Mobile and Sensor Systems

Lecture 5: Modeling and Inference

Sourav Bhattacharya

Lecture Overview

- Part 1
 - Introduction to mobile and wearable sensing
 - Mobile sensing applications
 - Understanding the key tasks in mobile sensing
 - Challenges in mobile sensing
- Part 2
 - Modeling audio using Deep Neural Networks
 - Multi-task learning through shared architecture
 - Open research questions

Part - 1

Mobile and Wearable Sensing

The mobile phone and wearable sensing domain is filled with **hacks**, and imaginative techniques that are used to circumvent the limitations of a platform that was **designed for a different purpose.**

Mobile / Wearable Sensing Vs. Sensor Networks

Mobile Sensing

- Well suited for human activities
- General purpose sensors, often not well suited for accurate sensing of the target phenomena
- Multi-tasking OS. Main purpose is to support various applications
- Low cost of deployment and maintenance (millions of users charge their devices)

Sensor Networks

- Well suited for sensing the environment
- Specialized sensors, designed to accurately monitor specific phenomena
- All resources dedicated to sensing
- High cost deployment and maintenance (regular charging thousands of sensor nodes)

Mobile Sensing Applications

Individual sensing:

- fitness applications
- behaviour intervention applications

Group/community sensing:

- sense common activities and help achieving group goals
- examples: assessment of neighbourhood safety, environmental sensing, collective recycling efforts

Urban-scale sensing:

- large scale sensing, where large number of people have the same application installed
- examples: tracking speed of disease across a city, congestion and pollution in a city

Human Activity Recognition

Sensor used:

Accelerometer or Gyroscope

Example inference:

Walking, running, biking, up/down stairs etc.

- Health / behaviour intervention
- Fitness monitoring
- Sharing within a community

Transportation-mode Detection

Sensor used:

- Accelerometer or Gyroscope
- GPS, WiFi localization

Example inference:

• Bus, bike, tram, train, car etc.

- Intelligent transportation
- Smart commuting

Emotion Detection

Sensor used:

- Microphone, bluetooth
- GPS, WiFi localization
- Map speaking features to emotional state

Example inference:

Emotional state, location and co-location with others

- Behaviour intervention
- Computational social science
 - Using mobile sensing for quantifying theories in social science

Context and Environment

Sensor used:

- Microphone
- Camera

Example inference:

Conversation, music, party, activity-related sound etc.

- Automated diary
- Health and wellness

Challenges in Mobile Sensing

- Complex natural environment
- Heterogeneity of sensors
 - Vary in sampling frequency, sensitivity
- Noisy measurements
- Different sensor position and orientation
- Diverse population
- Privacy
- Limited processing and battery power

Common sensing platforms

Noisy data

Diverse user population

Challenges in Mobile Sensing

Sensing is resource intensive

- The purpose of the embedded platform is to support multiple applications
- A sensing application needs to maintain a balance between
 - The amount of resource needed to operate
 - The accuracy of the detection that is achieved

Context Recognition: Machine Learning

Supervised Learning:

- Labeled data (training data)
- Objective: Learn a function from training data

$$\mathcal{F}:\mathbf{X}
ightarrow\mathbf{Y}$$

$$oldsymbol{x_i} \in \mathbb{R}^d$$

Classification

• Label is discrete / categorical variable

Regression

Label is real-valued / continuous variable

Feature vector	Label
\boldsymbol{x}_1	y_1
\boldsymbol{x}_2	y_2
• •	•
$oldsymbol{x}_n$	y_n

In mobile sensing we have a large number of sensors

Context Recognition: Machine Learning

Supervised Learning:

- Labeled data (training data)
- Objective: Learn a function from training data

 $\mathcal{F}:\mathbf{X}
ightarrow\mathbf{Y}$

 $oldsymbol{x_i} \in \mathbb{R}^d$

Classification

• Label is discrete / categorical variable

Regression

Label is real-valued / continuous variable

Feature vector	Label
$oldsymbol{x}_1$	y_1
\boldsymbol{x}_2	y_2
•	•
$\dot{oldsymbol{x}}_n$	\dot{y}_n

