tree 20% Delete 20% Update 60% Lookup

7000000

6000000

5000000 -~

4000000

3000000

2000000

1000000

TL:CMT:PS —+—

TL:CMT:PO ---x---
TL:Enc:PS ---x---
TL:Enc:PO -3~

mutex --m-—
spinlock ---o---
mcslock ----e---
stm_fraser -~ --
stm_ennals --—--4---

hanke ——

Hand

COM

ENC

5 o B
- £ T S T N -
T~ . o Q'\'.—.r.\.,.\f:\,...rr.""""Ifl.lirril-rr..-rr--trr---rr- e T M S
. Tl LR R R A u N R E o o I R e
fffffffffffffffff e S : -% C

COM vs. ENC Low Load

Red-Black Tree 5% Delete 5% Update 90% Lookup

1400000u
TL:CMT: PS +
TL:CMT:PO ---x---
TL:Enc:PS ---x---
12000000 TL:Enc:PO & -
mutex --=—
spinlock ---o---
mc;slock e s i Hand
stm fraser - & ---
10000000 I~ gtm “ennals -
hanke —=— ’
il
o 8000000 - L. COM
(2]
& . ENC
6000000 - .
PN
4000000 .
2000000 - .
...._{’i;;l—l;:;;l‘-'! N e e N N R R TR
oM '———\,_E,,,f:fj;,;‘,;:,:,:::;:;;; el ~ ,:,:',,':'::,::Z:',',fﬁi‘,g MCS
0 |] | | | | | -

threads

Problem: Internal |ZOMBIES
Inconsistency

« A Zombie Is an active transaction destined to
abort.

 |If Zombies see inconsistent states bad things
can happen

Internal Consistency

‘ Invariant: x = 2y

X)
‘ Transaction A: reads x = 4 |

Transaction B: writes
y 8 to x, |6 to y, aborts A)

Transaction A: (zombie)
reads y = 4
computes |/(x-y)

\ Divide by zero FAIL!

Art of Multiprocessor
Programming

54

Solution: The Global Clock
(The TL2 Algorithm)

 Have one shared global clock

* Incremented by (small subset of) writing
transactions

* Read by all transactions

 Used to validate that state worked on Is
always consistent

Art of Multiprocessor 55
Programming

"~ ¥ ".

M

@
3

y
-

Read-Only Transactions

Locks

12

32

56

19

17

Copy version clock to local
read version clock

Shared Version Private Read
Clock Version (RV)
Art of Multiprocessor 56

Programming

Read-Only Transactions

Mem
Locks

. . . Copy version clock to local
1 ° | 1

Read lock, version #,and }——
memory

17 Shared Version Private Read
Clock Version (RV)

19

Art of Multiprocessor 57
Programming

"EEEEE

Read-Only Transactions

Mem
Locks

. . . ‘ Copy version clock to local

Read lock, version #, and

| 1 ||

m{ IS
On Commlt:

56 — check unlocked & —
version #s less than

19 t local read clock
<

17 Shared Version Private Read
Clock Version (RV)

Art of Multiprocessor 58
Programming

"EEEEE

Read-Only Transactions

Mem
Locks

. . . Copy version clock to local
1 ° 1 1

Read lock, version #,and &

We have taken a snapshot without
keeping an explicit read set!

!"E

version ass than

8 o
2 G

17 Shared Version Private Read
Clock Version (RV)

Art of Multiprocessor 59
Programming

Example Execution: Read Only

Mem Locks

87

34

88

99

44

50

O ol O | O0|O)|O

100

Trans

Shared Version Clock

1. RV < Shared Version Clock

2. On Read: read lock, read mem,
read lock: check unlocked,
unchanged, and v# <= RV

3. Commit.

Reads form a snapshot of memory.
No read set!

RV

Ordinary (Writing) Transactions

Mem

Locks
12 Copy version clock to local
read version clock
32
56
19

17 Shared Version Private Read
Clock Version (RV)

Art of Multiprocessor 61
Programming

M IR

Ordinary Transactions
M

@
3

Locks
12 Copy version clock to local
M
On read/write, check: —
Unlocked & version # < RV
56 Add to R/WV set

17 Shared Version Private Read
Clock Version (RV)

Art of Multiprocessor 62
Programming

.

