Mobile and Sensor Systems
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Lecture Overview

e Part -1

* Introduction to mobile and wearable sensing

* Mobile sensing applications

 Understanding the key tasks in mobile sensing

e Challenges in mobile sensing
e Part - 2

* Modeling audio using Deep Neural Networks

* Multi-task learning through shared architecture

e Open research questions
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Part - 1



Mobile and Wearable Sensing

The mobile phone and wearable sensing domain is filled with hacks, and imaginative
techniques that are used to circumvent the limitations of a platform that was
designhed for a different purpose.



Mobile / Wearable Sensing
Vs. Sensor Networks

Mobile Sensing

o Well suited for human activities

* (General purpose sensors,
often not well suited for
accurate sensing of the target
phenomena

Multi-tasking OS. Main
purpose is to support various
applications

Low cost of deployment and
maintenance (millions of users
charge their devices)

Sensor Networks

Well suited for sensing the
environment

Specialized sensors, designed
to accurately monitor specific
phenomena

All resources dedicated to
sensing

High cost deployment and
maintenance (regular charging
thousands of sensor nodes)



Mobile Sensing Applications

Individual sensing:
e fitness applications
e behaviour intervention applications

Group/community sensing:
e sense common activities and help achieving group goals
e examples: assessment of neighbourhood safety, environmental sensing,
collective recycling efforts

Urban-scale sensing:
® |arge scale sensing, where large number of people have the same
application installed
® examples: tracking speed of disease across a city, congestion and
pollution in a city
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Human Activity Recognition

& ) cencexe Help

Sensor used: " e )

e Accelerometer or Gyroscope ‘
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Example inference:
e Walking, running, biking, up/down stairs etc.

Applications:

e Health / behaviour intervention
* Fithess monitoring

e Sharing within a community
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Transportation-mode Detection

Sensor used:

e Accelerometer or Gyroscope
e GPS, WiFi localization

e 3 X A
d p— 4 - _./. ',e[(-: 8

. : & . N \ 4 & ) S . < A
\ S 3 A
B t'f'*‘q‘aﬁ 17 o fm R
" . L3 =\ L S, 'w
- - §'~‘,‘:y;"‘, '\‘ ." "
TRAND — - ~

el

Example inference:
e Bus, bike, tram, train, car etc.

Applications:
* |ntelligent transportation
e Smart commuting
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Emotion Detection

Sensor used: @
 Microphone, bluetooth
e GPS, WiFi localization

e Map speaking features to emotional state
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Example inference:
e Emotional state, location and co-location with others

Applications: o
e Behaviour intervention
e Computational social science

* Using mobile sensing for quantifying theories in
social science
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Context and Environment

1

Sensor used:
* Microphone
e Camera

SoundSense: Learning the sounds in people's lives.

Example inference: .
e Conversation, music, party, activity-related sound etc. |

Applications:
 Automated diary
e Health and wellness

=% UNIVERSITY OF

i Llﬁivi,'
L 4 4

{¥ CAMBRIDGE




Challenges in Mobile Sensing

e Complex natural environment

* Heterogeneity of sensors

e Vary in sampling frequency, sensitivity Common sensing platforms

* Noisy measurements

. . | | . t
* Different sensor position and orientation Noisy data

e Diverse population

asberer  Diverse user

* Privacy _
population

* Limited processing and battery power
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Challenges in Mobile Sensing

e Sensing is resource intensive

Battery Memory CPU GPU Storage

e The purpose of the embedded platform is to support multiple applications

* A sensing application needs to maintain a balance between
* The amount of resource needed to operate
* The accuracy of the detection that is achieved
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Context Recognition:
Machine Learning

] ] Feature vector Label
Supervised Learning:

e Labeled data (training data) L1 Y1
* Objective: Learn a function from training data o Yo
X =Y r; € RY ' '
.F . — 1 £Ln yn
In mobile sensing we have a large number
Classification of sensors
e [abel is discrete / categorical variable - y
Sensor 1 xr, € R™
Regression Ys
e Labelis real-valued / continuous variable \ Single l
feature vector
. [wf ,,,,, wz]T—b Learner
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Context Recognition:
Machine Learning

] ] Feature vector Label
Supervised Learning:

e Labeled data (training data) L1 Y1
* Objective: Learn a function from training data o Yo
d : )
F:X—=Y r; € R Ty, Un
In mobile sensing we have a large number
Classification of sensors

e [abel is discrete / categorical variable

*yi
Regression
e | abel is real-valued / continuous variable

Ensemble
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Part - 2



Hot-keyword Detection:
Problem Definition

Target classes

Audio [ Yes ) ( No )
( Up ) (Down)
:l1> (sop) (o)
([ Leit ) [ Rignt |
0.2 O.iime (Sec)o.ﬁ 0.8 1.0 ( On ) C Off )

ho: X — {C4,...,Ci2}, where X € R?