In mobile sensing we have a large number of sensors

Part - 2

Hot-keyword Detection: Problem Definition

Target classes

Silence

Unknown

UNIVERSITY OF

HotKeyword Dataset

16 KHz, 16-bit audio

$$h_{\theta}: X \to \{C_1, \dots, C_{12}\}$$

$$X \in \mathcal{R}^{16,000}$$

Training a CNN: Supervised Learning

Feature vector Label \boldsymbol{x}_1

$$h_{\theta}$$
, where $\theta \in \mathcal{R}^p$

$$oldsymbol{x}_2$$

$$C_1$$

$$C_{10}$$

Acknowledgement: Pete Warden, Google

https://www.tensorflow.org/versions/master/tutorials/audio recognition

End-to-end CNN Architecture

```
lotKeywordNet(
 (layer1): Sequential(
  (0): Conv2d(1, 16, kernel_size=(1, 64), stride=(1, 2), padding=(0, 32))
  (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU(inplace)
  (3): MaxPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0, dilation=1, ceil_mode=False)
 (layer2): Sequential(
  (0): Conv2d(16, 32, kernel_size=(1, 32), stride=(1, 2), padding=(0, 16))
  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU(inplace)
  (3): MaxPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0, dilation=1, ceil_mode=False)
 (layer3): Sequential(
  (0): Conv2d(32, 64, kernel_size=(1, 16), stride=(1, 2), padding=(0, 8))
  (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU(inplace)
 (layer4): Sequential(
  (0): Conv2d(64, 128, kernel_size=(1, 8), stride=(1, 2), padding=(0, 4))
  (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU(inplace)
 (layer5): Sequential(
  (0): Conv2d(128, 256, kernel_size=(1, 4), stride=(1, 2), padding=(0, 2))
  (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU(inplace)
  (3): MaxPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0, dilation=1, ceil_mode=False)
 (layer6): Linear(in_features=512, out_features=256, bias=True)
 (layer7): Linear(in_features=256, out_features=12, bias=True)
```

- Input: Raw audio samples
- Output: Logits (dimension=12)
- Normalization:

$$\sigma(x)_{j} = \frac{e^{x_{j}}}{\sum_{i=1}^{K} e^{x_{i}}}$$

 Distance metric: Crossentropy, KLD

Loss Function

 In case of supervised learning

$$\mathcal{L}(h_{\theta}(x_i), y_i)$$

 $\mathcal{L}(\sigma(h_{\theta}(x_i)), onehot(y_i))$

Cross-entropy loss

$$-\sum_{i=1}^{K} p_i \log(q_i)$$

$$-\sum_{I=1}^{K} y_i \log \left(\frac{\exp(h_{\theta}(x)_i)}{\sum_{j=1}^{K} \exp(h_{\theta}(x)_j)} \right) = -\log \left(\frac{\exp(h_{\theta}(x)_y)}{\sum_{j=1}^{K} \exp(h_{\theta}(x)_j)} \right)$$

$$= \log \left(\sum_{j=1}^{K} \exp(h_{\theta}(x)_{j}) \right) - h_{\theta}(x)_{y}$$

Training CNN: Loss Minimization

Average loss:
$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(h_{\theta}(x_i), y_i)$$

Gradient descent:
$$\theta \leftarrow \theta - \frac{\alpha}{|\mathcal{B}|} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}(h_{\theta}(x_i), y_i)$$

Problems with gradient descent:

- No guarantee that it will find a global minimum
- Convergence to a local minimum can be slow

HotKeyword recognition: A Practical Guide

Step 1: Splitting dataset into training, validation and test sets

Step 2: Perform data normalization, e.g., 0 dbFS

Step 3: Model architecture selection and parameter initialization

Step 4: Fast mini-batch generation

Step 5: Data augmentation to make the trained model resilient to noise

Step 6: Perform model prediction on the augmented mini-batch

Step 7: Compute loss and perform gradient descent

Step 8: Stop if the model has converged, otherwise go to Step 4

Convolutional Neural Network Training for Hot Key-word Recognition

(Batch size):

Input: MFCC Features

Multi-task Audio Inferencing

- Objective: Infer multiple contexts from the same input audio
 - Who is the speaker? Is the person stressed? Male or female speaker?

Shared hidden layer architecture

Multi-task Training

Audio pre-processing

 Training shared architecture

Output Layer

Open Research Questions

- How can we use unsupervised data to bootstrap the training procedure and reduce the amount of labeled data?
- How can we squeeze the resource requirements of largescale neural networks for resource-constrained devices?
- Protecting privacy of the users.
- Multi-modal rich modeling of sensor data for accurate high-level context-recognition.

References

- N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A. Campbell. A survey of mobile phone sensing. IEEE Computer Magazine. Vol. 48. No 9. September 2010.
- K.K. Rachuri, M. Musolesi, C. Mascolo, P.J. Rentfrow, C. Longworth, A. Aucinas.
 EmotionSense: A Mobile Phones based Adaptive Platform for Experimental Social Psychology Research. Ubicomp'10. September 2010.
- S. Hemminki, P. Nurmi, S. Tarkoma, Accelerometer-based transportation mode detection on smartphones, SenSys 2011.
- S. Bhattacharya and N.D. Lane, Sparsification and Separation of Deep Learning Layers for Constrained Resource Inference on Wearables, SenSys 2016.
- P. Georgiev, S. Bhattacharya, N.D. Lane, C. Mascolo, Low-resource Multi-task Audio Sensing for Mobile and Embedded Devices via Shared Deep Neural Network Representations. IMWUT (UbiComp) September 2017.