Mem

Locks

On Commit

Acquire write locks

2

E ‘

19

17

= > @ me> Nl Mmoo M me>

Private Read
Version (RV)

Shared Version
Clock

Art of Multiprocessor
Programming

63

Mem

On Commit

Locks

Acquire write locks ‘

Increment Version Clock ‘

2

(@))

19

17

= > @ me> Nl Mmoo M me>

Private Read
Version (RV)

Shared Version
Clock

Art of Multiprocessor
Programming

64

Mem

On Commit

Locks

Acquire write locks ‘

Increment Version Clock |

32

Check version numbers < RV ‘

=

19

17

= > @ me> Nl Mmoo M me>

Shared Version

Private Read

Clock Version (RV)

Art of Multiprocessor
Programming

65

On Commit

Acquire write locks ‘

Increment Version Clock

Update memory

Private Read

Shared Version Version (RV)

Clock

Art of Multiprocessor 66
Programming

On Commit

Mem
Locks

D&
HE

Acquire write locks ‘

Increment Version Clock

Update memory

Update write version #s

.
. . . Shared Version Private Read

Version (RV)

Clock

Art of Multiprocessor 67
Programming

Example: Writing Trans

pem Lok . Shared Version Clock

1. RV < Shared Version Clock
2. On Read/Write: check
unlocked and v# <= RV then
add to Read/Write-Set
Acquire Locks

WV = F&I(VClock)

Validate each v# <= RV
Release locks with v# €< WV

i ? . N Reads+Inc+Writes
_ =serializable

o 01 b w

TM Design Issues

* Implementation ‘
choices
« Language design

ISSuUes

¢ Semantic issues ’

Art of Multiprocessor 69
Programming

Granularity

* Object
— managed languages, Java, C#, ...

— Easy to control interactions between
transactional & non-trans threads

 Word
—C, C++, ...

— Hard to control interactions between
transactional & non-trans threads

Art of Multiprocessor
Programming

g
<
< 3

70

Direct/Deferred Update

* Deferred
— modify private copies & install on commit
— Commit requires work
— Consistency easier

* Direct
— Modify In place, roll back on abort

— Makes commit efficient
— Consistency harder

Art of Multiprocessor
Programming

I e
SE “n
< 2

71

Conflict Detection

* Eager

— Detect before conflict arises

— “Contention manager” module resolves
* Lazy

— Detect on commit/abort
* Mixed

— Eager write/write, lazy read/write ...

Art of Multiprocessor
Programming

I e
SE “n
< 2

72

Conflict Detection

« Eager detection may abort transactions
that could have committed.

» Lazy detection discards more
computation.

Art of Multiprocessor
Programming

73

Contention Management &
Scheduhng

e How to resolve
conflicts?

« Who moves forward
and who rolls back?

 Lots of empirical
work but formal
work in infancy

Art of Multiprocessor
Programming

74

Contention Manager Strategies

* Exponential backoff
* Priority to ¥

— Oldest?

— Most work?

— Non-waiting?
 None Dominates

Judgment of Solomon

* But needed anyway

Art of Multiprocessor
Programming

75

/O & System Calls?

e Some I/O revocable

— Provide transaction-
safe libraries

— Undoable file
system/DB calls

 Some not
— Opening cash
drawer
— Firing missile

Art of Multiprocessor 76
Programming

/O & System Calls

 One solution: make transaction
Irrevocable

— If transaction tries I/O, switch to irrevocable
mode. g

- HGHADGR
* There can be only one ... i
— Requires serial execution

* No explicit aborts
— In Irrevocable transactions

Art of Multiprocessor 77
Programming

g
<
< 3

Exceptions

Inti=0;
try {
atomic {

|++;
node = new Node();
}
} catch (Exception e) {
print(i);
}

Art of Multiprocessor
Programming

78

Exceptions

Throws OutOfMemoryException!

[node = new Node () ;

Art of Multiprocessor 79
Programming

Exceptions

Throws OutOfMemoryException!

[node = new Node();

[print(i); L
- = What is
printed?
Art of Multiprocessor 80

Programming

Unhandled Exceptions

e Aborts transaction
— Preserves Iinvariants
— Safer

« Commits transaction

— Like locking semantics

— What if exception object refers to values
modified in transaction?

