
Sensor Fusion Techniques

Dr Robert Harle

Part II Mobile and Sensor
Systems

Lent 18/19

But frst: Android P!

WiFi FTM
 Fine Timing Measurement

 Phone and AP unsynced
 But we assume they have good quality timing available (sub ns)

AP

FTM Request

WiFi FTM
 Fine Timing Measurement

 Phone and AP unsynced
 But we assume they have good quality timing available (sub ns)

AP

FTM Request

FTM Frame

Ack

t1

t4t3

t2

WiFi FTM
 Fine Timing Measurement

 Phone and AP unsynced
 But we assume they have good quality timing available (sub ns)
 Phone computes round trip time (2 times ToF) as (t4-t1)-(t3-t1)
 Then compute position from multiple ToFs as usual (multilateration)

AP

FTM Request

FTM Frame

Ack

t1

t4t3

t2

[t1, t4]

Sensor Fusion Techniques

Dr Robert Harle

Part II Mobile and Sensor
Systems

Lent 2017/18

Measurements are Noisy
 A sensor measures some quantity with some accuracy.

Whatever we do, noise will creep in
 We therefore need to fuse multiple measurements to

get a robust idea of what's happening

Fusion
algorithm

State estimate
(and error)

Multiple measurements
from same sensor

[Domain-specifc
constraints]

Multiple
measurements
from diferent
sensors

Algorithms
 There are many fusion techniques and algorithms
 We will look at the two extremes: a very fast, very common

algorithm that is limited in what it works with, and a
general-purpose and fexible but more computationally
demanding algorithm

 Both are based on bayesian probability
 We will use location tracking to illustrate the techniques

because the problem is easy to relate to. But everything is
general.

Simple Tracking Example
Consider a series of positions that come in a few seconds
apart for a pedestrian. They will probably look rather
unrealistic for a walking route:

Simple Tracking Example
But if we consider noise and error in the measurements we
see that the data supports a more realistic hypothesis of
straight line walking:

Probabilistic Approach
So what we want to do is to estimate our current
state while incorporating knowledge of recent
measurements and all of the associated errors. To
do this we will use probability:

State at time t
(e.g. position)

Belief
(probability)

Measurements
(e.g. from positioning
system)

Filters and Smoothers

 This is known as a flter because it estimates the current
state based on current and past measurements (only)

 Sometimes you know the ‘future’ e.g. you may have
logged data for postprocessing rather than live
processing

 In that case you have a smoother

Recursive Bayesian Filters
 Apply a Markov model (next state depends only on last) to

recursively build up our probabilities

 This is the propagation or prediction step
 We update the probabilities based on some model (e.g.

constant velocity) → prior distribution

Prior
Propagation (motion)
model

Evaluate over
all previous states

Recursive Bayesian Filters
 Apply Bayes' theorem to incorporate measurements

 This is the correction or update step
 We correct the probabilities on a measurement →

posterior distribution

Posterior Measurement
modelNorm

factor

Prior

Implementation

 There are broadly two classes of techniques to implement
these “flters”
1) Model all the probability distributions using mathematical

models. This keeps everything continuous. But it's not
always easy to do this (the distributions get complex). E.g.
Use Gaussians everywhere → “Kalman Filter”

2) Represent arbitrary distributions by sampling them. Nice
and general but much more work involved.

Propagation/predict

Correction/update

The Kalman Filter

Simple example

 Motion along a straight path
 State vector [x, dx/dt]T

dx/dt

x

The Kalman Filter
 The simplest recursive Bayesian flter
 It is used everywhere: very important
 Requires that you can write the dynamics of your system

using linear algebra (matrices etc)
 Boils down to 3 equations:

Propagation

Correction

Current state

The Kalman Filter
 The simplest recursive Bayesian flter
 It is used everywhere: very important
 Requires that you can write the dynamics of your system

using linear algebra (matrices etc)
 Boils down to 3 equations:

Propagation

Correction

Current state

Encodes the motion model

Simple example

 Motion model (constant velocity)

F = 1 dt
0 1

The Kalman Filter
 The simplest recursive Bayesian flter
 It is used everywhere: very important
 Requires that you can write the dynamics of your system

using linear algebra (matrices etc)
 Boils down to 3 equations:

Propagation

Correction

Current state

Encodes the motion model

Noise terms

The Kalman Filter
 The simplest recursive Bayesian flter
 It is used everywhere: very important
 Requires that you can write the dynamics of your system

using linear algebra (matrices etc)
 Boils down to 3 equations:

Propagation

Correction

Covariance
(=error)

Current state

Encodes the motion model

Noise terms

The Kalman Filter
 The simplest recursive Bayesian flter
 It is used everywhere: very important
 Requires that you can write the dynamics of your system

using linear algebra (matrices etc)
 Boils down to 3 equations:

Propagation

Correction

Covariance
(=error)

Current state

Encodes the motion model

Noise terms

Measurement model (how the
measurement relates to the state)

Simple example

 Measurement model (just measure
position directly)

H = (1 0)

The Nitty Gritty

(Thanks to wikipedia. No, you aren't expected to learn these)

Key to the Kalman Filter

Initially we have some
position estimate that is
associated with a normal
distribution

Key to the Kalman Filter

We propagate the state,
meaning we use the motion
model to move it forward.
Since we had no actual
input, we increase the error
(→ Gaussian gets shorter
and fatter)

Key to the Kalman Filter

We repeat the propagation
but then a measurement
comes in. This is
associated with another
Gaussian, although thinner
because it's an OK
estimate

Key to the Kalman Filter

The beauty of a Gaussian is
that when you multiply two
together you get another
Gaussian. Thus we always
fnish a cycle with a new
Gaussian estimate → we can
represent it using just two
parameters, making it
amenable to linear algebra

So...

