Sensor Fusion Technigues

Dr Robert Harle

Part Il Mobile and Sensor
Systems

Lent 18/19

But first: Android P!

Preview

Android P Features and APIs

Android P introduces great new features and capabilities for users and developers. This
document highlights what's new for developers.

To learn about the new APls, read the API diff report or visit the the Android API reference — new APIs are
highlighted to make them easy to see. Also be sure to check out Android P Behavior Changes to learn about

areas where platform changes may affect your apps.

Indoor Positioning with Wi-Fi RTT

Android P adds platform support for the IEEE 802.711mc Wi-Fi
protocol—also known as Wi-Fi Round-Trip-Time (RTT)—to let you
take advantage of indoor positioning in your apps. 10:10
On Android P devices with hardware support, your apps can use € O Yowboesten
the new RTT APls to measure the distance to nearby RTT-capable e
Wi-Fi Access Points (APs). The device must have location enabled
and Wi-Fi scanning turned on (under Settings = Location), and
your app must have the ACCESS_FINE_LOCATION permission. The

device doesn't need to connect to the APs to use RTT. To

maintain nrivacy onlv the ohone i= ahle to determine the dietance

WiFI FTM
" Fine Timing Measurement

FTM Request

" Phone and AP unsynced

" But we assume they have good quality timing available (sub ns)

WiFI FTM
" Fine Timing Measurement

2 FTM Frame t1

FTM Request

£3 Ack

" Phone and AP unsynced

" But we assume they have good quality timing available (sub ns)

Wik FTM

" Fine Timing Measurement

Ly

FTM Request -
2 < FTM Frame t1
£3 Ack - 14
- [t1, t4]

" Phone and AP unsynced
" But we assume they have good quality timing available (sub ns)
" Phone computes round trip fime (2 times ToF) as (14-t1)-(13-11)

" Then compute position fromn multiple ToFs as usual (multilateration)

Sensor Fusion Technigues

Dr Robert Harle

Part Il Mobile and Sensor
Systems

Lent 2017/18

Measurements are Noisy

" A sensor measures some quantity with some accuracy.
Whatever we do, noise will creep in

" We therefore need o fuse multiple measurements to
get a robust idea of what's happening

Multiple measurements
from same sensor

Multiple \

measurements Fusion W State estimate
from different algorithm J (and error)
Sensors

[Domain-specific /

constraints]

Algorithms

" There are many fusion techniques and algorithms

" We will look at the two extremes: a very fast, very common
algorithm that is limited in what it works with, and a
general-purpose and flexible but more computationally
demanding algorithm

" Both are based on bayesian probability

" We will use location tracking to illustrate the fechniques
because the problem is easy to relate to. But everything is
general.

Simple Tracking Example

Consider a series of positions that come in a few seconds
apart for a pedestrian. They will prolbably look rather

unrealistic for a walking route:

~
~
~
~
~
~
~§
~

Simple Tracking Example

But if we consider noise and error in the measurements we
see that the data supports a more redlistic hypothesis of

straight line walking:

Probabillistic Approach

So what we want fo do is fo estimate our current
state while incorporating knowledge of recent
measurements and all of the associated errors. To
do this we will use probability:

T Bel(x;) = p(x| 21, ... z¢)

Belief
(probability)

State at time t Measurements
(e.g. position) (e.g. from positioning
system)

Filters and Smoothers

Bel(z) = p(axi|z1. ..., z¢)

" This is known as a filter because it estimates the current
state based on current and past measurements (only)

" Sometimes you know the ‘future’ e.g. you may have

logged data for postprocessing rather than live
processing

" In tThat case you have a smoofther

Recursive Bayesian Filters

" Apply a Markov model (next state depends only on Iast) fo
recursively build up our probabilities

Bel™ (:I:f_—) = /p($f|ﬂ?f_ﬁf)BEI(ﬂTf_§f) dmf_—_ﬁf .

/ \

Propagation (motion) Evaluate over

Prior :
model all previous states

" This is the propagation or prediction step

" We update the probabilities based on some model (e.Q.
constant velocity) — prior distribution

Recursive Bayesian Filters

" Apply Bayes' theorem to incorporate measurements
Bel(x:) = p(@:|21. ..., zt)

Bel(x;) = a;p(z;|x;)Bel ()

JoolN N

Posterior Measurement

Norm model
factor

" This is the correction or update step

" We correct the probabilities on a measurement —
posterior distribution

Implementation

Bel (x:) = / plae|x:—st)Bel(x—s1) day s . Propagation/predict

Bel(x;) = a;p(z:|x;)Bel (x;) Correction/update

" There are broadly two classes of fechniques to implement
these “filters”

1) Model all the probability distributions using mathematical
models. This keeps everything continuous. But it's not
always easy to do this (the distributions get complex). E.Q.
Use Gaussians everywhere — “Kalman Filter”

2) Represent arbitrary distributions by sampling them. Nice
and general but much more work involved.

