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But  frst: Android P!



WiFi FTM
 Fine Timing Measurement

 Phone and AP unsynced
 But we assume they have good quality timing available (sub ns)
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WiFi FTM
 Fine Timing Measurement

 Phone and AP unsynced
 But we assume they have good quality timing available (sub ns)
 Phone computes round trip time (2 times ToF) as (t4-t1)-(t3-t1)
 Then compute position from multiple ToFs as usual (multilateration)

AP

FTM Request

FTM Frame

Ack

t1

t4t3
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Measurements are Noisy
 A sensor measures some quantity with some accuracy. 

Whatever we do, noise will creep in
 We therefore need to fuse multiple measurements to 

get a robust idea of what's happening

Fusion
algorithm

State estimate
(and error)

Multiple measurements 
from same sensor

[Domain-specifc 
constraints]

Multiple 
measurements 
from diferent 
sensors



Algorithms
 There are many fusion techniques and algorithms
 We will look at the two extremes: a very fast, very common 

algorithm that is limited in what it works with, and a 
general-purpose and fexible but more computationally 
demanding algorithm

 Both are based on bayesian probability
 We will use location tracking to illustrate the techniques 

because the problem is easy to relate to. But everything is  
general.



Simple Tracking Example
Consider a series of positions that come in a few seconds 
apart for a pedestrian. They will probably look rather 
unrealistic for a walking route:



Simple Tracking Example
But if we consider noise and error in the measurements we 
see that the data supports a more realistic hypothesis of 
straight line walking:



Probabilistic Approach
So what we want to do is to estimate our current 
state while incorporating knowledge of recent 
measurements and all of the associated errors. To 
do this we will use probability:

State at time t
(e.g. position)

Belief 
(probability)

Measurements
(e.g. from positioning 
system)



Filters and Smoothers

 This is known as a flter because it estimates the current 
state based on current and past measurements (only)

 Sometimes you know the ‘future’ e.g. you may have 
logged data for postprocessing rather than live 
processing

 In that case you have a smoother



Recursive Bayesian Filters
 Apply a Markov model (next state depends only on last) to 

recursively build up our probabilities

 This is the propagation or prediction step
 We update the probabilities based on some  model (e.g. 

constant velocity) → prior distribution

Prior
Propagation (motion)
model

Evaluate over
all previous states



Recursive Bayesian Filters
 Apply Bayes' theorem to incorporate measurements

 This is the correction or update step
 We correct the probabilities on a measurement → 

posterior distribution

Posterior Measurement
modelNorm

factor

Prior



Implementation

 There are broadly two classes of techniques to implement 
these “flters”
1) Model all the probability distributions using mathematical 

models.  This keeps everything continuous. But it's not 
always easy to do this (the distributions get complex). E.g. 
Use Gaussians everywhere → “Kalman Filter”

2) Represent arbitrary distributions by sampling them. Nice 
and general but much more work involved.

Propagation/predict

Correction/update



The Kalman Filter



Simple example

 Motion along a straight path
 State vector [x, dx/dt]T

 
dx/dt

x



The Kalman Filter
 The simplest recursive Bayesian flter
 It is used everywhere: very important
 Requires that you can write the dynamics of your system 

using linear algebra (matrices etc)
 Boils down to 3 equations:

Propagation

Correction

Current state
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Simple example

 Motion model (constant velocity)

F =  1 dt
0 1
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The Kalman Filter
 The simplest recursive Bayesian flter
 It is used everywhere: very important
 Requires that you can write the dynamics of your system 

using linear algebra (matrices etc)
 Boils down to 3 equations:

Propagation

Correction

Covariance
(=error)

Current state

Encodes the motion model

Noise terms

Measurement model (how the 
measurement relates to the state)



Simple example

 Measurement model (just measure 
position directly)

H = (1  0)



The Nitty Gritty

(Thanks to wikipedia. No, you aren't expected to learn these)



Key to the Kalman Filter

Initially we have some 
position estimate that is 
associated with a normal 
distribution



Key to the Kalman Filter

We propagate the state, 
meaning we use the motion 
model to move it forward. 
Since we had no actual 
input, we increase the error 
(→ Gaussian gets shorter 
and fatter)



Key to the Kalman Filter

We repeat the propagation 
but then a measurement 
comes in. This is 
associated with another 
Gaussian, although thinner 
because it's an OK 
estimate 



Key to the Kalman Filter

The beauty of a Gaussian is 
that when you multiply two 
together you get another 
Gaussian. Thus we always 
fnish a cycle with a new 
Gaussian estimate → we can 
represent it using just two 
parameters, making it 
amenable to linear algebra



So...