[An example]

A more complex example
 Consider the Inertial GPS systems you fnd in vehicles
 They need to estimate where the car is at all times

between GPS measurements
 We compute position by concatenating a series of

displacements and headings (dead reckoning)
 We use inertial sensors to estimate the displacements

(wheel encoders) and headings (gyroscopes) since the
last state estimate

t=1t=0 t=2

t=2

Inertial Nav
 We integrate the gyroscope signal to estimate the heading

change (note the motion model uses the inertial inputs)
 But gyros are subject to bias errors (a bias is a bogus ofset

reported when it's not rotating) and we often see erroneous
bending:

True
(unobservable)

INS bias bends heading

Estimate

Inertial Nav
 When a GPS measurement comes in we can fx

things

GPS

True
(unobservable)

INS

GPS correction

Inertial Nav
 But if we just correct position, it goes wrong again

GPS

True
(unobservable)

INS

Inertial Nav
 But if we add the bias to the state in the kalman

flter, it will estimate that for us too

True
(unobservable)

INS

Bias corrected

KF Limitations

 What if those probability distributions don't lend
themselves to being normal?

 Our example will be constraining movement to be
on a building foorplan. How could you build a
motion model matrix that incorporated a
foorplan??!

Propagation

Correction

The Particle Filter

Our Example
 Imagine tracking someone around a building using

the sensors on their phone and a foorplan
 We now estimate step events where a step has a

length associated with it and a direction.

Easy to spot steps when
looking at the
accelerometer

Integrating the gyro gives
direction change as
before

Particle Filters for Location

 Encode state in particles. Each particle is just
an individual hypothesis about the position
and orientation of the user

 Each particle has an assigned probability

 Particles are
updated by:
 Propagation/Predict
 Correct
 [Resample]

P=0.1

P=0.21

P=0.05

P=0.01

P=0.05

P=0.2

PF: Propagate

 Each particle is moved by the measured step
length and direction

 Plus some additive noise that represents the
imperfect measurement

θ+
no

is
e

L+noise

N

PF: Propagate

 Each particle is moved by the measured step
length and direction

 Plus some additive noise that represents the
imperfect measurement

θ+
no

is
e

L+noise

N

PF: Propagate

 Each particle is moved by the measured step
length and direction

 Plus some additive noise that represents the
imperfect measurement

θ+
no

is
e

L+noise

N

Cloud Spread
 With each step, the particle cloud

spreads naturally due to the noise we
add

 This is good: it represents that our drift (→
uncertainty) is growing (c.f. the Gaussian
growing fatter with each step of the KF)

PF: Correct
 Given a measurement we can reassign the

particle probabilities
 If we had an absolute position (maybe

a GPS fx) we could weight to that
position

0.2

0.2

0.2

0.2

0.2

GPS

PF: Correct
 Given a measurement we can reassign the

particle probabilities
 If we had an absolute position (maybe

a GPS fx) we could weight to that
position

0.2

0.2

0.2

0.2

0.2

GPS

PF: Correct
 Given a measurement we can reassign the

particle probabilities
 If we had an absolute position (maybe

a GPS fx) we could weight to that
position

0.2

0.2

0.2

0.2

0.2

0.3

0.1

0.1

0.1

0.4

PF: Correct
 Constraints can be included as pseudo-

measurements
 For walls we can simply set p=0 if the particle

crossed a wall and leave it alone otherwise

P
n+1

=0

P
n+1

=1

P
n
=1

P
n
=1

PF: Resample
 Want to get rid of p=0 particles but still need some

particles!
 We resample: generate a new particle set by

sampling the old one in proportion to the particle
weights

 P=0 → won't go any further
 P=1 → may be reproduced (multiple times) if chosen

at random

PF: Resample

 To select in proportion form a
cumulative weight...

Particle
number

Cumulative
Weight (CW)

0.3

0.1

0.1

0.1

0.4

PF: Resample

 To select in proportion form a
cumulative weight...

Particle
number

Cumulative
Weight (CW)

0.3

0.1

0.1

0.1

0.4

Random
no

P3

Random
no

P5

PF: Resample

 To select in proportion form a
cumulative weight...

0.3

0.1

0.1

0.1

0.4

0
5

3

1

2
4
0

0.4 0.5 0.6 0.9 0.9 1.0

 0 1 2 3 4 5

Random → 0.66 → Particle 3
Random → 0.43 → Particle 1
Random → 0.01 → Particle 0
Random → 0.88 → Particle 3
Random → 0.23 → Particle 0

(More probable particles more
likely to be resampled)

A Note on Performance

 Update and correct steps are nicely
parallelisable

 But forming the cumulative weight for
resampling is fundamentally
sequential...

Works well...

 Initially we have
no knowledge of
the user's position
 Lots of particles
 Localisation

Phase

Symmetry Problem

Works well...
 Eventually we fgure out

where they are and the
problem becomes
easier
 Fewer particles

needed
 Tracking Phase

 We got ~ 0.75m accuracy
95% of the time with a
sensor on the shoe

In General
 Particle flters are easy to implement and highly

fexible
 But:

 Every particle you add costs you in terms of
computation

 The results are not deterministic
 Too few particles gives bad/failed results, while too

many wastes precious CPU cycles

	Object Oriented Programming Dr Robert Harle
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