Art of Multiprocessor
Programming

81

Nested Transactions

atomic void foo () {
bar () ;

}

atomic void bar () {

}

Art of Multiprocessor
Programming

82

Nested Transactions

* Needed for modularity

— Who knew that cosine() contained a
transaction?

* Flat nesting
— If child aborts, so does parent

 First-class nesting
— If child aborts, partial rollback of child only

Art of Multiprocessor 83
Programming

I e
SE “n
< 2

Hatin"on TM

Hatin" on TM

Hatin" on TM

\ A\ 3 e i
A\ § X A0v - PREAY :
Y‘»Q% 50 e \g\a‘x \:\a’(, \ mf»\f&'\: o 10 B gt oo
ns aﬁx v PR a\\ XAy “\ ‘\I\f—\J ‘f‘— & L xyad
! Ny ::\\? \ Aﬂ\g { _ e ‘_;‘ ‘;} \’\6 -

Erlang-style shared nothing only true path to salvation

AL m X T T p £y
x\:ﬂ‘?\}\ puet) T ot ca o ﬁ(ot o et S Mizey
aAq\8) g V2 ZL R\ S ‘A,
c«\g\,’(—‘: »(\:\i.% A \r\:\,\,\ a* G 5y, h S £ My,
o M eeOha Al Cogy . thap, Somy,
‘:;"('e‘ 8 {}{‘e‘ »(Qa&a“z . \ Q\‘ H /'/77 - /77.514, o ; 3y 8 7
»{{\:\) ,\f \ eX“ - ‘\S\ . B, /77@,7 . /tg Co /'505,50
{){\-ﬁ : “ o (2 ,*‘3(\ o w J 77£7 &3 e 4 / [
/- > N '\O‘NS N > a2 ?ci \ L /778/. N U//E . /7,5‘
& oSt oV a o ® sy,)
A < O S\S ;‘0‘ X s 'D/O ,
6(:%_\3 .\(\%O i« 366 0.\\-\6\) \\QQ\\,‘: x e Sy . by ~
D [\ ¢ 4
™ e o o™ ® ot 7 \\»a'\‘“ Yy e
QOS\ O ade & A0 S

Hatin" on TM ok

&*{ ca/ s I
&ra ‘~Inotg 4, 0 g Yds sy, Tl has o
SCale ,:t = "Puter CDE 185 3 fHI'n':lus =1 of dugl?'/s;”””e” Ic Multjp, iy H/w"al"s ind
 beyan g o - “CMpapis S Softy, Vers g, FlOCagg;
1 Yond g LRUs 'Bs CONfig, Yare ENGines Sven 8Man, Sing — 5
- =B "'/EEIJ’/ . Enth gme r 7','..,-/70 N) thDSEi wi
- Skl (s SSCTed g, E5nits Na p
° ° ° I.a/
There is nothing wrong with what we do today. | _
=
S/
i ‘sw ..""w.__ Jblﬁﬁa"f'ﬂ =5
\\\\ % v g Since
- \‘\ 00‘38‘ o ot - "%M}c,i‘« My,
< s u S ~a ~l
/%’/ : L W o3 orst® e o M3 " =7/ ey 13,
5 QOVT O AT & o y g :
A @ o™ Y (1 u? Strg Mgy,
éedb“) ‘g\ {\% o~ 366 z \‘\6\)5 o Q\‘S '\(\:-\(\% 'd/77 ks /8/7 Of" IQ/.-
2 W o 3 NP -
(\"‘)“-\(\WS‘ ’\&00\3 \O‘c\) (@ gll’s'g@g
Qos SO A0 T \o® /

Gartner Hype Cycle

4 VISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

You are here

Slope of Enlightenment

Hat tip: Jeremy Kemp
Trough of Disillusionment

| Technology Trigger TIME

»

Thanks ! nTINn

Art of Multiprocessor
Programming

89

Overview

= Building shared memory data structures
= Lists, queues, hashtables, ...
= Why?
= Used directly by applications (e.qg., in C/C++, Java, C#, ...)

= Used in the language runtime system (e.g., management of
work, implementations of message passing, ...)

= Used in traditional operating systems (e.g., synchronization
between top/bottom-half code)

= Why not?
= Don't think of “threads + shared data structures” as a
default/good/complete/desirable programming model
o It's better to have shared memory and not need it...

90

Different techniques for different problems

Ease to
write

When can it

Correctness
be used?

How well

How fast is it? .
does it scale?