HotKeyword Dataset

Hot Key-word Recognition

40000 e 16 KHz, 16-bit audio
35000 1| Audio length = 1 Second
3 30000 Total recordings = 64,721 he : X — {Cla L o 2}
S 25000
= 20000 X ¢ ]R16,000
g 15000
10000 - Training a CNN: Supervised Learning
5000 -
.. Feature vector Label

yes no up down left right on off stop go Others

Vocabulary a’; 1 Cl
Dataset
hg, where 8 € RP L2 Cy

Acknowledgement: Pete Warden, Google
https://www.tensorflow.org/versions/master/tutorials/audio_recognition 4 b n C 10

5% UNIVERSITY OF
P CAMBRIDGE




End-to-end CNN Architecture

HotKeywordNet(
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1): Sequential(

ConvZd(1l, 16, kernel_size=(1, 64), stride=(1, 2), padding=(@, 32))
BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU(inplace)
MaxPoolZd(kernel_size=(1, 8), stride=(1, 8), padding=0, dilation=1, cell_mode=False)
Sequential(

ConvZd(16, 32, kernel_size=(1, 32), st
BatchNorm2d(32, eps=1e-05, momentum=0.1,
ReLU(Cinplace)

MaxPoolZd(kernel_size=(1, 8),

2), padding=(0, 16))
affine=True, track_running_stats=True)

ride=(1,

stride=(1, 8), padding=0, dilation=1, ceil_mode=False)
Sequential(

Conv2d(32, 64, 16),

BatchNorm2d(64, eps=1e-05, momentum=0.1,

ReLU(Cinplace)

2), padding=(0, 8))
affine=True, track_running_stats=True)

kernel_size=(1, stride=(1,

Sequential(

ConvZd(64, 128, kernel_size=(1l, 8), stride=(1,
BatchNorm2d(128, eps=1e-05, momentum=0.1,
ReLU(inplace)

2), padding=(0, 4))
affine=True, track_running_stats=True)

Sequential(
Conv2d(128, 256, kernel_size=(1, 4), stride=(1,
BatchNorm2d(256, eps=1e-05, momentum=0.1,
ReLU(inplace)

MaxPoolZd(kernel_size=(1, 4),

2), padding=(@, 2))
affine=True, track_running_stats=True)

stride=(1, 4), padding=0, dilation=1, celil_mode=False)

Linear(in_features=512, out_features=256, bias=True)
Linear(in_features=256, out_features=12, bias=True)
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* |nput: Raw audio samples
e QOutput: Logits (dimension=12)

e Normalization:

K .
D i €%

e Distance metric: Cross-
entropy, KLD



Loss Function

* |n case of supervised N
learning L(ho(zi),yi)

L(o(ho(x;)), onehot(y;))

K
 Cross-entropy loss — Z pi log(q;)
i=1

exp(ho(z),) )log( exp(ha(z),) )
P (2);) S5 exp(ho(x);)

= log (Z exp(hg(x)j)) — he(x),




Training CNN: Loss Minimization

1
Average loss: mein N Z »C(hé’(xi)a yz)

Gradient descent: 0 <+ 0 Bl 2 ZVQE ho(x;), ys)

Problems with gradient descent:
* No guarantee that it will find a global minimum
* Convergence to a local minimum can be slow
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HotKeyword recognition: A Practical Guide

Step 1: Splitting dataset into training, validation and test sets

Step 2: Perform data normalization, e.g., 0 dbFS

Step 3: Model architecture selection and parameter initialization

Step 4: Fast mini-batch generation

Step 5: Data augmentation to make the trained model resilient to noise
Step 6: Perform model prediction on the augmented mini-batch

Step 7: Compute loss and perform gradient descent

Step 8: Stop if the model has converged, otherwise go to Step 4
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Convolutional Neural Network Training
for Hot Key-word Recognition

Divide audio files into
Training, Validation and
Testing sets

Loss function:
Cross entropy loss

Optimizer:
Adam/SGD

Get a random
index

|

Select random
background
noise

Get Audio
samples

|

|

Get random
time-shift
amount

Audio
Augmentation

|

Prepare Background
Noise Dataset

Get random
background
audio volume

X 250

(Batch size)-

Repeat steps:
500 time or
Employ early stopping




Input : MFCC Features

Audio ——» Pre-emphasis

MFCC «—— Lifting [«—

» Framing ———
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Multi-task Audio Inferencing

e Objective: Infer multiple contexts from the same input audio
e Who is the speaker? Is the person stressed? Male or female speaker?

Audio task 1 Audio task 2 Audio task 3 Audio task 4

q Q..&.Q ©°.°©£°°°O

!
 Save memory & bandwidth / O O O i ; i O O O
* Improve latency Hidden L< O O Q * ; y Q O O
* Preserve privacy O O O . .o Q Q Q

Shared hidden layer architecture

Shared feature
representation
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Multi-task Training

e Audio pre-processing

Filter bank

Audio signal 8KHz . Normalization
coefficients

Mini-batch for
Output Layer

T T T T T T T T ]

| Summary |

| (Input Layer) |

| Hidden Layers |

* Training shared | Ol [0 |
: I

architecture : Ol O

| O 10 :

I |

C o l
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Open Research Questions

e How can we use unsupervised data to bootstrap the
training procedure and reduce the amount of labeled
data?

e How can we squeeze the resource requirements of large-
scale neural networks for resource-constrained devices?

e Protecting privacy of the users.

 Multi-modal rich modeling of sensor data for accurate
high-level context-recognition.
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