The Kalman Filter

Simple example

" Motion along a straight path
" State vector (x, dx/dt)T

dx/dt

>

The Kalman Filter

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system
using linear algebra (matrices etc)

Boils down to 3 equations:

Current state \
x, = Fx, 5 +w

Rt_ - EH—&ET + Qt

Propagation

zy = Hixy + vy Correction

The Kalman Filter

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system
using linear algebra (matrices etc)

Boils down to 3 equations: Encodes the motion model

Current state \ /
£y =

= Fix 5 + wy Propagation
Rt_ - EH—&ET + Qt

zy = Hixy + vy Correction

Simple example

" Motion model (constant velocity)

x, = Fix, 5 +w,

F= [1dt
01

The Kalman Filter

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system
using linear algebra (matrices etc)

Boils down to 3 equations: Encodes the motion model

Current state \ /
Ly

= B+ wp Propagation

P = EH—&ET + Q, \
) Noise terms
zt - Htmt + Ut

Correction

The Kalman Filter

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system
using linear algebra (matrices etc)

Boils down to 3 equations: Encodes the motion model

Current state \ /
£y =

= Fix 5 + wy Propagation
‘F’t - EH—&ET + Qt

Covariance /) Noise terms

(=error)

zy = Hixy + vy Correction

The Kalman Filter

The simplest recursive Bayesian filter

It is used everywhere: very important

Requires that you can write the dynamics of your system
using linear algebra (matrices etc)

Boils down to 3 equations: Encodes the motion model

Current state \ /
x; = Fix,_5 + w,; Propagation
P = EH—&ET + Qq

Covariance /) Noise terms

(=error)

zy = Hixy + vy Correction

Measurement model (how the
measurement relates to the state)

Simple example

" Measurement model (just measure
position directly)

Zt — Htht + 'Ut

H=(1 0)

The Nitty Gritty

Predict [edit]

Predicted (a priori) state estimate iklk—l = Fkik—uk—l + Bruy
Predicted (a priori) estimate covariance Pyr1 = FiePr_1p1 FE + Q.
Update |[edit]

Innovation or measurement residual V. = Z — Hkik|k—1

Innovation (or residual) covariance St = HpPrjr_1 H?: + Ry,
Optimal Kalman gain K, = Pk|k_1HfS£1

Updated (a posteriori) state estimate ik|k = ik|k—1 + K, fﬁ'k

Updated (a posteriori) estimate covariance Py = (I — Ky Hy)Py

(Thanks to wikipedia. No, you aren't expected to learn these)

Key tfo tThe Kalman Filter

Initially we have some
position estimate that is
associated with a normal
distribution

Key tfo tThe Kalman Filter

We propagate the state,
meaning we use the motion
model to move it forward.
Since we had no actual
input, we increase the error
(— Gaussian gets shorter
and fatter)

Key o the Kalman Filter

We repeat the propagation
but then a measurement
comes in. This is
associated with another
Gaussian, although thinner
because it's an OK
estimate

Key to the Kalman Filter

The beauty of a Gaussian is
that when you multiply two
together you get another
Gaussian. Thus we always
finish a cycle with a new
Gaussian estimate —» we can
represent it using just two
parameters, making it
amenable to linear algebra

[An example]

A more complex example

" Consider the Inertial GPS systems you find in vehicles

" They need o estimate where the car is at all times
befween GPS measurements

" We compute position by concatenating a series of
displacements and headings (dead reckoning)

" We use inertial sensors to estimate the displacements
(wheel encoders) and headings (gyroscopes) since the
last state estimate t=2

-

LT

t t

Inertial Nav

We integrate the gyroscope signal to estimate the heading
change (note the motion model uses the inertial inpufts)

But gyros are subject to bias errors (a bias is a bogus offset

reported when it's not rotating) and we offen see erroneous
bending:

True
(unobservable)

TN
\

INS bias bends heading

Estimate

Inertial Nav

" When a GPS measurement comes in we can fix
things

GPS

(unobservable)

GPS correction

Inertial Nav

" But if we just correct position, it goes wrong again

GPS

(unobservable)

Inertial Nav

" But if we add the bias to the state in the kalman
filter, it will estimate that for us too

True W
(unobservable)

Bias corrected

KF Limitations

Bel (x;) = fp(mf|mf_5f)Bel(mf_5f) dxs_ s . Propagation

Bel(x;) = a;p(z:|x;)Bel (x;) Correction

" What if those probability distributions don't lend
themselves to being normal?