[ An example ]



A more complex example
 Consider the Inertial GPS systems you fnd in vehicles
 They need to estimate where the car is at all times 

between GPS measurements
 We compute position by concatenating a series of 

displacements and headings (dead reckoning)
 We use inertial sensors to estimate the displacements 

(wheel encoders) and headings (gyroscopes) since the 
last state estimate 

t=1t=0 t=2

t=2



Inertial Nav
 We integrate the gyroscope signal to estimate the heading 

change (note the motion model uses the inertial inputs)
 But gyros are subject to bias errors (a bias is a bogus ofset 

reported when it's not rotating) and we often see erroneous 
bending:

True
(unobservable)

INS bias bends heading

Estimate



Inertial Nav
 When a GPS measurement comes in we can fx 

things

GPS

True
(unobservable)

INS

GPS correction



Inertial Nav
 But if we just correct position, it goes wrong again

GPS

True
(unobservable)

INS



Inertial Nav
 But if we add the bias to the state in the kalman 

flter, it will estimate that for us too

True
(unobservable)

INS

Bias corrected



KF Limitations

 What if those probability distributions don't lend 
themselves to being normal?

 Our example will be constraining movement to be 
on a building foorplan.  How could you build a 
motion model matrix that incorporated a 
foorplan??! 

Propagation

Correction



The Particle Filter



Our Example
 Imagine tracking someone around a building using 

the sensors on their phone and a foorplan
 We now estimate step events where a step has a 

length associated with it and a direction.

Easy to spot steps when 
looking at the 
accelerometer

Integrating the gyro gives 
direction change as 
before



Particle Filters for Location

 Encode state in particles. Each particle is just 
an individual hypothesis about the position 
and orientation of the user

 Each particle has an assigned probability

 Particles are 
updated by:
 Propagation/Predict
 Correct
 [Resample]

P=0.1

P=0.21

P=0.05

P=0.01

P=0.05

P=0.2



PF: Propagate

 Each particle is moved by the measured step 
length and direction

 Plus some additive noise that represents the 
imperfect measurement

θ+
no

is
e

L+noise

N
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PF: Propagate

 Each particle is moved by the measured step 
length and direction

 Plus some additive noise that represents the 
imperfect measurement

θ+
no

is
e

L+noise

N



Cloud Spread
 With each step, the particle cloud 

spreads naturally due to the noise we 
add

 This is good: it represents that our drift (→ 
uncertainty) is growing (c.f. the Gaussian 
growing fatter with each step of the KF) 



PF: Correct
 Given a measurement we can reassign the 

particle probabilities
 If we had an absolute position (maybe 

a GPS fx) we could weight to that 
position

0.2

0.2

0.2

0.2

0.2



GPS

PF: Correct
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particle probabilities
 If we had an absolute position (maybe 
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GPS

PF: Correct
 Given a measurement we can reassign the 

particle probabilities
 If we had an absolute position (maybe 

a GPS fx) we could weight to that 
position

0.2

0.2

0.2

0.2

0.2

0.3

0.1

0.1

0.1

0.4



PF: Correct
 Constraints can be included as pseudo-

measurements
 For walls we can simply set p=0 if the particle 

crossed a wall and leave it alone otherwise 

P
n+1

=0

P
n+1

=1

P
n
=1

P
n
=1



PF: Resample
 Want to get rid of p=0 particles but still need some 

particles!
 We resample: generate a new particle set by 

sampling the old one in proportion to the particle 
weights

 P=0 → won't go any further
 P=1 → may be reproduced (multiple times) if chosen 

at random



PF: Resample

 To select in proportion form a 
cumulative weight... 

Particle 
number

Cumulative
Weight (CW)

0.3

0.1

0.1

0.1

0.4



PF: Resample

 To select in proportion form a 
cumulative weight... 

Particle 
number

Cumulative
Weight (CW)

0.3

0.1

0.1

0.1

0.4

Random 
no

P3

Random 
no

P5



PF: Resample

 To select in proportion form a 
cumulative weight... 

0.3

0.1

0.1

0.1

0.4

0
5

3

1

2
4
0

0.4 0.5 0.6 0.9 0.9 1.0

 0        1       2        3        4        5

Random → 0.66 → Particle 3
Random → 0.43 → Particle 1
Random → 0.01 → Particle 0
Random → 0.88 → Particle 3
Random → 0.23 → Particle 0

(More probable particles more 
likely to be resampled)



A Note on Performance

 Update and correct steps are nicely 
parallelisable

 But forming the cumulative weight for 
resampling is fundamentally 
sequential...



Works well...

 Initially we have 
no knowledge of 
the user's position
 Lots of particles
 Localisation 

Phase



Symmetry Problem



Works well...
 Eventually we fgure out 

where they are and the 
problem becomes 
easier
 Fewer particles 

needed
 Tracking Phase

 We got ~ 0.75m accuracy 
95% of the time with a 
sensor on the shoe



In General
 Particle flters are easy to implement and highly 

fexible
 But:

 Every particle you add costs you in terms of 
computation

 The results are not deterministic
 Too few particles gives bad/failed results, while too 

many wastes precious CPU cycles
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