" Our example will be constraining movement to be
on a building floorplan. How could you build @
motion model matrix that incorporated a
floorplan??!

The Particle Filter

Our Example

" Imagine fracking someone around a building using
the sensors on their phone and a floorplan

" We now estimate sfep evenfs where a step has a
length associated with it and a direction.

N
o

— Galaxy
— NexusS

Easy to spot steps when
— looking at the
w accelerometer
mw Integrating the gyro gives

, | | direction change as

before

5 10 15
Time (s)

=
co

=
[=)]

=
'S

[
o

Acceleration magnitude (m/s?)
[}
N

)] [e]

(-l (] 0 & [

(=]

" Encode state in particles. Each particle is just
an individual hypothesis about the position
and orientation of the user

" Each particle has an assigned probability
o P=0.1
° P=0.01 |

P=0.21
" Propagation/Predict | Q .

" Correct o P=0.05

" (Resample) G P=0.2

" Particles are
updated by:

05

PF: Propagate

" Each particle is moved by the measured step
length and direction

" Plus some additive noise that represents the
Imperfect measurement

PF: Propagate

" Each particle is moved by the measured step
length and direction

" Plus some additive noise that represents the
Imperfect measurement

PF: Propagate

" Each particle is moved by the measured step
length and direction

" Plus some additive noise that represents the
Imperfect measurement

Cloud Spread

" With each step, the particle clouad
spreads nafurally due to the noise we
add

" This is good.: it represents tThat our drift (-
uncertainty) is growing (c.f. the Gaussian
growing fatter with each step of the KF)

PF: Correct

" Given a measurement we can reassign the
parficle probabilities

" If we had an absolute position (maybe
a GPS fix) we could weight to that
position

PF: Correct

" Given a measurement we can reassign the
particle probabilities

" If we had an absolute position (maybe
a GPS fix) we could weight to that
posItion

PF: Correct

" Given a measurement we can reassign the
particle probabilities

" If we had an absolute position (maybe
a GPS fix) we could weight to that
posItion

PF: Correct

" Constraints can be included as pseudo-
nmeasurements

" For walls we can simply set p=0 if the particle
crossed a wall and leave it alone otherwise

PF: Resample

" Want to get rid of p=0 particles but still need some
parficles!

" We resample: generate a new particle set by
sampling the old one in proportion to the particle
weights

" P=0 - won't go any further

" P=1 - may be reproduced (mulfiple times) if chosen
af random

®
M

PF: Resample

" To select in proportion form a
cumulative weight...

Cumulative
Weight (CW)

® g -

®
o ® —

Particle
number

PF: Resample

" To select in proportion form a
cumulative weight...

Cumulative
Weight (CW)
RandQm. Joccecnc e s
@ no ‘ :
@ Random :
no T[T > E
@ @ _I_; ; Particle
number

U
w
-
Ul

PF: Resample

" To select in proportion form a

cumulative weight...
0 1 2 3 4 5

@ 5@ 04 05 06 | 09 09 1.0

®
1 Random - 0.66 — Particle 3
@ Random — 0.43 — Particle 1
@ Random — 0.01 — Particle O
5 Random - 0.88 - Particle 3
4 Random — 0.23 — Particle O
G (More probable particles more

likely to be resampled)

A Note on Performance

" Update and correct steps are nicely
parallelisable

" But forming the cumulative weight for
resampling is fundamentally
sequential...

Works well...

" Initially we have
Nno knowledge of
the user's position

" Lots of particles

" Locdalisation
Phase

Symmetry Problem

|))

e —
= B

Works well...

" Eventuadlly we figure out
where they are and the
problem becomes
eqsier

" Fewer parficles
needed

" Tracking Phase

" We got ~ 0.75m accuracy
95% of the time with a
sensor on the shoe

In Generdl

" Particle filters are easy to implement and highly
flexible

" But:

" Every particle you add costs you in ferms of
computation

" The results are not deterministic

" Too few particles gives bad/failed results, while Too
many wastes precious CPU cycles

	Object Oriented Programming Dr Robert Harle
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

